# SINGULAR BIELLIPTIC CURVES AND WEIERSTRASS POINTS 

EDOARDO BALLICO


#### Abstract

Here we study the Weierstrass points of singular bielliptic curves in characteristic 0 . Most of our results are existence results of the type "there exists a bielliptic curve Y with certain singular points and with a weierstrass point $P \in Y_{\text {reg }}$ with a prescribed gap sequence". Another main result is a smoothness one for the set of all genus $g$ bielliptic curves with prescribed singularities.


## 0. Introduction.

In this paper we study the Weierstrass points of singular bielliptic curves. Unless otherwise stated, we work over an algebraically closed field $\mathbf{K}$ with $\operatorname{char}(\mathbf{K})=0$. For the case $\operatorname{char}(\mathbf{K})>0$, $\operatorname{but} \operatorname{char}(\mathbf{K}) \neq 2$, see Remark 1.12. Let $Y$ be an integral projective bielliptic curve with $g:=p_{a}(Y) \geq 6$. Hence there exists a double covering $f: Y \rightarrow C$ with $p_{a}(C)=1$. We assume that $C$ is smooth. For a remark in the case in which $C$ is singular, i. e. in which $C$ is a rational curve with a unique ordinary node or a unique ordinary cusp as singularities, see Remark 1.11. We want to study simultaneously the smooth points of $Y$ which are Weierstrass points and all the singular points. We list all possible singularities and the possible types of singular points of $Y$ as Weierstrass points (see 1.11). Most of our results are existence results of the

Entrato in Redazione il 9 ottobre 1999. This research was partially supported by MURST (Italy).
type "there exists a bielliptic curve $Y$ with certain singular points and with a Weierstrass point $P \in Y_{\text {reg }}$ with a prescribed gap sequence" (see Theorems 0.1, 1.9 and 1.10). Another main result is a smoothness one for the set of all genus $g$ bielliptic curves with prescribed singularities (see Theorem 0.2). To get the flavour of our results we state the two main ones.

Theorem 0.1. Fix positive integers $g, k, z$ and $\delta_{1}, \ldots, \delta_{k}$. For every integer $i$ with $1 \leq i \leq k$ fix a label: "cusp with invariant $\delta_{i}$ " or "tacnode with invariant $\delta_{i}$ ". Let $\gamma$ be the number of labels "cusp!". Assume $z \geq g \geq 6$ and $z+\sum_{1 \leq i \leq k} 3 \delta_{i}+\gamma \leq 2 g-2$. Fix an elliptic curve $C$ and $M \in \operatorname{Pic}^{(g-1)}(C)$. Consider the associated surface cone $T \subset \mathbf{P}^{g-1}$ induced by $M$ and vertex $v \notin H$. Fix $P \in T \backslash\{v\}$ and then take $k$ general points $Q_{1}, \ldots, Q_{k}$ of $T \backslash\{v\}$. Then there exists an integral genus $g$ bielliptic curve $Y$ whose canonical model is embedded in $T \backslash\{\nu\}$ and contains $\left\{P, Q_{1}, \ldots, Q_{k}\right\}$, with $P \in Y_{\text {reg }}, P$ a Weierstrass point of $Y$ of any prescribed in advance type according to the rules of Lemma 1.7 with respect to the integer $z$ and such that each $Q_{I}$ is a singular point of $Y$ whose type is exactly the one prescribed by its label.

Theorem 0.2. Let $Y \subset \mathbf{P}^{g-1}$ be a canonically embedded integral bielliptic curve and $T \subset \mathbf{P}^{g-1}$ the associated elliptic cone with $Y \subset T \backslash\{\nu\}$. Let $Q_{1}, \ldots, Q_{k}$ be the singular points of $Y$; call $\delta_{i}$ the invariant associated to $Q_{i}$ and assume that $Q_{i}$ is a cusp if $0 \leq i \leq \gamma$ and a tacnode if $\gamma+1 \leq i \leq k$. Let $\mathbf{B}(Y)$ the subset of $\operatorname{Hilb}(T)$ parametrizing integral bielliptic curves with the same type of singularities as $Y$. Assume $2 g-2>\sum_{1 \leq i \leq k} 2 \delta_{i}+\gamma+k$.
Then $\mathbf{B}(Y)$ is smooth at $Y$ with the expected dimension

$$
3 g-3+k-\gamma-2\left(\sum_{1 \leq i \leq k} \delta_{i}\right)
$$

As the reader has certainly noticed, to make sense of the statements of 0.1 and 0.2 we need to introduce several definitions and a few notation. This will be done (together with their proof and a few related remarks) in the only section of this paper. The main tool will be the study of the subset $\mathbf{B}(Y)$ of the Hilbert scheme $\operatorname{Hilb}(T)$ parametrizing the equisingular deformations of $Y$. For the case in which $Y$ is smooth, see [4]. To study $\mathbf{B}(Y)$ near $Y$ when $Y$ is singular we use [7] and [8].

## 1. Proofs and related remarks.

We use the notation introduced at the beginning of section 0 . Let $\pi: X \rightarrow$ $Y$ be the normalization map. Since $g \geq 6$ the bielliptic structure of $Y$ is unique ([2], Remark 2.4). For a refined study of case $Y$ smooth and $3 \leq g \leq 5$, see [3], sec. 5. Since $C$ is assumed to be smooth, $Y$ is Gorenstein (see e.g. [5], Ch. 0, sec. 1). Since $Y$ is Gorenstein and not hyperelliptic, the canonical map of $Y$ is an embedding ([10], Th. 15) and we will always see $Y$ canonically embedded in $\mathbf{P}^{g-1}$ as a linearly normal curve of degree $2 g-2 . Y$ is contained in a cone $T \subset \mathbf{P}^{g-1}$ with vertex $v \notin Y$ and with as base a degree $g-1$ elliptic curve, $E$, embedded in a hyperplane $H$ of $\mathbf{P}^{g-1}$ as a linearly normal curve ([2], Prop. 4.2). The restriction to $Y$ of the projection of $T \backslash\{\boldsymbol{v}\} \rightarrow E$ from the vertex $v$ induces the double covering $f$. In particular there is an isomorphism $\mathbf{j}: C \rightarrow E$ and we will omit it identifying $C$ and $E$ when there is no danger of misunderstanding. Since $\operatorname{char}(\mathbf{K}) \neq 2$ and $C$ is smooth, the double covering $f$ is associated to a unique $M \in \operatorname{Pic}{ }^{(g-1)}(C)$. The linearly normal embedding $\mathbf{j}$ is associated to $M$. Since $\operatorname{char}(\mathbf{K})=0$, there are exactly $(g-1)^{2}$ points $P_{i} \in E \cong C, 1 \leq i \leq(g-1)^{2}$, such that $\mathbf{O}_{C}\left((g-1) P_{i} \cong M\right.$. Let $u: S \rightarrow T$ be the blowing-up of $T$ at $\boldsymbol{v}$. We have $S \cong \mathbf{P}\left(\mathbf{O}_{C} \oplus M\right)$ and this isomorphism is compatible with the projections $\alpha: \mathbf{P}\left(\mathbf{O}_{C} \oplus M\right) \rightarrow C$ and $T \backslash\{\boldsymbol{v}\} \rightarrow E \cong C$. $\operatorname{Pic}(S) \cong \mathbf{Z}[\mathbf{h}] \oplus \alpha^{*}(\operatorname{Pic}(C))$, where $\mathbf{h}:=u^{-1}(\boldsymbol{v}) \cong C$. The conormal bundle of $\mathbf{h}$ in $S$ is isomorphic to $M$ and hence for all $L, L^{\prime} \in \alpha^{*}(\operatorname{Pic}(C))$ we have $L \cdot L^{\prime}=0, L \cdot \mathbf{h}=\operatorname{deg}(L)$ and $\mathbf{h}^{2}=1-g$. by the adjunction formula we obtain $\omega_{S} \cong \mathbf{O}_{S}\left(-2 \mathbf{h}-\alpha^{*}(M)\right.$ ). Fix $Q \in \operatorname{Sing}(Y)$ and let $D \subset \mathbf{P}^{g-1}$ be the line $(Q, \boldsymbol{v})$ spanned by $Q$ and $\boldsymbol{v}$. Since the projection of $Y$ from $\boldsymbol{v}$ as degree 2 , we see that the scheme $D \cap Y$ has length 2 and $(D \cap Y)_{r e g}=\{Q\}$. In particular $Q$ is a double point and if it is not unibranch it has exactly two branches, both of them smooth, and with $D$ transversal to the two branches, while if $Y$ is unibranch at $Q$, the line $D$ is not in the tangent cone of $Y$ at $Q$. Let $\delta(Q, Y)$ be the codimension as $\mathbf{K}$-vector space of $\mathbf{O}_{Y, Q}$ in its normalization. Hence $0<\delta(Q, Y) \leq g$ and $\delta(Q, Y)=g$ if and only if $X \cong \mathbf{P}^{1}$ and $\{Q\}=\operatorname{Sing}(Y)$. If $Y$ is unibranch at $Q$ with invariant $\delta(Q, Y)$, then it is a cusp formally equivalent to the plane singularity $y^{2}=x^{2 k+1}, k:=\delta(Q, Y)$; blowing-up the cusp singularity with invariant $k$ we obtain a smooth germ of plane curve if $k=1$ and a cusp singularity with invariant $k-1$ if $k \geq 2$. If has two branches, then it is a tacnode formally equivalent to the plane singularity $y^{2}=x^{2 k}, k=\delta(Q, Y)$ (see e.g. [11], bottom of p. 100); blowing-up the tacnode singularity with invariant $k$ we obtain a smooth germ of plane curve if $k=1$ and a tacnode singularity with invariant $k-1$ if $k \geq 2$. Now we fix an integer $\delta$ with $0<\delta \leq g$ and $Q \in T \backslash\{\mathbf{v}\}=S \backslash\{\mathbf{h}\}$. Let $\Delta(Q, \delta, 1)$
be the following zero-dimensional scheme with $\Delta(Q, \delta 1)_{\text {red }}=\{Q\}$; we fix a germ at $Q, Y^{\prime \prime}$, of a cusp singularity with invariant $\delta$ and with tangent cone not containig the line $(\{Q, \mathbf{v}\})$, i.e. the vertical fiber of $S$ through $Q$; let $\Delta(Q, \delta, 1)$ be the generalized singularity scheme associated to $Y^{\prime \prime}$ in the sense of [8], Def. 2.3; by [8], Lemma 2.6, we have length $(\Delta(Q, \delta, 1))=3 \delta+1$; if $\mathbf{m}$ is the maximal ideal of the local ring $\mathbf{O}_{S, Q}$, then the ideal sheaf of $\Delta(Q, \delta, 1)$ contains $\mathbf{m}^{2 k+1}+\mathbf{I}_{Y^{\prime \prime}, Q}$ and it is contained in $\mathbf{m}^{2 k}+\mathbf{I}_{Y^{\prime \prime}, Q}$. Let $\Delta(Q, \delta, 2)$ be the following zero-dimensional scheme with $\Delta(Q, \delta, 1)_{\text {red }}=\{Q\}$; we fix a germ at $Q, Y^{\prime \prime}$, of a tacnode singularity with invariant $\delta$ and with tangent cone not containing the line $(\{Q, \mathbf{v}\})$; let $\Delta(Q, \delta, 2)$ be the generalized singularity scheme associated to $Y^{\prime \prime}$ in the sense of [8], Def. 2.3; by [8], Lemma 2.6, we have length $(\Delta(Q, \delta, 1))=3 \delta$; the difference with the cuspidal case is that after $\delta$ blowing-ups the strict transform of $Y^{\prime \prime}$ is transversal to the tree of exceptional divisors; if $\mathbf{m}$ is the maximal ideal of the local ring $\mathbf{O}_{S, Q}$, then the ideal sheaf of $\Delta(Q, \delta, 2)$ is $\mathbf{m}^{2 k}+\mathbf{I}_{Y^{\prime \prime}, Q}$. We will see in (1.8) that $\Delta(Q, \delta, 1)$ (resp. $\Delta(Q, \delta, 2)$ ) is related to bielliptic curves, $Y$, with $Q \in \operatorname{Sing}(Y)$ and having a cusp (resp. a tacnode) with $\delta(Q, Y)=\delta$.

Remark 1.1. Fix $Q \in S \backslash \mathbf{h} \cong T \backslash\{\mathbf{v}\}$ and an integer $\delta>0$. Call $L$ the line $(\{Q, \mathbf{v}\})$. The residual scheme $\operatorname{Res}_{L}(\Delta(Q, \delta, 1))$ of the scheme $\Delta(Q, \delta, 1)$ with respect to the Cartier divisor $L$ of $S \backslash \mathbf{h}$ is just $Q$ with its reduced structure if $\delta=1$, while $\operatorname{Res}_{L}(\Delta(Q, \delta, 1))=\Delta(Q, \delta, 1,1)$ if $\delta \geq 2$. We have $\operatorname{Res}_{L}(\Delta(Q, 1,2))=\phi$ and $\operatorname{Res}_{L}(\Delta(Q, \delta, 2))=\Delta(Q, \delta-1,2)$ if $\delta \geq 2$.

Remark 1.2. We have $h^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right)\right)=h^{0}\left(C, M^{\otimes 2}\right)+h^{0}(C, M)+$ $h^{0}\left(C, \mathbf{O}_{C}\right)=3 g-2$ and $h^{1}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right)\right)=1$.

Remark 1.3. Fix a curve $A \in\left|2 \mathbf{h}+M^{\otimes 2}\right|$ on $S$. Since $\mathbf{h} \cdot M=-\mathbf{h}^{2}=1-g$, we see that if $A$ has a vertical fiber as component, then $A$ has $\mathbf{h}$ as a component. Every curve $B \in\left|\mathbf{h}+\alpha^{*}(R)\right|, R \in \operatorname{Pic}(C)$, is the union of a smooth curve isomorphic to $C$ and possibly some vertical fibers. Hence we easily see that if $Y \in\left|2 \mathbf{h}+M^{\otimes 2}\right|$ has sufficiently many tacnodes or cusps, then it must be irreducible. Fix positive integers $g, k, \delta_{1}, \ldots, \delta_{k}$ with $g \geq 6$. Fix $k$ general distinct points of $Q_{1}, \ldots, Q_{k}$ of $S \backslash \mathbf{h}$, no two of them contained in the same fiber of the ruling of $S$. For each integer $i$ with $1 \leq i \leq k$ fix one of the following two labels: "tacnode with invariant $\delta_{i}$ " or "cusp with invariant $\delta_{i}$ ". Fix an integral curve $Y \in\left|2 \mathbf{h}+M^{\otimes 2}\right|$ with $\left\{Q_{1}, \ldots, Q_{k}\right\} \subseteq \operatorname{Sing}(Y)$ and such that $Q_{i}$ is a singularity of $Y$ with the formal isomorphic type prescribed by its label. Both tacnodes and cusps are rational double points and for these type of singularities the invariants considered in [7] are known; the Tyurina and the Milnor numbers of a cusp (resp. tacnode) with invariant $\delta_{i}$ are $2 \delta_{i}$ (resp.
$2 \delta_{i}-1$ ); the local isomorphism defect (in the sense of [7], 3.4) of the germ of the normal sheaf of $Y$ at $Q_{i}$ is ([7], Ex. 4.5). Assume $2\left(\sum_{1 \leq i \leq k} \delta_{i}\right)+\gamma \leq 2 g-3$, where $\gamma$ is the number of cusp among the labels. Since $\omega_{S} \cong \mathbf{0}_{S}\left(-2 \mathbf{h}-\alpha^{*}(M)\right)$, we have $-\omega_{S} \cdot Y=2 g-2$ and $Y \cdot Y=4 g-4$. By [7], Remark 3.8, part 3, we obtain that the subset of the Hilbert scheme $\operatorname{Hilb}(S)$ of $S$ parametrizing curves near $Y$ which are equisingular to $Y$ at each point $Q_{i}$ is smooth of the expected dimension $3 g-3+k-\gamma-2\left(\sum_{1 \leq i \leq k} \delta_{i}\right)$ (see [7], 3.14, for the case $\left.\operatorname{Sing}(Y) \neq\left\{Q_{1}, \ldots, Q_{k}\right\}\right)$.

The following result is just [2], Prop. 2.3. For reader's sake we reproduce its proof

Lemma 1.4. Assume $C$ smooth and $g \geq 3$. Fix $L \in \operatorname{Pic} c^{d}(X)$ with $0<d \leq$ $g-2$ and $L$ spanned. Then $d$ is even and there exists a unique $R \in \operatorname{Pic}^{d / 2}(C)$ with $L \cong f^{*}(R)$ and $h^{0}(Y, L)=h^{0}(C, R)$.

Proof. The uniqueness of $R$ follows from [2], Lemma 2.2. Fix a general linear suspace $V$ of $H^{0}(Y, L)$. Since $L$ is a spanned line bundle, $V$ spans L. Hence $V$ induces a morphism $v: Y \rightarrow \mathbf{P}^{1}$ with $L \cong v^{*}\left(\mathbf{0}_{\mathbf{P}}^{\mathbf{1}}(1)\right)$ and $V=v^{*}\left(H^{0}\left(\mathbf{P}^{1}, \mathbf{O}_{\mathbf{P}}^{\mathbf{1}}(1)\right)\right)$. If the morphism $v$ factors through $f$, we obtain $d$ even and the existence of $R \in \operatorname{Pic}^{d / 2}(C)$ with $L \cong f^{*}(R)$. By the uniqueness of $R$ we obtain that the image of the injective linear map $\gamma: H^{0}(C, R) \rightarrow$ $H^{0}(Y, L)$ contains a general two-dimensional subspace of $H^{0}(Y, L)$. Hence $\gamma$ is an isomorphism. Hence we may assume that $v$ does not factor through $f$, i.e. that the induced morphism $h=(f, v): Y \rightarrow C \times \mathbf{P}^{1}$ is birational. Thus $p_{a}(h(Y)) \geq g$. Since $h(Y)$ is a divisor of $C \times \mathbf{P}^{1}$ of bidegree $(2, d)$, we conclude using the adjunction formula on the smooth surface $C \times \mathbf{P}^{1}$, exactly as in the classical case with $Y$ smooth.

The following result was checked in [4] (see [4], Lemma 0.2) if $Y$ is smooth. The proof in the general case is the same quoting Lemma 1.4 as a reference for Castelnuovo - Severi inequality.

Lemma 1.5. Let $P \in Y_{\text {reg }}$ be a Weierstrass point which is not a ramification point off.

Then one of the following 3 cases occurs:
Type (a): the sequence of non gaps of $P$ is $g-1$ and $g+2+j$ for all $j \geq 0$;
$P$ has weight $w(P)=2$;
Type (b): there is an integer $k$ with $1 \leq k \leq g-2, k \neq g-3$, such that the sequence of non gaps of $P$ is $g-1, g+j$ for all $j$ with $1 \leq j \leq k$ and $g+k+2+t$ for all $t \geq 0 ; P$ has weight $w(P)=k+2$;

Type (c): there is an integer $k$ with $0 \leq k \leq g-2$ such that the sequence of non gaps of $P$ is $g+j$ for all $j$ with $0 \leq j \leq k$ and $g+k+2+t$ for all integers $t \geq 0 ; P$ has weight $w(P)=k+1$.
(1.6). Fix an integral curve $Y \subset T$, with $v \notin Y$ and such that the projection from $\nu$ makes $Y$ a double covering of $E \cong C$, say $f: Y \rightarrow C$. Since $v \notin Y$, we have $u^{-1}(Y) \cong Y$. Assume that the corresponding double covering $u^{-1}(Y) \rightarrow C$ is induced by $M \in \operatorname{Pic} c^{(g-1)}(C)$. Since $u^{*}\left(\mathbf{O}_{T}(1)\right) \cong \mathbf{O}_{S}(\mathbf{h}+M)$ (Using additive notation in $\operatorname{Pic}(S))$, $\operatorname{deg}(Y)=2 g-2, p_{a}(Y)=g$ and $\omega_{C} \cong \mathbf{O}_{C}$, the adjunction formula implies that $u^{-1}(Y) \in\left|2 \mathbf{h}+M^{\otimes 2}\right|$. Call $Q[\mathrm{H}]$ the set of points of $Y$ which are mapped onto one of the points $P_{i}, 1 \leq i \leq(g-1)^{2}$. Fix $P \in Y_{\text {reg }}$ and an integer $z$ with $g \leq z \leq 2 g-3$; if $P \in Q[H]$, assume $z \geq 2 g-4$. Fix a general hyperplane $H^{\prime}$ of $\mathbf{P}^{g-1}$ with $P \in H^{\prime}$ and set $C^{\prime}:=T \cap H$. Hence $C^{\prime} \cong C$. For every integer $w>0$, let $\{w P\}$ be the zero-dimensional subscheme of $C^{\prime}$ of degree $w$ supported by $P$. Assume that $Y$ contains $\{z P\}$ but not $\{(z+1) P\}$. Then the proof of [4], Lemma 1.1, (in which it was assumed $Y$ smooth instead of just assuming $P \in Y_{\text {reg }}$ ) works verbatim and gives the following result.

Lemma 1.7. Assume that $P$ is not a ramification point of $f$. Then we have:
(1) $P$ is a Weierstrass point of $Y$;
(2) if $P \in Q[H]$, then $P$ is a Weierstrass point of type (a) or of type (b) of $Y$;
(3) if $P \notin Q[H]$, then $P$ is a Weierstrass point of type (c) of $Y$ with associated integer $k=z-g$;
(4) if $P \in Q[H]$ and $z \geq g+1$, then $P$ is a Weierstrass point of type (b) of $Y$ with associated integer $k=z-g$;
(5) if $P \in Q[H]$ and $z=g$, then $P$ is a Weierstrass point of type (a) of $Y$.

Proof of Theorema 0.1. We use the notation introduced for the statement of Lemma 1.7. Let $\Gamma$ be the union of the points whose label says "cusp !". Let $\Delta$ be the union of the schemes $\Delta\left(Q_{i}, \delta_{i}, 1\right)$ if $Q_{i} \in \Gamma$ and $\Delta\left(Q_{i}, \delta_{i}, 2\right)$ if $\Delta_{i} \notin \Gamma$. Set $W:=\mathbf{P}\left(H^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right) \otimes \mathbf{I}_{\{z P\} \cup \Delta}\right)\right)$. Let $Y$ be a general element of $\mathbf{P}\left(H^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right) \otimes \mathbf{I}_{\{z P\} \cup \Delta}\right)\right)$.
First Claim: We have $h^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right) \otimes \mathbf{I}_{\{z P\}} \cup \Delta\right)=h^{0}\left(S, \mathbf{O}_{S}(2 \mathbf{h}+\right.$ $\left.\left.M^{\otimes 2}\right)\right)-$ length $(\{z P\} \cup \Delta)=3 g-2-z-\sum_{1 \leq i \leq k} 3 \delta_{i}-\gamma$ and $h^{1}\left(S, \mathbf{O}_{S}(\mathbf{h}+\right.$ $\left.\left.M^{\otimes 2}\left(-\sum_{1 \leq i \leq k} \delta_{i} Q_{i}\right)\right) \otimes \mathbf{I}_{\{z P\} \cup \Gamma}\right)=1$.
Proof of the First Claim. Since $h^{1}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right)=1\right.$ (Remark 1.2) the last equality is true if and only if the first equality is true, i.e. if the zerodimensional scheme $\{z P\} \cup \Delta$ imposes independent conditions to the linear
system $\left|2 \mathbf{h}+M^{\otimes 2}\right|$. By semicontinuity it is sufficient to prove the result for some special configuration of points $Q_{1}, \ldots, Q_{k}$. Let $F$ be vertical fiber containing $P$. We specialize $Q_{1}$ to a general point of $F$. Let $\Delta^{\prime}$ the residual scheme $\operatorname{Res}_{F}(\Delta)$ of $\Delta$ with respect to $F ; \Delta^{\prime}$ and $\Delta$ have outside $Q_{1}$ the same connected components; length $\left(\Delta^{\prime}\right)-$ length $(\Delta)-2$ and the connected component of $\Delta^{\prime}$ is empty if $Q_{1}$ is labelled an ordinary node, $\left\{Q_{1}\right\}$ if $Q_{1}$ is labelled as an ordinary cusp and $\Delta\left(Q_{1}, \delta_{1}-1, i\right)\left(i=1\right.$ or 2 according to the label of $\left.Q_{1}\right)$ if $\delta_{1} \geq 2$. We have $\operatorname{Res}_{F}(\{z P\} \cup \Delta)=\{(z-1) P\} \cup \Delta^{\prime}$ (Remark 1.1 and 1.3). Since the scheme $F \cap(\{z P\} \cup \Delta)$ has lenght 3 , we have $h^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right) \otimes\right.$ $\left.\mathbf{I}_{\{z P\} \cup \Delta}\right)=h^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\left(-Q_{1} \otimes \mathbf{I}_{\{(z-1) P\} \cup \Delta^{\prime}}\right)\right.\right.$. If $\delta_{1} \geq 2$ we have lenght $\left(F \cap\left(\{(z-1) P\} \cup \Delta^{\prime}\right)\right)=3$ and hence we continue $\delta_{1}-1$ times obtaining $h^{0}\left(S, \mathbf{0}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right) \otimes \mathbf{I}_{\{z P\} \cup \Delta}\right)=h^{0}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\left(-\delta_{1} P\right) \otimes \mathbf{I}_{\left\{\left(z-\delta_{1}\right) P\right\} \cup \Delta^{\prime \prime} \cup^{*}}\right)\right.$, where $\Delta^{\prime \prime}$ is the union of the connected components of $\Delta$ not supported by $Q_{1}$ and $*$ is the empty set if $Q_{1}$ has label "tacnode", while $*=\left\{Q_{1}\right\}$ if $Q_{1}$ has "cusp !" as label). If $Q_{1}$ has "cusp !" as label, i.e. $* \neq \phi$, we just prove the weaker statement $h_{1}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\left(-\left(\delta_{1}+1\right) P\right) \otimes \mathbf{I}_{\left\{\left(z-\delta_{1} P\right\} \cup \Delta^{\prime \prime}\right)}\right)=0\right.$. Now, and only now, we specialize $Q_{2}$ to a general point of $F$. At the end it is sufficient to check that $h^{1}\left(S, \mathbf{0}_{S}\left(\mathbf{h}+M^{\otimes 2}\left(-\left(\sum_{1 \leq i \leq k} \delta_{i}+\gamma\right) P\right) \otimes \mathbf{I}_{\left\{\left(z-\sum_{1 \leq i \leq k} \delta_{k}\right) P\right\}}\right)=0\right.$.
Second Claim: $Y$ is integral, $\operatorname{Sing}(Y)=\left\{Q_{1}, \ldots, Q_{k}\right\}$, and $Y$ has at each $Q_{i}$ the singularity prescribed by the label of $Q_{i}$ and with the invariant $\delta_{i}$.
Proof of the Second Claim. We claim that the assertions on $\operatorname{Sing}(Y)$ follow from the last part of the First Claim, the definition of singularity scheme given in [8], sec. 2, and its use made in [8] to construct plane curves with prescribed singularities. To check the claim see in particular [8], Lemma 2.4, and the fact that the bijectivity of a map $H_{1}(S, A \otimes \mathbf{J}) \rightarrow H^{1}(S, A \otimes \mathbf{J}), A \in \operatorname{Pic}(S)$, $\mathbf{J}$ ideal of a zero-dimensional scheme, is what is needed to obtain that $H^{0}(S, A \otimes \mathbf{J})$ spans $\mathbf{J}$; remember that $h^{1}\left(S, \mathbf{O}_{S}\left(2 \mathbf{h}+M^{\otimes 2}\right)\right)=1$ (Remark 1.2). The first assertion follows from the first part of the First Claim and the proof of [4], Th 0.3.

By Lemma 1.7 $P$ is a Weierstrass point of $Y$ with the type we want. Hence we conclude the proof of Theorem 0.1.
(1.8). Fix $P \in \operatorname{Sing}(Y)$ and set $\delta:=\delta(P, Y)>0$. By [6], Prop. 3.5, $P$ is a Weierstrass point of $Y$ with weight $w(P) \geq g(g-1) \delta$. The non-negative integer $E(P):=w(P)-g(g-1) \delta$ was called the extraweight of $P$ and it is the real measure of how much $P$ is a Weierstrass point of $Y$, not just how singular is $Y$ at $P$. By [6], Prop. 5.5, it is possible to compute $E(P)$ looking at the gap sequences of all points of $\pi^{-1}(P)$ with respect to a suitable linear system, $V$, on $X$ with $V \cong \mathbf{P}\left(\pi^{*}\left(H^{0}\left(Y, \omega_{Y}\right)\right)\right)$. We distinguish four cases.
(1.8.1). Here we assume that $P$ has two branches and that $f(P)$ is not one of the points $P_{i}, 1 \leq i \leq(g-1)^{2}$. Set $\left\{P^{\prime}, P^{\prime \prime}\right\}:=\pi^{-1}(P)$. Since the line $(\{P, v\})$ is transversal to each of the two branches of $Y$ at $P$ and $f(P)$ is not a osculating point of $E$, we see that $P^{\prime}$ and $P^{\prime \prime}$ are not Weierstrass point of the linear system $V$ on $X$. Thus $E(P)=0$ ([6], Prop. 5.5). Following the terminology of [4] for smooth ramification points, we will say that $P$ is a tacnode of type $I$ of $Y$.
(1.8.2). Here we assume that $P$ has two branches and that $f(P)$ is one of the points $P_{i}, 1 \leq i \leq(g-1)^{2}$. Set $\left\{P^{\prime}, P^{\prime \prime}\right\}:=\pi^{-1}(P)$. Since the line $(\{P, v\})$ is transversal to each of the two branches of $Y$ at $P$ and $f(P)$ is a osculating point of $E$ with weight 1, we see that the Hermite invariants, $\left\{h_{i}\right\}_{0 \leq i \leq g-1}$ of $P^{\prime}$ and $P^{\prime \prime}$ with respect to $V$ are the same and $h_{i}=i$ for $i \leq g-2, h_{g-1}=g$. Thus $P^{\prime}$ and $P^{\prime \prime}$ are Weierstrass points with weight 1 for the linear system $V$ on $X$ (see [9], Th. 15). Thus $E(P)=2$ ([6], Prop. 5.5). Following the terminology of [4] for smooth ramification points, we will say that $P$ is a tacnode of type $\Pi$ of $Y$.
(1.8.3). Here we assume that $P$ has one branch and that $f(P)$ is not one of the points $P_{i}, 1 \leq i \leq(g-1)^{2}$. Set $\{Q\}:=\pi^{-1}(P)$. Since the line $(\{P, v\})$ is not in the tangent cone of $Y$ at $P$, we see that the sequence of non gaps of $Q$ for the linear system $V$ on $X$ is given by the integers $2 t(2 \leq t \leq g-1)$, $2 g-1,2 g, \ldots$. Hence $Q$ has weight $\left(g^{2}-5 g+6\right) / 2$. By [6], Prop. 5.5, $P$ has extraweight $E(P)=\left(g^{2}-5 g+6\right) / 2$. In particular the extraweight does not depend from $\delta$. Following the terminology of [4] for smooth ramification points, we will say that $P$ is a cusp of type $I$ of $Y$.
(1.8.4). Here we assume that $P$ has one branch and that $f(P)$ is one of the points $P_{i}, 1 \leq i \leq(g-1)^{2}$. Set $\{Q\}:=\pi^{-1}(P)$. Since the line $(\{P, v\})$ is not in the tangent cone of $Y$ at $P$, we see that the sequence of non gaps of $Q$ for the linear system $V$ on $X$ is given by the integers $2 t(2 \leq t \leq g-2)$, $2 g-3,2 g-2,2 g, \ldots$. Hence $Q$ has weight $\left(g^{2}-5 g+10\right) / 2$. By [6], Prop. 5.5, $P$ has extraweight $E(P)=\left(g^{2}-5 g+10\right) / 2$. In particular the extraweight does not depend from $\delta$. Following the terminology of [4] for smooth ramification points, we will say that $P$ is a cusp of type $\Pi$ of $Y$.

An easy modification proof of Theorem 0.1 gives the following existence theorem for bielliptic curves with prescribed singularities; instead of specializing each point $Q_{i}, 1 \leq i \leq k$, to $P$, loose directly $\delta_{i}$ (or $\delta_{i}+1$ for a cusp) conditions to handle the postulation of the scheme $\Delta\left(Q_{i}, \delta_{i}, 2\right)$ (resp. $\Delta\left(Q_{i}, \delta_{i}, 1\right)$ ); for the value of the dimension, see Theorem 0.2 and its proof.

Theorem 1.9. Fix positive integers $g, k, \gamma, \delta_{1}, \ldots, \delta_{k}$ with $g \geq 6,0 \leq \gamma \leq k$, and $\sum_{1 \leq i \leq k} 3 \delta_{i}+\gamma \leq 2 g-3$. Fix a smooth elliptic curve $C$ and $M \in \operatorname{Pic}^{(g-1)}(C)$. Use $M$ to obtain a linearly normal embedding of $C$ into a hyperplane, $H$, of $\mathbf{P}^{g-1}$. Fix $v \notin H$ and call $T \subset \mathbf{P}^{g-1}$ the associated elliptic cone with vertex $v$. Fix $k$ general points of $Q_{1}, \ldots, Q_{k}$ of $T$. For each integer $i$ with $1 \leq i \leq k$ fix one of the following four labels: "tacnode of type I with invariant $\delta_{i} "$, "tacnode of type II with invariant $\delta_{i}$ ", "cusp of type I with invariant $\delta_{i}$ " or "cusp of type II with invariant $\delta_{i}$ ". Assume that exactly $\gamma$ of the label says "cusp !". Then there exists a canonically embedded integral bielliptic curve $Y \subset T \backslash\{\nu\}$ with $\operatorname{Sing}(Y)=\left(Q_{1}, \ldots, Q_{k}\right)$ and such that $Y$ has at each $Q_{i}$ the singularity prescribed by the corresponding label. Furthermore, there exists such curve $Y$ with the property that the subset of the Hilbert scheme Hilb(T) of $T$ parametrizing such curves is, near $Y$, a smooth variety of dimension $3 g-3+k-\gamma-2\left(\sum_{1 \leq i \leq k} \delta_{i}\right)$.

Taking the union for all possible $C, M$ and $v$ from Theorem 1.9 we obtain the following result; just note that since $k \leq g$ the union of $k$ general points of $\mathbf{P}^{g-1}$ is contained in an elliptic degree $g-1$ two-dimensional cone; here we use that for every bielliptic curve $Y$ there is a non-empty finite set of elliptic cones $T \subset \mathbf{P}^{g-1}$ containing the canonical model of $Y$, that any elliptic cone, $T$, with vertex $v \notin H \cong \mathbf{P}^{g-2}$ is uniquely determined by $H \cap T$, that $\operatorname{dim}\left(\mathbf{P}^{g-1}\right.$ (i.e. the possible vertices, $v$, are $\infty^{g-1}$ ) and that the subset of $\operatorname{Hilb}(H)$ parametrizing the linearly normal smooth elliptic curves of degree $g-1$ is a smooth variety of dimension $(g-1)^{2}$.

Theorem 1.10. Fix positive integers $g, k, \gamma, \delta_{1}, \ldots, \delta_{k}$ with $g \geq 6,0 \leq k$, and $\sum_{1 \leq i \leq k} 3 \delta_{i}+\gamma \leq 2 g-3$. Fix $k$ general points of $Q_{1}, \ldots, Q_{k}$ of $\mathbf{P}^{g-1}$. For each integer $i$ with $1 \leq i \leq k$ fix one of the following four labels: "tacnode of type I with invariant $\delta_{i}$ ", "tacnode of type II with invariant $\delta_{i}$ ", "cusp of type I with invariant $\delta_{i}$ ", or "cusp of type II with invariant $\delta_{i}$ ". Assume that exactly $\gamma$ of the labels say "cusp !". Then there exists a canonically embedded integral bielliptic curve $Y \subset \mathbf{P}^{g-1}$ with $\operatorname{Sing}(Y)=\left(Q_{1}, \ldots, Q_{k}\right)$ and such that $Y$ has at each $Q_{i}$ the singularity prescribed by the corresponding label. Furthermore, there exists such curve $Y$ with the property that the subset of the Hilbert scheme $\operatorname{Hilb}\left(\mathbf{P}^{g-1}\right)$ of $\mathbf{P}^{g-1}$ parametrizing such curves is, near $Y$, a smooth variety of dimension $3 g-3+k-\gamma-2\left(\sum_{1 \leq i \leq k} \delta_{i}\right)+g(g-1)$.

Now we may prove Theorem 0.2.
Proof of Theorem 0.2. By remark 1.3 the smoothness criterion [7], Th. 3.5 and

Remark 3.8, part 3, is satisfied.
Remark 1.11. Let $f: Y \rightarrow C$ is a double covering with $p_{a}(C)=1$ and $C$ singular, i.e. with $C$ rational and with a unique singular point, $Q$, which is either an ordinary node or an ordinary cusp; The canonical model of $Y$ is again contained in a cone with vertex $v \notin Y$ and, as base, a degree $g-1$ curve isomorphic to $C$ and embedded into a hyperplane, $H$, of $\mathbf{P}^{g-1}$ ([2], Prop. 4.2). Since $\operatorname{Pic}^{0}(C) \cong \mathbf{K}^{*}$, outside the singular point such curve $C \subset H$ has exactly $g-1$ asculating points, say $P_{i}, 1 \leq i \leq g-1$. For each $P \in \operatorname{Sing}(Y)$ with $f(P) \neq Q$, the classification of all possibile singularities not mapped into $Q$ and their division into types works verbatim, taking the points $P_{i}, 1 \leq i \leq g-1$, instead of the points $P_{i}, 1 \leq i \leq(g-1)^{2}$.

Remark 1.12. Here we assume $\operatorname{char}(\mathbf{K}) ; 0$, but $\operatorname{char}(\mathbf{K}) \neq 2$. Let $f: Y \rightarrow C$ is a double covering with $p_{a}(C)=1$. The canonical model of $Y$ is again contained in a cone with vertex $v \notin Y$ and, as base a degree $g-1$ curve isomorphic to $C$ and embedded into a hyperplane, $H$, of $\mathbf{P}^{g-1}$ ([2], Prop. 4.2). The classification of singular points, $P$, of $Y$ with $f(P) \notin \operatorname{Sing}(C)$ as cusps or tacnodes works even in this case (see [11], pp. 100-101). Obviously here $C \subset H$ may have a smaller number of osculating points if $p \leq g-1$, but the only difference is that their weight is bigger than 1 . From now on we assume $p>2 g-2$. Under this assumption we are sure that the Hermite invariants of the linear system, $V$, induced by $\pi: X \rightarrow Y \subset \mathbf{P}^{g-1}$ at a generic point of $X$ are the classical ones ([9], Th. 15). Furthermore, only if we have such a restrictive assumption on $\operatorname{char}(\mathbf{K})$ we are sure that the weigth of a Weierstrass point $Q \in X$ of $V$ is computed using the gap sequence of $V$ at $Q$ ([9], Th. 15, part (iii)). With this very restrictive assumption on $\operatorname{char}(\mathbf{K})$ we may copy [6], Prop. 5.5, and extend (1.8). For the case $Y$ smooth, see [1].

## REFERENCES

[1] E. Ballico, Bielliptic curves in positive characteristic and Weierstrass points, Ann. Università Ferrara, 42 (1966), pp. 111-119.
[2] E. Ballico, Singular bielliptic curves and special linear systems, J. Pure Appl. Algebra (to appear).
[3] E. Ballico - A. Del Centina, Ramification points of double covering of curves and Weierstrass points, Ann. Matematica Pura e Appl. (IV), 177 (1999), pp. 293-313.
[4] E. Ballico - S.J. Kim, The Weierstrass points of bielliptic curves, Indag. Math., N. S., 9 (1998), pp. 155-159.
[5] F. Cossec - I. Dolgachev, Enriques surfaces I, Progress in Math., 76, Birkhäuser, 1989.
[6] L. Gatto, Weight sequences versus gap sequences at singular points of Gorenstein curves, Geometriae Dedicata, 54 (1995), pp. 267-300.
[7] G. M. Greuel - C. Lossen, Equianalytic and equisingular families of curves on surfaces, Manuscripta Math., 91 (1996), pp. 323-342.
[8] G. M. Greuel - C. Lossen - E. Shustin, Plane curves of minimal degree with prescribed singularities, Invent. Math., 133 (1998), pp. 539-580.
[9] D. Laksov, Wronskians and Plücker formulas for linear systems on curves, Ann. Sci. Ecole Norm. Sup., (4) 17 (1984), pp. 45-66.
[10] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math., 56 (1952), pp. 169-171.
[11] K. O. Stöhr, Hyperelliptic Gorenstein curves, J. Pure Appl. Algebra, 135 (1999), pp. 93-105.

Dipartimento di Matematica,
Università di Trento,
38050 Povo, Trento (Italy),
e-mail: ballico@science.unitn.it

