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SINGULAR BIELLIPTIC CURVES

AND WEIERSTRASS POINTS

EDOARDO BALLICO

Here we study the Weierstrass points of singular bielliptic curves in
characteristic 0. Most of our results are existence results of the type �there
exists a bielliptic curve Y with certain singular points and with a weierstrass
point P ∈ Yreg with a prescribed gap sequence�. Another main result is a
smoothness one for the set of all genus g bielliptic curves with prescribed
singularities.

0. Introduction.

In this paper we study the Weierstrass points of singular bielliptic curves.
Unless otherwise stated, we work over an algebraically closed �eld K with
char(K) = 0. For the case char(K) > 0, but char(K) �= 2, see Remark 1.12.
Let Y be an integral projective bielliptic curve with g := pa(Y ) ≥ 6. Hence
there exists a double covering f : Y → C with pa(C) = 1. We assume
that C is smooth. For a remark in the case in which C is singular, i. e. in
which C is a rational curve with a unique ordinary node or a unique ordinary
cusp as singularities, see Remark 1.11. We want to study simultaneously the
smooth points of Y which are Weierstrass points and all the singular points. We
list all possible singularities and the possible types of singular points of Y as
Weierstrass points (see 1.11). Most of our results are existence results of the

Entrato in Redazione il 9 ottobre 1999.

This research was partially supported by MURST (Italy).



276 EDOARDO BALLICO

type �there exists a bielliptic curve Y with certain singular points and with a
Weierstrass point P ∈Yreg with a prescribed gap sequence� (see Theorems 0.1,
1.9 and 1.10). Another main result is a smoothness one for the set of all genus
g bielliptic curves with prescribed singularities (see Theorem 0.2). To get the
�avour of our results we state the two main ones.

Theorem 0.1. Fix positive integers g, k, z and δ1, . . . , δk . For every integer
i with 1 ≤ i ≤ k �x a label: �cusp with invariant δi � or �tacnode with
invariant δi �. Let γ be the number of labels �cusp!�. Assume z ≥ g ≥ 6
and z +

�

1≤i≤k

3δi + γ ≤ 2g − 2. Fix an elliptic curve C and M ∈ Pic(g−1)(C).

Consider the associated surface cone T ⊂ Pg−1 induced by M and vertex
ν /∈ H . Fix P ∈ T \ {ν} and then take k general points Q1, . . . , Qk of T \ {ν}.
Then there exists an integral genus g bielliptic curve Y whose canonical model
is embedded in T \ {ν} and contains {P, Q1, . . . , Qk}, with P ∈ Yreg , P a
Weierstrass point of Y of any prescribed in advance type according to the rules
of Lemma 1.7 with respect to the integer z and such that each QI is a singular
point of Y whose type is exactly the one prescribed by its label.

Theorem 0.2. Let Y ⊂ Pg−1 be a canonically embedded integral bielliptic
curve and T ⊂ Pg−1 the associated elliptic cone with Y ⊂ T \ {ν}. Let
Q1, . . . , Qk be the singular points of Y ; call δi the invariant associated to Qi

and assume that Qi is a cusp if 0 ≤ i ≤ γ and a tacnode if γ + 1 ≤ i ≤ k.
Let B(Y ) the subset of H ilb(T ) parametrizing integral bielliptic curves with the
same type of singularities as Y . Assume 2g − 2 >

�
1≤i≤k 2δi + γ + k.

Then B(Y ) is smooth at Y with the expected dimension

3g − 3 + k − γ − 2(
�

1≤i≤k

δi).

As the reader has certainly noticed, to make sense of the statements of 0.1
and 0.2 we need to introduce several de�nitions and a few notation. This will
be done (together with their proof and a few related remarks) in the only section
of this paper. The main tool will be the study of the subset B(Y ) of the Hilbert
scheme Hilb(T ) parametrizing the equisingular deformations of Y . For the
case in which Y is smooth, see [4]. To study B(Y ) near Y when Y is singular
we use [7] and [8].
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1. Proofs and related remarks.

We use the notation introduced at the beginning of section 0. Let π : X →

Y be the normalization map. Since g ≥ 6 the bielliptic structure of Y is unique
([2], Remark 2.4). For a re�ned study of case Y smooth and 3 ≤ g ≤ 5, see
[3], sec. 5. Since C is assumed to be smooth, Y is Gorenstein (see e.g. [5],
Ch. 0, sec. 1). Since Y is Gorenstein and not hyperelliptic, the canonical map
of Y is an embedding ([10], Th. 15) and we will always see Y canonically
embedded in Pg−1 as a linearly normal curve of degree 2g − 2. Y is contained
in a cone T ⊂ Pg−1 with vertex ν /∈ Y and with as base a degree g − 1 elliptic
curve, E , embedded in a hyperplane H of Pg−1 as a linearly normal curve ([2],
Prop. 4.2). The restriction to Y of the projection of T \ {ν} → E from the
vertex ν induces the double covering f . In particular there is an isomorphism
j : C → E and we will omit it identifying C and E when there is no danger
of misunderstanding. Since char(K) �= 2 and C is smooth, the double covering
f is associated to a unique M ∈ Pic(g−1)(C). The linearly normal embedding
j is associated to M . Since char(K) = 0, there are exactly (g − 1)2 points
Pi ∈ E ∼= C , 1 ≤ i ≤ (g − 1)2, such that OC ((g − 1)Pi ∼= M . Let u : S → T
be the blowing-up of T at ν . We have S ∼= P(OC ⊕M) and this isomorphism is
compatible with the projections α : P(OC ⊕ M) → C and T \ {ν} → E ∼= C .
Pic(S) ∼= Z[h] ⊕ α∗(Pic(C)), where h := u−1(ν ) ∼= C . The conormal bundle
of h in S is isomorphic to M and hence for all L, L � ∈ α∗(Pic(C)) we have
L · L � = 0, L · h = deg(L) and h2 = 1 − g. by the adjunction formula
we obtain ωS

∼= OS(−2h − α∗(M)). Fix Q ∈ Sing(Y ) and let D ⊂ Pg−1

be the line (Q, ν ) spanned by Q and ν . Since the projection of Y from ν as
degree 2, we see that the scheme D ∩ Y has length 2 and (D ∩ Y )reg = {Q}.
In particular Q is a double point and if it is not unibranch it has exactly two
branches, both of them smooth, and with D transversal to the two branches,
while if Y is unibranch at Q , the line D is not in the tangent cone of Y at Q .
Let δ(Q, Y ) be the codimension as K-vector space of OY,Q in its normalization.
Hence 0 < δ(Q, Y ) ≤ g and δ(Q, Y ) = g if and only if X ∼= P1 and
{Q} = Sing(Y ). If Y is unibranch at Q with invariant δ(Q, Y ), then it is a
cusp formally equivalent to the plane singularity y2 = x 2k+1 , k := δ(Q, Y );
blowing-up the cusp singularity with invariant k we obtain a smooth germ of
plane curve if k = 1 and a cusp singularity with invariant k − 1 if k ≥ 2. If has
two branches, then it is a tacnode formally equivalent to the plane singularity
y2 = x 2k , k = δ(Q, Y ) (see e.g. [11], bottom of p. 100); blowing-up the
tacnode singularity with invariant k we obtain a smooth germ of plane curve
if k = 1 and a tacnode singularity with invariant k − 1 if k ≥ 2. Now we
�x an integer δ with 0 < δ ≤ g and Q ∈ T \ {v} = S \ {h}. Let �(Q, δ, 1)
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be the following zero-dimensional scheme with �(Q, δ1)red = {Q}; we �x a
germ at Q, Y ��, of a cusp singularity with invariant δ and with tangent cone not
containig the line ({Q, v}), i.e. the vertical �ber of S through Q ; let �(Q, δ, 1)
be the generalized singularity scheme associated to Y �� in the sense of [8],
Def. 2.3; by [8], Lemma 2.6, we have length (�(Q, δ, 1)) = 3δ + 1; if m
is the maximal ideal of the local ring OS,Q,, then the ideal sheaf of �(Q, δ, 1)
contains m2k+1 + IY ��,Q and it is contained in m2k + IY ��,Q . Let �(Q, δ, 2)
be the following zero-dimensional scheme with �(Q, δ, 1)red = {Q}; we �x a
germ at Q, Y ��, of a tacnode singularity with invariant δ and with tangent cone
not containing the line ({Q, v}); let �(Q, δ, 2) be the generalized singularity
scheme associated to Y �� in the sense of [8], Def. 2.3; by [8], Lemma 2.6,
we have length (�(Q, δ, 1)) = 3δ; the difference with the cuspidal case is
that after δ blowing-ups the strict transform of Y �� is transversal to the tree of
exceptional divisors; if m is the maximal ideal of the local ring OS,Q, then the
ideal sheaf of �(Q, δ, 2) is m2k + IY ��,Q . We will see in (1.8) that �(Q, δ, 1)
(resp. �(Q, δ, 2)) is related to bielliptic curves, Y , with Q ∈ Sing(Y ) and
having a cusp (resp. a tacnode) with δ(Q, Y ) = δ .

Remark 1.1. Fix Q ∈ S \ h ∼= T \ {v} and an integer δ > 0. Call L the line
({Q, v}). The residual scheme ResL(�(Q, δ, 1)) of the scheme �(Q, δ, 1) with
respect to the Cartier divisor L of S \ h is just Q with its reduced structure
if δ = 1, while ResL(�(Q, δ, 1)) = �(Q, δ, 1, 1) if δ ≥ 2. We have
ResL(�(Q, 1, 2)) = φ and ResL(�(Q, δ, 2)) = �(Q, δ − 1, 2) if δ ≥ 2.

Remark 1.2. We have h0(S,OS(2h + M⊗2)) = h0(C, M⊗2) + h0(C, M) +

h0(C, OC ) = 3g − 2 and h1(S,OS(2h + M⊗2)) = 1.

Remark 1.3. Fix a curve A∈ |2h+M
⊗2| on S . Since h·M = − h2 = 1−g, we

see that if A has a vertical �ber as component, then A has h as a component.
Every curve B ∈ |h + α∗(R)|, R ∈ Pic(C), is the union of a smooth curve
isomorphic to C and possibly some vertical �bers. Hence we easily see that
if Y ∈ |2h + M⊗2| has suf�ciently many tacnodes or cusps, then it must be
irreducible. Fix positive integers g, k, δ1, . . . , δk with g ≥ 6. Fix k general
distinct points of Q1, . . . , Qk of S \ h, no two of them contained in the same
�ber of the ruling of S . For each integer i with 1 ≤ i ≤ k �x one of the
following two labels: �tacnode with invariant δi � or �cusp with invariant δi�.
Fix an integral curve Y ∈ |2h + M⊗2| with {Q1, . . . , Qk} ⊆ Sing(Y ) and such
that Qi is a singularity of Y with the formal isomorphic type prescribed by its
label. Both tacnodes and cusps are rational double points and for these type
of singularities the invariants considered in [7] are known; the Tyurina and
the Milnor numbers of a cusp (resp. tacnode) with invariant δi are 2δi (resp.
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2δi − 1); the local isomorphism defect (in the sense of [7], 3.4) of the germ of
the normal sheaf of Y at Qi is ([7], Ex. 4.5). Assume 2(

�

1≤i≤k

δi )+ γ ≤ 2g− 3,

where γ is the number of cusp among the labels. Since ωS
∼= 0S(−2h−α∗(M)),

we have −ωS · Y = 2g − 2 and Y · Y = 4g − 4. By [7], Remark 3.8, part
3, we obtain that the subset of the Hilbert scheme Hilb(S) of S parametrizing
curves near Y which are equisingular to Y at each point Qi is smooth of the
expected dimension 3g − 3 + k − γ − 2(

�

1≤i≤k

δi ) (see [7], 3.14, for the case

Sing(Y ) �= {Q1, . . . , Qk}).

The following result is just [2], Prop. 2.3. For reader�s sake we reproduce
its proof

Lemma 1.4. Assume C smooth and g ≥ 3. Fix L ∈ Picd (X ) with 0 < d ≤

g − 2 and L spanned. Then d is even and there exists a unique R ∈ Picd/2(C)
with L ∼= f ∗(R) and h0(Y, L) = h0(C, R).

Proof. The uniqueness of R follows from [2], Lemma 2.2. Fix a general
linear suspace V of H 0(Y, L). Since L is a spanned line bundle, V spans
L. Hence V induces a morphism ν : Y → P1 with L ∼= ν∗(01P(1)) and

V = ν∗(H 0(P1,O1
P
(1))). If the morphism ν factors through f , we obtain d

even and the existence of R ∈ Picd/2(C) with L ∼= f ∗(R). By the uniqueness
of R we obtain that the image of the injective linear map γ : H 0(C, R) →

H 0(Y, L) contains a general two-dimensional subspace of H 0(Y, L). Hence γ

is an isomorphism. Hence we may assume that ν does not factor through f ,
i.e. that the induced morphism h = ( f, ν) : Y → C × P1 is birational. Thus
pa(h(Y )) ≥ g. Since h(Y ) is a divisor of C×P1 of bidegree (2, d), we conclude
using the adjunction formula on the smooth surface C × P1, exactly as in the
classical case with Y smooth.

The following result was checked in [4] (see [4], Lemma 0.2) if Y is
smooth. The proof in the general case is the same quoting Lemma 1.4 as a
reference for Castelnuovo - Severi inequality.

Lemma 1.5. Let P ∈ Yreg be a Weierstrass point which is not a rami�cation
point of f.

Then one of the following 3 cases occurs:

Type (a): the sequence of non gaps of P is g−1 and g+2+ j for all j ≥ 0;
P has weight w(P) = 2;

Type (b): there is an integer k with 1 ≤ k ≤ g − 2, k �= g − 3, such that
the sequence of non gaps of P is g − 1, g + j for all j with 1 ≤ j ≤ k and
g + k + 2 + t for all t ≥ 0; P has weight w(P) = k + 2;
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Type (c): there is an integer k with 0 ≤ k ≤ g − 2 such that the sequence
of non gaps of P is g + j for all j with 0 ≤ j ≤ k and g + k + 2 + t for all
integers t ≥ 0; P has weight w(P) = k + 1.

(1.6). Fix an integral curve Y ⊂ T , with ν /∈ Y and such that the projection from
ν makes Y a double covering of E ∼= C , say f : Y → C . Since ν /∈ Y , we have
u−1(Y ) ∼= Y . Assume that the corresponding double covering u−1(Y ) → C is
induced by M ∈ Pic(g−1)(C). Since u∗(OT (1)) ∼= OS(h + M) (Using additive
notation in Pic(S)), deg(Y ) = 2g−2, pa(Y ) = g and ωC

∼= OC , the adjunction
formula implies that u−1(Y ) ∈ |2h + M⊗2|. Call Q[H] the set of points of Y
which are mapped onto one of the points Pi , 1 ≤ i ≤ (g−1)2. Fix P ∈ Yreg and
an integer z with g ≤ z ≤ 2g−3; if P ∈ Q[H ], assume z ≥ 2g−4. Fix a general
hyperplane H � of Pg−1 with P ∈ H � and set C � := T ∩ H . Hence C � ∼= C .
For every integer w > 0, let {wP} be the zero-dimensional subscheme of C � of
degree w supported by P . Assume that Y contains {zP} but not {(z + 1)P}.
Then the proof of [4], Lemma 1.1, (in which it was assumed Y smooth instead
of just assuming P ∈ Yreg) works verbatim and gives the following result.

Lemma 1.7. Assume that P is not a rami�cation point of f . Then we have:

(1) P is a Weierstrass point of Y ;

(2) if P ∈ Q[H ], then P is a Weierstrass point of type (a) or of type (b) of Y ;

(3) if P /∈ Q[H ], then P is a Weierstrass point of type (c) of Y with associated
integer k = z − g;

(4) if P ∈ Q[H ] and z ≥ g + 1, then P is a Weierstrass point of type (b) of Y
with associated integer k = z − g;

(5) if P ∈ Q[H ] and z = g, then P is a Weierstrass point of type (a) of Y .

Proof of Theorema 0.1. We use the notation introduced for the statement of
Lemma 1.7. Let � be the union of the points whose label says �cusp !�. Let �

be the union of the schemes �(Qi , δi, 1) if Qi ∈ � and �(Qi, δi , 2) if �i /∈ �.
Set W := P(H 0(S,OS(2h + M⊗2) ⊗ I{zP}∪�)). Let Y be a general element of
P(H 0(S,OS(2h + M⊗2) ⊗ I{zP}∪�)).

First Claim: We have h0(S,OS(2h + M⊗2) ⊗ I{zP} ∪ �) = h0(S,OS(2h +

M⊗2)) − length({zP} ∪ �) = 3g − 2 − z −
�

1≤i≤k

3δi − γ and h1(S,OS(h +

M⊗2(−
�

1≤i≤k δi Qi )) ⊗ I{zP}∪� ) = 1.

Proof of the First Claim. Since h1(S,OS(2h + M⊗2) = 1 (Remark 1.2) the
last equality is true if and only if the �rst equality is true, i.e. if the zero-
dimensional scheme {zP} ∪ � imposes independent conditions to the linear
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system |2h+M⊗2 |. By semicontinuity it is suf�cient to prove the result for some
special con�guration of points Q1, . . . , Qk . Let F be vertical �ber containing
P . We specialize Q1 to a general point of F . Let �� the residual scheme
ResF (�) of � with respect to F ; �� and � have outside Q1 the same connected
components; length(��)− length(�)−2 and the connected component of �� is
empty if Q1 is labelled an ordinary node, {Q1} if Q1 is labelled as an ordinary
cusp and �(Q1, δ1 − 1, i) (i = 1 or 2 according to the label of Q1) if δ1 ≥ 2.
We have ResF ({zP} ∪ �) = {(z − 1)P} ∪ �� (Remark 1.1 and 1.3). Since
the scheme F ∩ ({zP} ∪ �) has lenght 3, we have h0(S,OS(2h + M⊗2) ⊗

I{zP}∪�) = h0(S,OS(2h + M⊗2(−Q1 ⊗ I{(z−1)P}∪��). If δ1 ≥ 2 we have
lenght(F∩({(z−1)P}∪��)) = 3 and hence we continue δ1−1 times obtaining
h0(S, 0S(2h+M⊗2)⊗I{zP}∪�) = h0(S,OS(2h+M⊗2(−δ1P)⊗I{(z−δ1)P}∪���∪∗ ),
where ��� is the union of the connected components of � not supported by Q1

and ∗ is the empty set if Q1 has label �tacnode�, while ∗ = {Q1} if Q1 has
�cusp !� as label). If Q1 has �cusp !� as label, i.e. ∗ �= φ , we just prove the
weaker statement h1(S,OS(2h + M⊗2(−(δ1 + 1)P) ⊗ I{(z−δ1P}∪���) = 0. Now,
and only now, we specialize Q2 to a general point of F . At the end it is suf�cient
to check that h1(S, 0S(h + M⊗2(−(

�

1≤i≤k

δi + γ )P) ⊗ I{(z−
�

1≤i≤k
δk )P}) = 0.

Second Claim: Y is integral, Sing(Y ) = {Q1, . . . , Qk}, and Y has at each Qi

the singularity prescribed by the label of Qi and with the invariant δi .
Proof of the Second Claim. We claim that the assertions on Sing(Y ) follow
from the last part of the First Claim, the de�nition of singularity scheme given
in [8], sec. 2, and its use made in [8] to construct plane curves with prescribed
singularities. To check the claim see in particular [8], Lemma 2.4, and the fact
that the bijectivity of a map H1(S, A⊗J) → H 1(S, A⊗J), A∈ Pic(S), J ideal
of a zero-dimensional scheme, is what is needed to obtain that H 0(S, A ⊗ J)
spans J; remember that h1(S,OS(2h + M⊗2)) = 1 (Remark 1.2). The �rst
assertion follows from the �rst part of the First Claim and the proof of [4], Th
0.3.

By Lemma 1.7 P is a Weierstrass point of Y with the type we want. Hence
we conclude the proof of Theorem 0.1.

(1.8). Fix P ∈ Sing(Y ) and set δ := δ(P, Y ) > 0. By [6], Prop. 3.5, P is a
Weierstrass point of Y with weight w(P) ≥ g(g−1)δ . The non-negative integer
E(P) := w(P) − g(g − 1)δ was called the extraweight of P and it is the real
measure of how much P is a Weierstrass point of Y , not just how singular is
Y at P . By [6], Prop. 5.5, it is possible to compute E(P) looking at the gap
sequences of all points of π−1(P) with respect to a suitable linear system, V ,
on X with V ∼= P(π∗(H 0(Y, ωY ))). We distinguish four cases.
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(1.8.1). Here we assume that P has two branches and that f (P) is not one of
the points Pi , 1 ≤ i ≤ (g−1)2. Set {P �, P ��} := π−1(P). Since the line ({P, ν})
is transversal to each of the two branches of Y at P and f (P) is not a osculating
point of E , we see that P � and P �� are not Weierstrass point of the linear system
V on X . Thus E(P) = 0 ([6], Prop. 5.5). Following the terminology of [4] for
smooth rami�cation points, we will say that P is a tacnode of type I of Y .

(1.8.2). Here we assume that P has two branches and that f (P) is one of the
points Pi , 1 ≤ i ≤ (g − 1)2. Set {P �, P ��} := π−1(P). Since the line ({P, ν}) is
transversal to each of the two branches of Y at P and f (P) is a osculating point
of E with weight 1, we see that the Hermite invariants, {hi }0≤i≤g−1 of P � and
P �� with respect to V are the same and hi = i for i ≤ g−2, hg−1 = g. Thus P �

and P �� are Weierstrass points with weight 1 for the linear system V on X (see
[9], Th. 15). Thus E(P) = 2 ([6], Prop. 5.5). Following the terminology of [4]
for smooth rami�cation points, we will say that P is a tacnode of type � of Y .

(1.8.3). Here we assume that P has one branch and that f (P) is not one of
the points Pi, 1 ≤ i ≤ (g − 1)2. Set {Q} := π−1(P). Since the line ({P, ν})
is not in the tangent cone of Y at P , we see that the sequence of non gaps of
Q for the linear system V on X is given by the integers 2t (2 ≤ t ≤ g − 1),
2g − 1, 2g, . . .. Hence Q has weight (g2 − 5g + 6)/2. By [6], Prop. 5.5, P
has extraweight E(P) = (g2 − 5g + 6)/2. In particular the extraweight does
not depend from δ . Following the terminology of [4] for smooth rami�cation
points, we will say that P is a cusp of type I of Y .

(1.8.4). Here we assume that P has one branch and that f (P) is one of the
points Pi , 1 ≤ i ≤ (g − 1)2. Set {Q} := π−1(P). Since the line ({P, ν})
is not in the tangent cone of Y at P , we see that the sequence of non gaps of
Q for the linear system V on X is given by the integers 2t (2 ≤ t ≤ g − 2),
2g−3, 2g−2, 2g, . . .. Hence Q has weight (g2−5g+10)/2. By [6], Prop. 5.5,
P has extraweight E(P) = (g2 −5g+10)/2. In particular the extraweight does
not depend from δ . Following the terminology of [4] for smooth rami�cation
points, we will say that P is a cusp of type � of Y .

An easy modi�cation proof of Theorem 0.1 gives the following existence
theorem for bielliptic curves with prescribed singularities; instead of specializ-
ing each point Qi , 1 ≤ i ≤ k, to P , loose directly δi (or δi+1 for a cusp) condi-
tions to handle the postulation of the scheme �(Qi, δi, 2) (resp. �(Qi, δi, 1));
for the value of the dimension, see Theorem 0.2 and its proof.
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Theorem 1.9. Fix positive integers g, k, γ , δ1, . . . , δk with g ≥ 6, 0 ≤ γ ≤ k,
and

�

1≤i≤k

3δi+γ ≤ 2g−3. Fix a smooth elliptic curve C and M ∈ Pic(g−1)(C).

Use M to obtain a linearly normal embedding of C into a hyperplane, H ,
of Pg−1 . Fix ν /∈ H and call T ⊂ Pg−1 the associated elliptic cone with
vertex ν . Fix k general points of Q1, . . . , Qk of T . For each integer i with
1 ≤ i ≤ k �x one of the following four labels: �tacnode of type I with invariant
δi �, �tacnode of type II with invariant δi �, �cusp of type I with invariant δi �
or �cusp of type II with invariant δi �. Assume that exactly γ of the label says
�cusp !�. Then there exists a canonically embedded integral bielliptic curve
Y ⊂ T \ {ν} with Sing(Y ) = (Q1, . . . , Qk) and such that Y has at each Qi

the singularity prescribed by the corresponding label. Furthermore, there exists
such curve Y with the property that the subset of the Hilbert scheme H ilb(T )
of T parametrizing such curves is, near Y , a smooth variety of dimension
3g − 3 + k − γ − 2(

�

1≤i≤k

δi).

Taking the union for all possible C, M and ν from Theorem 1.9 we obtain
the following result; just note that since k ≤ g the union of k general points of
Pg−1 is contained in an elliptic degree g−1 two-dimensional cone; here we use
that for every bielliptic curve Y there is a non-empty �nite set of elliptic cones
T ⊂ Pg−1 containing the canonical model of Y , that any elliptic cone, T , with
vertex ν /∈ H ∼= Pg−2 is uniquely determined by H ∩ T , that dim(Pg−1 (i.e. the
possible vertices, ν , are ∞g−1) and that the subset of Hilb(H ) parametrizing
the linearly normal smooth elliptic curves of degree g − 1 is a smooth variety
of dimension (g − 1)2.

Theorem 1.10. Fix positive integers g, k, γ , δ1, . . . , δk with g ≥ 6, 0 ≤ k, and�

1≤i≤k

3δi + γ ≤ 2g − 3. Fix k general points of Q1, . . . , Qk of P
g−1. For

each integer i with 1 ≤ i ≤ k �x one of the following four labels: �tacnode of
type I with invariant δi �, �tacnode of type II with invariant δi �, �cusp of type
I with invariant δi �, or �cusp of type II with invariant δi �. Assume that exactly
γ of the labels say �cusp !�. Then there exists a canonically embedded integral
bielliptic curve Y ⊂ Pg−1 with Sing(Y ) = (Q1, . . . , Qk) and such that Y has
at each Qi the singularity prescribed by the corresponding label. Furthermore,
there exists such curve Y with the property that the subset of the Hilbert scheme
H ilb(Pg−1) of Pg−1 parametrizing such curves is, near Y , a smooth variety of
dimension 3g − 3 + k − γ − 2(

�

1≤i≤k

δi ) + g(g − 1).

Now we may prove Theorem 0.2.

Proof of Theorem 0.2. By remark 1.3 the smoothness criterion [7], Th. 3.5 and
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Remark 3.8, part 3, is satis�ed.

Remark 1.11. Let f : Y → C is a double covering with pa(C) = 1 and
C singular, i.e. with C rational and with a unique singular point, Q , which
is either an ordinary node or an ordinary cusp; The canonical model of Y is
again contained in a cone with vertex ν /∈ Y and, as base, a degree g − 1 curve
isomorphic to C and embedded into a hyperplane, H , of Pg−1 ([2], Prop. 4.2).
Since Pic0(C) ∼= K∗ , outside the singular point such curve C ⊂ H has exactly
g − 1 asculating points, say Pi , 1 ≤ i ≤ g − 1. For each P ∈ Sing(Y ) with
f (P) �= Q , the classi�cation of all possibile singularities not mapped into Q
and their division into types works verbatim, taking the points Pi , 1 ≤ i ≤ g−1,
instead of the points Pi , 1 ≤ i ≤ (g − 1)2.

Remark 1.12. Here we assume char(K) ¿ 0, but char(K) �= 2. Let f : Y → C
is a double covering with pa(C) = 1. The canonical model of Y is again
contained in a cone with vertex ν /∈ Y and, as base a degree g − 1 curve
isomorphic to C and embedded into a hyperplane, H , of P

g−1 ([2], Prop. 4.2).
The classi�cation of singular points, P , of Y with f (P) /∈ Sing(C) as cusps
or tacnodes works even in this case (see [11], pp. 100�101). Obviously here
C ⊂ H may have a smaller number of osculating points if p ≤ g − 1, but the
only difference is that their weight is bigger than 1. From now on we assume
p > 2g − 2. Under this assumption we are sure that the Hermite invariants of
the linear system, V , induced by π : X → Y ⊂ Pg−1 at a generic point of X are
the classical ones ([9], Th. 15). Furthermore, only if we have such a restrictive
assumption on char(K) we are sure that the weigth of a Weierstrass point Q ∈ X
of V is computed using the gap sequence of V at Q ([9], Th. 15, part (iii)).
With this very restrictive assumption on char(K) we may copy [6], Prop. 5.5,
and extend (1.8). For the case Y smooth, see [1].
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Ann. Università Ferrara, 42 (1966), pp. 111�119.

[2] E. Ballico, Singular bielliptic curves and special linear systems, J. Pure Appl.
Algebra (to appear).

[3] E. Ballico - A. Del Centina, Rami�cation points of double covering of curves and
Weierstrass points, Ann. Matematica Pura e Appl. (IV), 177 (1999), pp. 293�313.



SINGULAR BIELLIPTIC CURVES. . . 285

[4] E. Ballico - S.J. Kim, The Weierstrass points of bielliptic curves, Indag. Math.,
N. S., 9 (1998), pp. 155�159.

[5] F. Cossec - I. Dolgachev, Enriques surfaces I, Progress in Math., 76, Birkhäuser,
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