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COMPLETENESS THEOREMS:
FICHERA’S FUNDAMENTAL RESULTS

AND SOME NEW CONTRIBUTIONS

ALBERTO CIALDEA

After recalling Fichera’s fundamental results in the study of the prob-
lem of the completeness of particular solutions of a partial differential
equation, we give some new completeness theorem. They concern the
Dirichlet problem for a general elliptic operator of higher order with real
constant coefficients in any number of variables.

1. The problem of the completeness and Fichera’s results

Let E be an elliptic partial differential operator of order 2m with real constant
coefficients and no lower order terms:

Eu = ∑
|α|=2m

aαDαu

with
∑

|α|=2m
aαξ

α > C |ξ |2m ∀ ξ ∈ Rn.

Denote by {ωk} a complete system of polynomial solutions of the equation
Eu = 0. Completeness Theorems:
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Fichera’s fundamental results Let Ω be a bounded domain in Rn such that Rn\Ω

is connected. The boundary Σ = ∂Ω is supposed to be C1.
The aim of the present paper is to prove that the system

{(ωk,∂νωk, . . . ,∂
m−1
ν ωk)}

is complete in the space [Lp(Σ)]m (1 6 p < ∞), where ∂ν denotes the normal
derivative on Σ. Recently such a result was proved for the polyharmonic opera-
tor [11].

In this way we shall give a general result concerning the completeness of
polynomial solutions in the study of the Dirichlet problem for an elliptic opera-
tor of higher order without lower order terms. The case in which there are lower
order terms is much more delicate and it will be discussed in a forthcoming
paper [10].

The problem of the completeness of particular solutions of a partial differ-
ential equations is an old problem in the theory of approximation and it can be
formulated in two different ways.

The classical one is the following: suppose we have an elliptic partial dif-
ferential operator E with complex coefficients, say

Eu =
m

∑
|α|=0

aα(x)Dαu, aα ∈C∞(Rn) (1.1)

where
∑

|α|=m
α(x)ξ

α 6= 0 ∀ x ∈ Rn, ξ ∈ Rn.

Let K be a compact set in Rn and define

Ω(K) = { f ∈C(K)∩C∞(K \∂K) | E f = 0 in K \∂K}

equipped with the norm
‖ f‖= max

K
| f (x)|.

Let A be an open set such that K ⊂ A and S be a particular class of functions
in {u ∈C∞(A) | Eu = 0 in A}. The problem is to give conditions under which

S = Ω(K). (1.2)

In the case of holomorphic functions of one complex variable, i.e. n =
2, E = ∂x + i∂y and S equal to the system of polynomials in the variable z,
Mergelyan [25, 26] proved that (1.2) holds if and only if R2 \K is connected.

Even if a definite answer like the Mergelyan one is not known for the partial
differential operators (1.1), several general results are available. We mention, in
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particular, the important contributions of Lax [21], Malgrange [23] and Browder
[4].

For example, suppose that (1.1) and its adjoint

E∗u =
m

∑
|α|=0

(−1)|α|Dα(aα(x)u)

possesses in B the unique continuation property (B being an open set such that
A ⊂ B), K \ ∂K satisfies the restricted cone hypothesis and B \K is connected.
Under these conditions (1.2) holds, provided that S is one of the following
spaces:

S = {p(x) | p(x) =
∫

H
ϕ(y)s(x,y)dy, ∀ ϕ ∈C∞(H)}

S = {p(x) | p(x) =
m

∑
j=1

c js(x,y j), ∀ y1, . . . ,ym ∈ H}

where H is compact set in B\A and s(x,y) is a fundamental solution for E. For
a proof of this result see [4] or [19].

If the coefficients of (1.1) are constant one can ask if (1.2) holds, S being
the class of polynomial solutions of the equation Eu = 0. This case, which is
much more delicate, was deeply investigated by Malgrange [23] and we refer to
his paper for the relevant results.

The problem of completeness can be formulated in a deeper way, which-
Completeness Theorems:
Fichera’s fundamental results was indicated many years ago by Mauro Picone
[30]. He posed the following problem: let E be a partial differential operator

Eu = ∑
|α|62m

aα(x)Dαu

defined in Rn and let B1, . . . ,Bs some partial differential operators defined on the
boundary Σ of a bounded domain Ω. Let us suppose that there exists a solution
of the problem {

Eu = 0 in Ω

Bhu = fh on Σ (h=1,. . . ,s)
(1.3)

if and only if ( f1, . . . , fs) satisfies a finite number of compatibility conditions

s

∑
h=1

∫
Σ

fhψ
(k)
h dσ = 0 k = 1, . . . ,µ,

that is to say that problem (1.3) is an index problem.
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Let us denote by {ωk} a particular sequence of solutions of the equation
Eu = 0 in A, where A is a domain such that Ω ⊂ A.

The problem posed by Picone is to find under which conditions for Ω, E, Bh
and {ωk} the system {(B1ωk, . . . ,Bsωk)} is complete in the space{

(v1, . . . ,vs) ∈ [Lp(Σ)]s
∣∣∣ s

∑
h=1

∫
Σ

vhψ
(k)
h dσ = 0, k = 1, . . . ,µ

}
.

Let us consider the very particular case: n = 2, E = ∆2, s = 1, Bu = u|Σ and
{ωk} is the system of harmonic polynomials, i.e. ω2k = ℜzk, ω2k+1 = ℑzk (k =
0,1,2, . . .). It is interesting to remark that, if Ω is the unit disk, the completeness
of {ωk} in Lp(Σ) is nothing but the completeness of the trigonometric system
ω2k = coskϑ , ω2k+1 = sinkϑ (k = 0,1,2, . . .).

If we allow Σ to be an open manifold and we take Σ = [0,1], the complete-
ness of the system of harmonic polynomials {ωk} in C0(Σ) is just the Weier-
strass theorem.

The reason why the completeness in the sense of Picone is interesting is
that it gives informations on how to approximate a solution of a boundary value
problem. For example, let us consider the Dirichlet problem for Laplace equa-
tion 

u ∈C0(Ω)∩C2(Ω)
∆2u = 0 in Ω

u = ϕ on Σ

(1.4)

(ϕ ∈ C0(Σ)). If we know that the system of harmonic polynomials {ωk} is
complete in C0(Σ), we can find a sequence {pm} of harmonic polynomials such
that ‖pm −ϕ‖C0(Σ) → 0. Therefore the sequence {pm} will converge also in
C0(Ω), because of the maximum principle. It is easy to see that {pm} will
converge to the solution u of the Dirichlet problem (1.4).

There are two numerical methods which are based on the completeness in
the sense of Picone. For a brief description of these we refer to [19, p.36–37]

Fichera [16] was the first one to prove some completeness theorems in the
sense of Picone. The theorems he proved concern the system of harmonic poly-
nomials in any number of variables. To be more precise, denote by {ωk} such a
system. This can be obtained by ordering in one sequence the polynomials

|x|hYhs

(
x
|x|

)
(s = 1, . . . , pnh,h = 0,1, . . .)

where {Yhs} (s = 1, . . . , pnh,h = 0,1, . . .) is a complete system of ultra-spherical
harmonics and pnh = (2h+n−2)(h+n−3)!/((n−2)!h!). It can be proved that
any harmonic polynomial can be written as a finite linear combination of ωk.
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Fichera [16] proved the following results, which are related to the main
boundary value problems for Laplace equation: the Dirichlet, the Neumann and
the mixed problem:

(i) the system {ωk} is complete in L2(Σ);
(ii) the system {∂νωk} is complete in{

v ∈ L2(Σ)
∣∣∣ ∫

Σ

vdσ = 0
}

;

(iii) if Σ = Σ1 ∪Σ2, the system {(ωk|Σ1 ,∂νωk|Σ2)} is complete in L2(Σ1)×
L2(Σ2).

As far as the theorems (i) and (ii) are concerned, you could repeat Fichera’s
proof word by word and obtain the corresponding completeness theorem in
Lp(Σ) for any 1 6 p < ∞. By small changes, one can prove that the same results
hold in C0(Σ) (see [19]).

In the case of (iii) the situation is different. It is clear that the result for p = 2
implies the completeness in Lp(Σ) for any 1 6 p 6 2, but the completeness of
{(ωk|Σ1 ,∂νωk|Σ2)} in Lp(Σ1)×Lp(Σ2) for p > 2 is still an open problem.

The idea of Fichera’s proof is to show at first that the completeness prop-
erty is equivalent to the corresponding uniqueness theorem in a certain class of
functions, which was introduced by Amerio [1]. Namely let us denote by A p

the following class

A p =
{

u ∈ Lp(Ω) | ∃ α,β ∈ Lp(Σ) :∫
Ω

u∆2wdx =
∫

Σ

(α ∂νw−β w)dσ , ∀ w ∈C∞(Rn)
}

.

In view of Caccioppoli-Weyl lemma, a function u ∈ A p is harmonic. Fi-
chera [16] obtained the uniqueness results in A p by means of a useful and
ingenious representation theorem. He proved that u belongs to A p if and only
if there exists ϕ ∈ Lp(Σ) such that

u(x) =
∫

Σ

ϕ(y)s(x− y)dσy

s being the fundamental solution for Laplace equation. With this representation
formula he was able to prove the following uniqueness results:

(i) if u ∈A p and α = 0, then u = 0;
(ii) if u ∈A p and β = 0, then u = const.;
(ii) if u ∈A 2 and α|Σ1 = 0, β |Σ2 = 0, then u = 0.
After Fichera’s results, several completeness theorems have been obtained

for particular partial differential equations. We mention the biharmonic equation
[3, 14, 27], the elasticity system [7, 15, 17], the heat equation [22] and general
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2nd order elliptic equations [2, 6, 18, 28]. We also mention [8] where the lapla-
cian in any number of variables is considered and completeness theorems for
the oblique derivative problem are proved.

All of these results are proved on smooth boundary, namely on Lyapunov
boundaries. Very few results are known on non smooth boundaries (see [5, 12,
13]).

2. A result of potential theory

We recall that the function h is said to be essentially homogeneous of degree α

if h(x) = h1(x) logx +h2(x) where h2(ρx) = ραh(x), x 6= 0, ρ > 0 and h1(x) is
a homogeneous polynomial of degree α if α is a nonnegative integer, h1(x)≡ 0
otherwise.

In [11], by extending the results proved in [9] for Lyapunov boundaries, the
following theorem was proved

Theorem 2.1. Let Σ ∈ C1. Let h ∈ C2(Rn \ {0}) be even and essentially ho-
mogeneous of degree 2− n. If ϕ ∈ L1(Σ) and x0 is a Lebesgue point for ϕ ,
then

lim
x→x0

(∫
Σ

ϕ(y)∂xk [h(x− y)]dσy−
∫

Σ

ϕ(y)∂xk [h(x′− y)]dσy

)
=

2νk(x0)γ(x0)ϕ(x0)

where x is a point on the inner normal to Σ at x0, x′ is its symmetric with respect
to x0 and γ(x0) is given by

γ(x0) =


πh1−

1
2

∫
|ξ |=1

∆h2(ξ ) log |ξ ·νx0 |dσξ if n = 2

1
2

∫
|ξ |=1

[(2−n)h(ξ )−∆h(ξ ) log |ξ ·νx0 |]dσξ if n > 3.

Moreover, as remarked in [11], the function γ can be expressed by means of
the Fourier transform of the kernel h:

γ(x0) =
1
2

F (∆h)(νx0) =−2π
2F (h)(νx0)

where the Laplacian ∆ has to be understood in the sense of distributions and F
denotes the Fourier transform.
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Let E be the operator

Eu = ∑
|α|=2m

aαDαu (2.1)

where aα are real constants.
We suppose that the operator is elliptic, i.e.

Q(ξ ) 6= 0

for any ξ ∈ Rn \{0}, where

Q(ξ ) = ∑
|α|=2m

aα ξ
α .

Let now S(x− y) the following functions:

S(x− y) =
1

4(2πi)n−1(2m−1)!
(∆y)(n−1)/2

∫
|ω|=1

|(x− y) ·ω|2m−1

Q(ω)
dσω (2.2)

for n odd, and

S(x−y) =
−1

(2πi)n(2m)!
(∆y)n/2

∫
|ω|=1

|(x− y) ·ω|2m log |(x− y) ·ω|
Q(ω)

dσω (2.3)

for n even. As it was shown by Fritz John [20, p.65–72], S(x− y) is a funda-
mental solution for (2.1).

Theorem 2.2. Let Σ ∈C1. Let ϕ ∈ L1(Σ) and x0 ∈ Σ be a Lebesgue point for ϕ .
For any multi-index α with |α|= 2m−1, we have

lim
x→x0

(∫
Σ

ϕ(y)Dα
y [S(x− y)]dσy−

∫
Σ

ϕ(y)Dα
y [S(x′− y)]dσy

)
=

− να(x0)
Q(ν(x0))

ϕ(x0) (2.4)

where x is a point on the inner normal to Σ at x0 and x′ is its symmetric with
respect to x0.

Proof. First write α = α0 +α1, with |α0|= 1, |α1|= 2m−2 and then∫
Σ

ϕ(y)Dα
y [S(x− y)−S(x′− y)]dσy

=−Dα0
x

∫
Σ

ϕ(y)Dα1
y [S(x− y)−S(x′− y)]dσy. (2.5)
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Since S(x) is essentially homogeneous of degree 2m−n, Dα1S(x) is essen-
tially homogeneous of degree 2−n and Theorem 2.1 gives

lim
x→x0

Dα0
x

∫
Σ

ϕ(y)Dα1
y [S(x− y)−S(x′− y)]dσy = 2ν

α0(x0)γα1(x0)ϕ(x0),

where
γα1(x0) =−2π

2F (Dα1S)(νx0).

On the other hand, ES = δ and (−4π2)mQ(x)F (S)(x) = 1. This leads to

−2π
2F (Dα1S)(x) =−2π

2(2πi)2m−2xα1F (S)(x) =
1
2

xα1

Q(x)

and (2.4) follows from (2.5).

Lemma 2.3. Let α be a multi-index with |α| = m− 1. Let us denote by u the
potential

u(x) =
∫

Σ

ϕ(y)Dα
y [S(x− y)]dσy .

If ϕ ∈ Lp(Σ), then u ∈W m,p
loc (Rn).

For the proof of this Lemma we refer to [11, Corollary 1].

3. Completeness Theorems

Let {ωk} denote a complete system of polynomial solutions of the equation
Eu = 0.

It is possible to extend the classical procedure for obtaining harmonic poly-
nomials to the case of the poly-harmonic operator ∆m. In fact, a complete system
of polyharmonic polynomials {ω

(m)
k } is given by

|x|h+2 jYhs

(
x
|x|

)
( j = 0, . . . ,m−1,s = 1, . . . , pnh,h = 0,1, . . .)

(pnh = (2h + n− 2)(h + n− 3)!/((n− 2)!h!)), where {Yhs} (s = 1, . . . , pnh,h =
0,1, . . .) is a complete system of ultra-spherical harmonics (see, e.g., [11]).

In the particular case of two independent variables, a system of polynomial
solutions of the equation Eu = 0 was constructed in [5] in the following way.
The operator E can be written as E = Ek1

1 . . .Ekm
m , where

Ei = a(i)
0

∂ 2

∂x2 +a(i)
1

∂ 2

∂x∂y
+a(i)

2
∂ 2

∂y2
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are elliptic operators, and

Qi(w) = a(i)
0 w2 +a(i)

1 w+a(i)
2 .

Let λi ∈ C such that Qi(λi) = Qi(λ i) = 0 with ℑλi < 0 and λi 6= λ j if i 6= j.
If p is a homogenous polynomial of degree k > 2m, we have that Lp = 0 if and
only if p is a finite linear combination of the following polynomials

ρh
1 (λ1x+ y)k−2h; ρh

1 (λ 1x+ y)k−2h, h = 0,1, . . . ,k1−1
. . .

ρh
m(λmx+ y)k−2h; ρh

m(λ mx+ y)k−2h, h = 0,1, . . . ,km−1

where ρi = a(i)
2 x2 −a(i)

1 xy + a(i)
0 y2. These polynomials are complex; if we want

real polynomials, it is sufficient to take
ρh

1 ℜ(λ1x+ y)k−2h; ρh
1 ℑ(λ1x+ y)k−2h, h = 0,1, . . . ,k1−1

. . .

ρh
mℜ(λmx+ y)k−2h; ρh

mℑ(λmx+ y)k−2h, h = 0,1, . . . ,km−1.

For the construction of system of polynomial solutions for more general
operators, we refer to [29, 31, 32]

For the sake of completeness we give the following result

Theorem 3.1. There exists one and only one solution u ∈W m,p(Ω) of the Diri-
chlet problem

Eu = f , u−g ∈ W̊ m,p(Ω)

where f ∈W−m,p(Ω), g ∈W m,p(Ω) are given.

Proof. Let us write the operator E in the form

Eu = ∑
|α|=|β |=m

(−1)maαβ DαDβ u

and set
B(u,v) =

∫
Ω

∑
|α|=|β |=m

aαβ Dβ uDαvdx.

Because of the ellipticity we have∫
Ω

∑
|α|=|β |=m

aαβ DαuDβ udx > K
∫

Ω

|∇mu|2dx ∀ u ∈C∞
0 (Ω)
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where ∇m denotes the gradient of order m. Poincaré’s inequality implies the
Gårding inequality∫

Ω
∑

|α|=|β |=m
aαβ DαuDβ udx > C‖u‖2

W m,2(Ω) ∀ u ∈C∞
0 (Ω)

and the result follows from a known general existence and uniqueness Theorem
(see [24, p.303]).

Theorem 3.2. Let Ω be a bounded domain of Rn such that Rn \Ω is connected
and Σ = ∂Ω is C1. Let 1 6 p < ∞. The system

{(ωk,∂νωk, . . . ,∂
m−1
ν ωk)}

is complete in [Lp(Σ)]m.

Proof. Suppose 1 < p < ∞. Let (ϕ1, . . . ,ϕm)∈ [Lq(Σ)]m (q = p/(p−1)) be such
that ∫

Σ

(ϕ1ωk + . . .+ϕm∂
m−1
ν ωk)dσ = 0 ∀ ωk ∈ {ωk}. (3.1)

We have to show that ϕ1 = . . .ϕm−1 = 0.
There exists R > 0 such that, for any x ∈ Rn, |x|> R,

S(x− y) =
∞

∑
|α|=0

cα(x)wα(y) (3.2)

uniformly for y∈Ω, where wα are polynomial solutions of the equation Eu = 0.
We shall prove that by using an idea which Fichera showed me in a private
communication.

Fix ξ such that |ξ |= 1. Since S is analytic, there exists rξ > 0 such that

S(t−ξ ) =
∞

∑
k=0

∑
|α|=k

1
α!

[DαS(v)]v=−ξ tα (3.3)

uniformly for |t| 6 rξ . From the compactness of the unit sphere it follows that
there exists r > 0, which does not depend on ξ , such that (3.3) holds uniformly
for |t|6 r, for any ξ , |ξ |= 1.

Suppose n odd or n > 2m even; in this case S is homogeneous of degree
2m−n (see (2.2), (2.3)) and we can write

S(x− y) = |x|2m−nS(ξ − y/|x|) = |x|2m−n
∞

∑
k=0

∑
|α|=k

1
α!

[DαS(v)]v=−ξ

(
y
|x|

)α

.
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On the other hand

[DαS(v)]v=−x = |x|2m−n−|α|[DαS(v)]v=−ξ

and then

S(x− y) =
∞

∑
k=0

∑
|α|=k

1
α!

[DαS(v)]v=−x yα

uniformly for |y|6 r|x|.
We have thus obtained, uniformly for |y|6 r|x|,

S(x− y) =
∞

∑
k=0

nk

∑
j=1

R(k)
j (x)P(k)

j (y) (3.4)

where R(k)
1 (x), . . . ,R(k)

nk form a basis for the functions [DαS(v)]v=−x (|α|= k) and
P(k)

j (y) are homogeneous polynomials of degree k.
Let us suppose n even, n 6 2m. In this case S is essentially homogeneous of

degree 2m−n and (see (2.3))

S(x− y) =
− log |x|

(2πi)n(2m)!
(∆y)n/2

∫
|ω|=1

|(x− y) ·ω|2m

Q(ω)
dσω−

|x|2m−n

(2πi)n(2m)!
(∆y)n/2

∫
|ω|=1

∣∣∣(ξ − y
|x|

)
·ω
∣∣∣2m

log
∣∣∣(ξ − y

|x|

)
·ω
∣∣∣

Q(ω)
dσω .

This shows that we have

S(x− y) = q(x− y) log |x|+ |x|2m−nS
(

ξ − y
|x|

)
where q is a polynomial of degree 2m−n, and then

S(x− y) = q(x− y) log |x|+ |x|2m−n
∞

∑
k=0

∑
|α|=k

1
α!

[DαS(v)]v=−ξ

(
y
|x|

)α

uniformly for |y|6 r|x|.
Therefore also in this case a formula like (3.4) holds uniformly for |y|6 r|x|.

It is clear that we can derive such expansion term by term and this implies
EP(k)

j = 0.
Now we can say that (3.2) holds uniformly for y ∈ Ω, provided |x| > R,

where R = (maxx∈Ω
|x|)/r. It is also clear that we can derive (3.2) term by term

with respect to the variables y and that the corresponding expansions converge
uniformly for y ∈ Ω (|x|> R).
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Keeping in mind (3.1), it follows that

m

∑
h=1

∫
Σ

ϕh(y)∂
h−1
νy

S(x− y)dσy =

∞

∑
|α|=0

m

∑
h=1

cα(x)
∫

Σ

ϕh(y)∂
h−1
νy

wα(y)dσy = 0 (3.5)

for any x such that |x|> R. Set

u(x) =
m

∑
h=1

∫
Σ

ϕh(y)∂
h−1
νy

S(x− y)dσy.

The potential u is solution of the equation Eu = 0. Since u is analytic in the
connected set Rn \Ω, (3.5) implies

u(x) = 0 ∀ x ∈ Rn \Ω.

On the other hand u ∈ W m,p
loc (T ) (see Lemma 2.3) and Ω satisfies the re-

stricted cone hypothesis; then there exists a sequence un ∈C∞
0 (Ω) such that un

tends to u in W m,p(Ω) (see [4, p.148–149]). This means that u ∈ W̊ m,p(Ω) and
then u = 0 in Ω, in view of Theorem 3.1.

Therefore we can say that

u(x) = 0 ∀ x ∈ Rn \Σ. (3.6)

Let α be a multi-index with |α|= m; we have

Dαu(x) = 0 ∀ x ∈ Rn \Σ,

i.e.
m

∑
h=1

∫
Σ

ϕh(y)∂
h−1
νy

Dα
x [S(x− y)]dσy = 0 ∀ x ∈ Rn \Σ.

This implies

lim
x→x0

m

∑
h=1

∫
Σ

ϕh(y)∂
h−1
νy

Dα
x [S(x− y)−S(x′− y)]dσy = 0

for any x0 ∈ Σ, where x,x′ have the same meaning as in Theorem 2.2.
On the other hand, due to the weak singularities of the kernels, we have

lim
x→x0

m−1

∑
h=1

∫
Σ

ϕh(y)∂
h−1
νy

Dα
x [S(x− y)−S(x′− y)]dσy = 0
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and then
lim

x→x0

∫
Σ

ϕm(y)∂
m−1
νy

Dα
x [S(x− y)−S(x′− y)]dσy = 0.

In view of (2.4) we have also

lim
x→x0

∫
Σ

ϕm(y)∂
m−1
νy

Dα
x [S(x− y)−S(x′− y)]dσy

= lim
x→x0

∑
|β |=m−1

∫
Σ

ϕm(y)ν
β (y)Dα

x Dβ
y [S(x− y)−S(x′− y)]dσy

= (−1)m−1 lim
x→x0

∑
|β |=m−1

(m−1)!
β !

∫
Σ

ϕm(y)ν
β (y)Dα+β

y [S(x− y)−S(x′− y)]dσy

= (−1)m−1 να(x0)
Q(ν(x0))

(
∑

|β |=m−1

(m−1)!
β !

(νβ (x0))2

)
ϕm(x0)

= (−1)m−1 να(x0)
Q(ν(x0))

ϕm(x0)

for almost every x0 ∈ Σ.
This leads to

ν
α(x0)ϕm(x0) = 0

almost everywhere on Σ and for any multi-index α with |α|= m. Then we have
also

ϕm(x0) = ∑
|α|=m

m!
α!

(να(x0))2
ϕm(x0) = 0

i.e. ϕm = 0 almost everywhere on Σ.
Now (3.6) implies

lim
x→x0

m−1

∑
h=1

∫
Σ

ϕh(y)∂
h−1
νy

Dα
x [S(x− y)−S(x′− y)]dσy = 0

for any multi-index α with |α| = m + 1. An argument similar to the previous
one leads to ϕm−1 = 0 a.e. and the result follows by induction.

The completeness for p = 1 is a consequence of the completeness for p >
1.
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