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AN INFINITE PLATE WITH A CURVILINEAR
HOLE IN S-PLANE

A. A. EL-BARY - I. H. EL-SIRAFY

Cauchy integral method has been applied to derive exact and closed
expressions for Goursat’s functions for the first and second fundamental
problems for the infinite plate weakened by a hole having arbitrary shape.

The plate considered are conformally mapped on the area of the right
half-plane. The work of many previous authors are considered as special
cases of this work and the interesting cases when the the shape of the hole is
an ellipse, a crescent, a triangle, or a cut having the shape of a circular are
include as special cases.

1. Introduction.

The boundary value problems value for isotropic homogeneous perforated
infinite plates have been discussed by several authors [1], [4], [8].

It is know that [8], the first and second fundamental problems in the plane
theory of elasticity are equivalent to find two analytic functions ¢,(z) and ¥(z)
of one complex argument z = x + iy, satisfying the boundary condition

(1.1) ki (1) — td — (1) = f(1),
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Where k = —1, f(¢) is a given function of stesses, for the first fundamental
problem:;

. A3 _ . . . .
While k = x = T;IZ > 1, f = 2ug(t) is a given function of the displacement

for the second fundamental problem; A and u are called the constant’s of Lame;
x is called Muskhelishvili’s constant and ¢ denoting the affix of a point on the
boundary L.

Muskhelishvili [8] solved the problem of the stretched of an infinite plate
weakened by an elliptic hole using the mapping function z = ¢(¢ +m¢~!). This
transformation conformally maps the infinite domain bounded internally by an
ellipse onto the domain outside the unit circle |£| = 1 in the £ - plane.

In [1] El-Sirafy used the complex variable methods and rational mapping
functions to obtain the Goursat functions for a stretched infinite plate weakened
by an inner curvilinear hole using the transformation

2 s+ 12 +m(s —1)? L
(1.2) ;_(s—l)(s+1)2—n(s—1)2 (c>0,s=0+4it; |n| <1)

This transformation maps the perforated infinite plate onto the area of the
right half-plane, Re s > 0.

The same author in [2] considered the case of stretched infinite plates
weakened by hypotrochoidal holes with four or fives round corners, the Goursat
functions ¢(z) and ¥ (z) are obtained in a closed form.

Abdou and Hassan [5] obtained the two Goursat’s functions for the
stretched infinite plate weakened by a hole whose the edge is free from stresses,
using the two rational mapping functions.

z _ (s +17° +m(s — 1)
eV TG T ) =G T Do — 1)
and
z D 4ms—1) o
(1.3) o= w(s) = G D6+ 1 —nGs — 2P (Jn],c>0,s =0 +it)

Here, m, n are real parameters subject to the conditions that w’(s) does not
vanish on the right half-plane (i.e Res > 0) and w (c0) is bounded.
In this paper Cauchy integral methods and rational mapping functions.

D Hmis + (s —1)?
T (s—=D(s+1)? — n(s+D)(s—1)?°

(14) 2 =w(s) >0l <1:s =0 +i1)
C
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where m, n, are real parameters subject to the conditions that w(co) is bounded
and w'(s) does not vanish on the right half-plane (i.eRes >> 0), are used
to obtain exact and closed expressions for Goursat functions for the first and
second fundamental problems of an infinite plate weakened by a curvilinear
hole conformally mapped on the domain onto the right half-plane by (1.4)

If weletin (1.4)s = %, we have the transformation mapping

z _E+mg!
;_w(é)_ 1 —n&!

In terms of z = cw(§), ¢ > 0, w'(§) does not vanish or become infinite
for |£] > 1, the infinite region outside a closed contour conformally mapped
outside the unit circle y. (see [7])

Some applications of the first and second fundamental problems on these
domain are investigated, the interesting cases of an infinite plate weakened by
an elliptic hole, a crescent like hole or a cut having the shape of a circular arc,
and the hypotrochoidal hole with three rounded corner are considered as special
cases, and the functions ¢(z) and ¢(z) are obtained in a closed form.

2. Basic equations.

Consider a region of an elastic media of an infinite plate denoted by S and
bounded by a single contour L, with a curvilinear hole C where the origin lies
inside the hole.

If xX, yy, xy represent the components of stress, while u, v the compo-
nents of displacement and in the absence of body forces, we have the formulae
of Kolsov-Muskhelishvili [8] in the following form.

@2.1) Xk +y9 = 4 Re{)(2)

(2.2) yy —xX +2ixy = 2[z¢](z) + ¥ (2)]
and

(2.3) 2 (u+iv) =k ¢1(2) — 2¢1(2) — ¥1(2).

In terms of conformal mapping function

z=cw(), ¢ >0, w()#£0 or oo for |§] > 1,
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The infinite region outside a closed contour conformally mapped on the
region outside the unit circle Y. The complex potentials ¢(z) and r(z) can be
written in the form.

2.4 — Ml t ¢t t

(2.4) ¢>1(t)——2n(1+x)n +Tt+¢o (1)
XX —iY) .

(2.5) 1//1(t)——2n(1+x)lnt+f' t+ o (2).

Where X, Y are the components of the resultant vector of all external forces
acting on L; I', I'* are constants and ¢o(¢), ¥o(¢) are holomorphic functions at
infinity.

Using (2.4), (2.5) in (2.3), we obtain

(2.6) kepo(t) — (1) — Yo(1) = f (1),

where k = —1, f(t) = — f(¢) for the first displacement problem; while k = x,
f () = 2ug(t) for the second fundamental problem.

3. Method of solution.

The expressions 22 will be assumed in the form

w'(it)

wit)  ——
3.1 — = a(it) + B(iT),
w/(it)
where
. k* 1+n
a(it) = a+it’ R
(3.2) k* = 4na*(n® + nm)J; ', Jo = (1 —2n* — mn?)
and
1 H(s) .
where
33) H(s) = (1 — n)(s* — 1)(s +a)*[m(s — D(s + 1>+ (s — 1)°]

E(s) =2[—(s + D* 4+ 2n(s + 1)*(s = 1) + m(s + 1)*(s — 1)?]
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B(s) is a regular function within the right half-plane except at infinity.
The boundary condition (2.6) takes the form

(3.4 kp(it) — ()¢’ (it) — Y(it) = fi(7)
where

@(s) = ¢o(w(s))
fu(®) = fw(it)) — yo + w(it)(T — kT) + wi@) T

X7 (i) - wGo)
— — (W1 — w1
(3.5) 2r(1 + )w'(it)
W(s) = Yo(w(s)) + BE)P(5) + 75 — T
s) = Yo(w(s $)'(s) + o )
yozc(1+m)F—kr+F*),
1—n

and assume that ¢(c0) = ¥ (c0) = 0.
Multiplying both sides of (2.4) by m and integrating with respect to
from —oco to oo, we have

dt

3.6) kp(s) — L/OO Mdt _ L > f*(f)
27 ) o S —iT 2 | s —it

and by using (3.1) in (3.6), we obtain:

1 [®a(m$'lt)  ck'b

3.7) E/_oo s —irt dr_s—l—a’
1 [* fiindt 2cT*  2c(k*T —T)| m+n?
SR - o S —iT = A= 7 (1 —n)? |:(s—|-a):|
(1 +n)n® +mn)(X —iY)
(140 = n)(1 + mn?)(s + a)

and
(3.9) Ai(s) = 1 Mdr

27 J_ o S —iT



266 A. A. EL-BARY - I. H. EL-SIRAFY

Where b is a complex constant to be determined.
Substituting from (3.7)—(3.9) in (3.6), we get:

*

_ck*b i +n)(X —iY) 2cT

G100 ko) = — o T A+ T T e+ 1+s
2¢(kI’ = T) { m + n?
(1 —n)? a-+s

where y; = (n® +nm); y, = 1 + mn>.
Differentiating (3.10) and inserting ¢(it) in (3.7), the complex constant b can
be determined in the form:

2a*

3.11 b=
G-11) c(16a*k? — K*2)

{ (80247 (@) — 26" 4, 0] +

+e(1 = n)2(4akT — k*T%) — c[(4a2k2 + k9T — (4> + KT

m + n? (1 +n)y x N iy
(1 +n)? cyy(1 — n)(1 + k) | 4a%k + k*  4a’k — k*

Inserting (3.11) in (3.10) the function ¢(s) becomes.

kyiJoa(XJ, —iYJ,)  2cT*

3.12 k = Ai(s) +
(3.12) o) = A et U+
2(m + n*)h, 2nyi i Js
hy +hy + h
+ “Ta (1—n)2(s+a)[ 2+ h3 + hyl
where
Ji=kJo+ny)", Ja=(Jok —ny)7,
kU =T

L= he =21+ P [kl Af@ = ny 4 @],

C——=,;
(1—n)y?
(3.13) hy = c(1n2)2[kJor* _ nyf*],
ha = c(m + )| (o + nyKT = (Jo +ny)T .

From the boundary condition (2.4), we can determine ¥(s) in the form

kBi(S) 2¢(T —kT) c¢K(1—n)*s+a+2)T"
K+ 1+S 2k*(1 + 5)2

(3.14) Y (s) = Ax(s)+
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s+3a \ | 2nyihi(m +n*)  n(1 +n)y2(LX —iJyY)
(s +a)? kJo my(1+ x)(1 —n)

2n?y2 01 Jn 2¢(m + n>)Ir*
A 4+ h 7
(l—n)zJok( 2+ s+ ha) totad—ny
where
(3.15) By(s) = 1 /‘X’ AGit)dr
' =0 |Gt —a)6 —it)
And _
1 [~ Fwi
Ay(s) = — fw(z.r) dt
2w J_ oo S —iIT

4. Special cases.
Now, we are in a position to consider several interesting cases:
(1) letin (3.12) and (3.13)

p )

X=Y=f=0,"=-Z¢ T== k=-1
2 4
we have
cP (m +n?)J (1 — n)2e*0
@.1) o(s) = . - :
(1 —n) s+a 145

_ 1 (m +I’l)2€_2i0
4.2) ¥ (s) —cp[1 =0 _MHGJ + Pk

(m + n)*(s + 3a)Js (s +a + 2)e*®
A0+ n)s+a? T+aP(d+s)2 ]|

where
o (m —2)(n*> — 1)+ n’*(n®* — 1) cos 20
T nt — 1+ 2n2m + 1)
*3) 4n%a*(m + n®)
Kj=—2 T

T 1= (m+2)n?
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and p is a uniform tensile stress.

The previous results of (4.1)—(4.3) agree with (1.7) and (1.8) of El-Sirafy
[1].

(i) Letin (4.1) s = £1; and in (3.12), (3.13) let

é:_
X=Y=f=0; F*:—Be_ZiO, F:B,
2 4
then excluding the constant term, we have the mapping function £ = élf'::;:]] ,

and the corresponding two Goursat functions take the form

1 . 1
4.4 (&) = Sep {ezlos‘l + (m + nz)(a — J)E — n)‘l},

_ ~¢p cpw _1210—2 21_ N2
4.5) y(&) = ) +2w,(5)[ 7€ 3 Jr(ern)(2 J)(E n)}

2
cpnkr§ | 5 2 1 22 1
_ = Z — I — -
20— ne) [e +(m+n )(2 (1 —n) P
where
2n® — 1 4+ n?(n> — 1)*>cos 20
Jo— (m+2)n +n°(n )* cos 4 in?sin20
4.6) n* —1+42n%(m +1)
' (m + n?)(1 — n*)?
K, =

1 —(m +2)n?

The formulae (4.4)—(4.6) agree with the formulae (4.1)—(4.2) of [3] on noting
the difference on notation (see Fig. 1).
(iii) Let

P i

X=v=f=0.r=2 p—
- - - ’ _47 _2e ’

the Goursat functions become

¢(s) =

cp JE+iJy (1 —n)*e?
A-n)?| (s+a) s+a
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v ) n2e?0 cpk | (s +3a)(J; +1J5)
s)=c - —
P s -G ra) | 4
(1 —n)*(s + 2+ a)e*
(14 s)?
where
e n*J; —n*(1 — n?)*cos0
4.8) 1 sy —m
' 7+ n*(1 — n?)%sin20 T o
= ’ = — 4Zn
2 Ji +nt 0

269

The previous results of (4.7)—(4.8) agree with (2.12)—(2.14) of Abdou [6], on
noting the difference on notation.

(iv) Let m = —n? the hole is bounded by the circle |z — nc| = ¢ and the
functions ¢(s) and 1 (s) become.

4.9)

and

ke(s) = Ai(s) —

Y(s) = Ax(s) —

2T
1+s

2¢(I —kT)
1+s
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(v) For m = —1, the hole degenerates into a circle cut and the two complex
functions ¢(s) and ¥ (s) become

2cT 2¢kkI = TH(
4.11) ke(s) = Ai(s) — lii—s - C((l _n)(s)(Jr;r)”)

nk(1 + n) X N iy
a(l+x)s+a)|n2—k n2+k

2n?
(1 —n)*(n* — k2)(s + a)

+ {20+ m2kai @ + w2 Aj @) +

+c(1 = 22T + 02T + ¢ — 1)((n? — KT + (1 + nz)kF)}

4(1 +n)’n? 2¢(' = k') 2c(n+ DI'*

G12) Y(&) = A = 5 o BT =T Y e o e r )

2en2(s +a+2)(1 +n)’T  s+3a n*n+1) ( x
k(1 + s)? +aP|x(l+)n—1D\n2—k

iy 2n’c(n + 1)(kI' —T) 2'14[6(1 — n?P (T + nzf*]
+ n? + k) k(1 —n) k(1 — n)?(k? — n*)

+2(1 = n)* (kA (a) + n* A\ (@) + c(n* — 1)(T — k") + k(I" — kF)}
(vi) Letin (4.11)—(4.12)

1 .
k=—1, r:%, M= —2Pe™ X =Y = f(w(s) =0
and s = % the results will agree with (3.1)—(3-2) of [3], on noting the different
notation (see Fig. 2).

(vii) For m = 0,5 = %, we have the mapping function z = 1—2‘;1 (see

Fig. 3), where the inner edge of the infinite plate is the inverse of an elliptic
limacon.
Also if

1,
,F*:—Epe_Z’O,X:Y:fzo

3
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n=—1/3

c&
1—ng—1

Figure 3

the Goursat functions become

(4.13) ¢(s) =

(1 —n)? B

cP Js (1 —n)?e*®
s +a 1+ ’
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|: 1 726200 i|
(4.14) Y(s)=cP +

1+s (1—n3@s+a)

cpky Js(s +3a) (1 =n)’(s +a+2)e’
4 | A +n2s+a)? (14 5)?
where

_ 4a’n*
1 —2n?

21_22 _ 41_ 2 20
I = n*( n°) —n*(l —n"cos +in* sin20 |, k
1 —2n2—n?

The previous results agree with (1).

(vii) For n = 0, the hole takes a triangle form, and the two complex functions
can be directly determined from (3.12)—(3.14).

5. Examples.

Now, we are in a position to consider some examples of the first and second
fundamental problems.

(i) For

P
K=-1,T==
4

1 .
,F*:—EPe_ZlO,X:w:fzo

the Goursat functions for our tranformation take the form

S.D b(s) = cP -(1 —n)(14+s)Js+1J7) B (1— n)zezio
. _(l—l’l)Z_ (1 = n)(s +a)1 +s) Ths
= 1 (m + n?)e~ 20
(5.2) V(s)=cp | (1 +9) (1= n)(s +a):| —

B (1 =n)(s +a+2)e*  cpk*| (Js +iJ7)(s +3a)
(14 5)? 4 (1 4+ n)2(s + a)?

where

_ (m 4+ n®)Jo — nyi(1 —n?)? cos 20

J
¢ (Jo — ny1)
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and
ny1((1 = n?)?sin 20
(Jo +ny1)
in the previous example, we have an infinite plate stretched at infinity by the
application of a uniform tensile stress of intesity P, making an angle 0 with the
xaxis. The plate is weakened by a curvilinear hole C which is free from stress.
This result agree with [1].

(i) For

J; =

k=—1,X=Y=I=I"=0

and f = Pt, complex functions take the form

_ 2cP 2 nyi
) R T e R )[1 T nm}
_ 2epyi(Jo +ny1 —2n* +4n* — 2)(s 4 3a)
v = To(o — ny)(1 — 2 + a)? *
2cp - ) 2
+1—|—s|:1 EJO y1(1 4+ n) (1+—(1—n)(1—|—s):|'

The previous results give the solution of the first fundamental problem for an
isotropic infinite plate with a curvilinear hole when there is no external forces
and the edge of the hole is subject to a uniform pressure p. If P = —iT, we
have case when the edge of the hole is subject to a uniform tangential stress 7.

Qi) KT =T'* = f = 0 and k = yx, then the two complex functions are
transformed to

JoJ1oyi(I +n)[X(x Jo + ny1) —iY(x Jo + ny1)

SR 7y + 00 — n)s +a)
2 )
(5.6) U(s) = n(1 +n)y{(s +3a) i X B Y '
ay(1+)d =n)s +a) | xJo+nyi  xJo+ny

Therefore, we have the solution of the second fundamental Problem when a
force (X, Y) acts on the center of the curvilinear kernel.
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