SYMMETRIZATION RESULTS FOR A MULTI-EXPONENT, DEGENERATE AND ANISOTROPIC ELECTROSTATIC PROBLEM

GONOKO MOUSSA

In this paper, we give some isoperimetric inequalities for the capacity c_{p} of an anisotropic configuration where each connected component has the form $\Omega_{i}=\omega_{i} \backslash \bar{\omega}_{i}^{\prime}, i \in\{1, \ldots, n\}, \omega_{i}$ and ω_{i}^{\prime} are regular bounded open sets in $\mathbb{R}^{N_{i}},\left(N_{i} \geq 1\right)$. The anisotropy of Ω_{i} is described by a Finsler metric (or gauge function) $\phi_{i}(\xi), \xi \in \mathbb{R}^{N_{i}}$ and the growth exponent p may vary with i. Using the convex symmetrization, we prove in particular that $c_{p} \geq \tilde{c}_{p}$, where \tilde{c}_{p} is the capacity of a suitable symmetrized anisotropic configuration.

1. Statement of the problem.

Let $\Omega_{i}(i=1, \ldots, n)$ be open sets of the form $\Omega_{i}=\omega_{i} \backslash \bar{\omega}_{i}^{\prime}$, where ω_{i} and ω_{i}^{\prime} are regular bounded open sets in $\mathbb{R}^{N_{i}}\left(N_{i} \geq 1\right)$ such that $\bar{\omega}_{i}^{\prime} \subset \omega_{i}$. Let $\gamma_{i}=\partial \omega_{i}$ and $\gamma_{i}^{\prime}=\partial \omega_{i}^{\prime}$ be the respective boundaries of ω_{i} and ω_{i}^{\prime}.

Let $r=\left(r_{i}\right), p=\left(p_{i}\right), q=\left(q_{i}\right), i=1 \ldots, n$ be multi-exponents such that

$$
1 \leq r_{i} \leq \infty, 1+\frac{1}{r_{i}}<p_{i}<\infty, q_{i}=\left\{\begin{array}{lll}
p_{i} & \text { if } & r_{i}=\infty \tag{1.1}\\
\frac{r_{i}}{1+r_{i}} p_{i} & \text { if } & r_{i}<\infty
\end{array}\right.
$$

Entrato in Redazione il 9 ottobre 1999.
(hence $1<q_{i} \leq p_{i}$) and let $a_{i}: \Omega_{i} \rightarrow \mathbb{R}$ be a (a.e.) positive function such that

$$
\begin{equation*}
a_{i} \in L^{1}\left(\Omega_{i}\right), \quad a_{i}^{-1}=\frac{1}{a_{i}} \in L^{r_{i}}\left(\Omega_{i}\right) \tag{1.2}
\end{equation*}
$$

where $L^{1}\left(\Omega_{i}\right)$ and $L^{r_{i}}\left(\Omega_{i}\right)$ are classical Lebesgue spaces. Let

$$
L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)=\left\{v: \Omega_{i} \rightarrow \mathbb{R}, \quad \int_{\Omega_{i}} a_{i}|v|^{p_{i}} d x<+\infty\right\}
$$

be the weighted Lebesgue space equipped with the norm

$$
\|v\|_{\left.L_{a_{i}}^{p_{i}} \Omega_{i}\right)}=\left(\int_{\Omega_{i}} a_{i}|v|^{p_{i}} d x\right)^{1 / p_{i}}
$$

and let us introduce the spaces

$$
\begin{array}{ll}
\mathbb{L}^{q}=\left\{v=\left(v_{1}, \ldots, v_{n}\right),\right. & \left.\forall i=1, \ldots, n, v_{i} \in L^{q_{i}}\left(\Omega_{i}\right)\right\} \\
\mathbb{L}_{a}^{p}=\left\{v=\left(v_{1}, \ldots, v_{n}\right),\right. & \left.\forall i=1, \ldots, n, v_{i} \in L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)\right\}
\end{array}
$$

We equip them with the respective norms

$$
\|v\|_{\mathbb{L}^{q}}=\sum_{i=1}^{n}\left\|v_{i}\right\|_{L^{q_{i}}\left(\Omega_{i}\right)}, \quad\|v\|_{\mathbb{L}_{a}^{p}}=\sum_{i=1}^{n}\left\|v_{i}\right\|_{L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)}
$$

By Hölder's inequality, (1.1) and (1.2), it is easy to check that

$$
\begin{equation*}
\|v\|_{\mathbb{L}^{g}} \leq \max _{i \in\{1, \ldots, n\}}\left\{\left\|a_{i}^{-1}\right\|_{L_{i}^{L}\left(\Omega_{i}\right)}^{1 / p_{i}}\right\}\|v\|_{\mathbb{L}_{a}^{p}} \tag{1.3}
\end{equation*}
$$

and it follows that $\mathbb{L}_{a}^{p} \hookrightarrow \mathbb{L}^{q}$ with continuous imbedding. Moreover, let us set

$$
\begin{aligned}
\mathbb{W}^{1, q} & =\left\{v=\left(v_{1}, \ldots, v_{n}\right), \forall i=1, \ldots, n, v_{i} \in W^{1, q_{i}}\left(\Omega_{i}\right)\right\} \\
\mathbb{W}_{a} & =\left\{v=\left(v_{1}, \ldots, v_{n}\right), \forall i=1, \ldots, n, v_{i} \in L^{q_{i}}\left(\Omega_{i}\right), \nabla v_{i} \in L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}\right\}
\end{aligned}
$$

where for simplicity ∇ denotes the gradient (in the sense of distributions) in any dimension.

By the previous remark, $\mathbb{W}_{a} \hookrightarrow \mathbb{W}^{1, q}$ with continuous imbedding. In particular if $v \in \mathbb{W}_{a}$ then $v_{\mid \gamma_{i}}$ and $v_{\mid \gamma_{i}^{\prime}}$ are well defined and belong respectively to $L^{q_{i}}\left(\gamma_{i}\right)$ and $L^{q_{i}}\left(\gamma_{i}^{\prime}\right)$. Hence, we can define

$$
\mathbb{H}=\left\{v \in \mathbb{W}_{a}, v_{1}=1 \text { on } \gamma_{1}^{\prime}, v_{n}=0 \text { on } \gamma_{n} \text { and } v_{i \mid \gamma_{i}}=v_{i+1_{\mid \gamma_{i+1}^{\prime}}}=k_{i}\right.
$$

$$
\text { (undetermined constant) for } i=1, \ldots, n-1\} \text {. }
$$

Let $\phi_{i}: \mathbb{R}^{N_{i}} \rightarrow[0,+\infty[(i=1, \ldots, n)$, be non negative strictly convex functions, differentiable off the origin, homogeneous in the sense

$$
\begin{equation*}
\forall t \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N_{i}}, \phi_{i}(t \xi)=|t| \phi_{i}(\xi) \tag{1.4}
\end{equation*}
$$

and with linear growth

$$
\begin{equation*}
\exists \delta>0, \forall \xi \in \mathbb{R}^{N_{i}},|\xi| \leq \phi_{i}(\xi) \leq \delta|\xi| \tag{1.5}
\end{equation*}
$$

where $|$.$| denotes the Euclidean norm in \mathbb{R}^{N_{i}}$.
Let $G_{i}: \Omega_{i} \times \mathbb{R}^{N_{i}} \rightarrow G_{i}(x, \xi) \in \mathbb{R}(i=1, \ldots, n)$, be Carathéodory functions (i.e. measurable with respect to x and continuous with respect to ξ) such that

- for almost every $x \in \Omega_{i}, G_{i}(x,$.$) is strictly convex, homogeneous of degree$ p_{i} in the sense

$$
\forall t \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N_{i}}, G_{i}(x, t \xi)=|t|^{p_{i}} G_{i}(x, \xi)
$$

and it admits a gradient $g_{i}(x,$.$) ,$

- there exists $c \geq 1$ such that for almost every $x \in \Omega_{i}$ and for every $\xi \in \mathbb{R}^{N_{i}}$

$$
\begin{equation*}
a_{i}(x) \phi_{i}(\xi)^{p_{i}} \leq G_{i}(x, \xi) \leq c a_{i}(x)|\xi|^{p_{i}} \tag{1.6}
\end{equation*}
$$

We consider the following problem

$$
\begin{equation*}
\inf \left\{J(v)=\sum_{i=1}^{n} \frac{1}{p_{i}} \int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x, v \in \mathbb{H}\right\} \tag{1.7}
\end{equation*}
$$

the integral being finite thanks to (1.6).
For $N_{i}=N, \phi_{i}(\xi)=|\xi|$ and $p_{i}=p$ for any $i \in\{1, \ldots, n\}$, similar problems have been considered by V. Ferone and L. Boukrim. In an interesting paper [9], V. Ferone has given an isoperimetric inequality for the p-capacity c_{p} of a configuration $\Omega=(G \backslash E) \backslash\left(\cup_{i} H_{i}\right)$, where Ω represents a nonhomogeneous isotropic medium, ∂G and ∂E have given potentials respectively equal to 0 and 1 , and the H_{i} have constant unknown potentials K_{i}. He has shown that $c_{p} \geq c_{p}^{*}$ where c_{p}^{*} is the p-capacity of a symmetrical configuration which has no interior
conductor such as H_{i}. In his thesis [6] (see also the short note [5]), L. Boukrim has extended and completed Ferone's result when Ω is multiconnected and when the H_{i} separate the different connected components of Ω. He proved that $c_{p} \geq \bar{c}_{p} \geq c_{p}^{*}$, where \bar{c}_{p} is the p-capacity of a symmetrized isotropic configuration (having inner conductors) and gave isoperimetric estimates for the unknown potentials K_{i}.

In this paper the anisotropy function ϕ_{i}, as well the growth exponent p_{i}, may be different when i varies. Our purpose is to show that the generalized p capacity of the collection of $\Omega_{i}(i=1, \ldots, n)$, denoted c_{p} (see section 2 below) is not smaller than the p-capacity \tilde{c}_{p} of a symmetrized anisotropic configuration and to give isoperimetric estimates for the unknown potentials K_{i}. The proof, inspired by the work of L. Boukrim, uses the notion of relative rearrangement introduced by J. Mossino and R. Temam [12] and developed in [13, 14]. But the anisotropy of Ω_{i} requires other arguments related to the new notion of convex symmetrization introduced in [1].

2. Study of the problem.

In this section we study the existence, uniqueness and characterization of solution of problem (1.7).

Theorem 1. Problem (1.7) admits a solution and only one.
Proof. The proof is not quite standard in this context of degenerate problems in several domains in different dimensions and with different exponents. Let u^{m} be a minimizing sequence: $u^{m} \in \mathbb{H}$ and $J\left(u^{m}\right) \rightarrow I$, where I denotes the infimum in (1.7). We have, due to the coerciveness condition in (1.6) together with (1.5),

$$
\sum_{i=1}^{n} \int_{\Omega_{i}} a_{i}(x)\left|\nabla u_{i}^{m}\right|^{p_{i}} d x \leq J\left(u^{m}\right) \leq c
$$

and hence $\left\|\nabla u_{i}^{m}\right\|_{L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}} \leq c$ where here (and in the following) we denote by c any constant.

In particular ∇u_{n}^{m} is bounded in $L^{q_{n}}\left(\Omega_{n}\right)^{N_{n}}$. As $u_{n}^{m}=0$ on γ_{n}, u_{n}^{m} is bounded in $W^{1, q_{n}}\left(\Omega_{n}\right)$ by Poincaré inequality. By continuity of the trace mapping (i.e. $\left.W^{1, q_{n}}\left(\Omega_{n}\right) \rightarrow L^{q_{n}}\left(\gamma_{n}^{\prime}\right)\right), k_{n-1}^{m}=u_{n \mid \gamma_{n}^{\prime}}^{m}$ is bounded in \mathbb{R}.

Now ∇u_{n-1}^{m} is bounded in $L^{q_{n-1}}\left(\Omega_{n-1}\right)^{N_{n-1}}$ and $k_{n-1}^{m}=u_{n-\left.1\right|_{\gamma_{n-1}}}$ is bounded in \mathbb{R}. It follows from Poincaré inequality that u_{n-1}^{m} is bounded in $W^{1, q_{n-1}}\left(\Omega_{n-1}\right)$ and, just as above $k_{n-2}^{m}=u_{n-\left.1\right|_{\gamma_{n-1}^{\prime}} ^{m}}$ is bounded in \mathbb{R}, so
that by induction u_{i}^{m} is bounded in $W^{1, q_{i}}\left(\Omega_{i}\right)$ (for any $i=1, \ldots, n$) and $k_{i}^{m}=u_{i \mid \gamma_{i}}^{m}=u_{i+1 \mid \gamma_{i+1}^{\prime}}^{m}$ is bounded in \mathbb{R} (for any $i=1, \ldots, n-1$).

Up to an extraction of a subsequence we may suppose that for any $i=$ $1, \ldots, n$

$$
\begin{aligned}
& u_{i}^{m} \rightharpoonup u_{i} \text { weakly in } W^{1, q_{i}}\left(\Omega_{i}\right) \\
& u_{i}^{m} \rightarrow u_{i} \text { strongly in } L^{q_{i}}\left(\Omega_{i}\right)(\text { by compactness })
\end{aligned}
$$

$u_{i \mid \gamma_{i}}^{m}\left(\operatorname{resp} . u_{i \mid \gamma_{i}^{\prime}}^{m}\right) \rightarrow u_{i \mid \gamma_{i}}\left(\left(\right.\right.$ resp. $\left.u_{i \mid \gamma_{i}^{\prime}}\right)$ strongly in $L^{q_{i}}\left(\Gamma_{i}\right)\left(\right.$ resp. $\left.L^{q_{i}}\left(\gamma_{i}^{\prime}\right)\right)$,

$$
\begin{aligned}
\nabla u_{i}^{m} & \rightharpoonup \zeta_{i} \text { weakly in } L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}} \\
k_{i}^{m} & \rightarrow k_{i} \text { in } \mathbb{R}
\end{aligned}
$$

As $u^{m} \in \mathbb{H}$, we get $u_{1}=1$ on $\gamma_{1}^{\prime}, u_{n}=0$ on $\gamma_{n}, u_{i \mid \gamma_{i}}=u_{i+1 \mid \gamma_{i+1}^{\prime}}=k_{i}(i=$ $1, \ldots, n-1$). As $\nabla u_{i}^{m} \rightharpoonup \zeta_{i}$ weakly in $L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}$, we get $\nabla u_{i}^{m} \rightharpoonup \zeta_{i}$ weakly in $L^{q_{i}}\left(\Omega_{i}\right)^{N_{i}}$ by using the continuity of the imbedding $L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right) \hookrightarrow L^{q_{i}}\left(\Omega_{i}\right)$. Since $u_{i}^{m} \rightarrow u_{i}$ in $L^{q_{i}}\left(\Omega_{i}\right)$, it follows that $\zeta_{i}=\nabla u_{i} \in L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}$ and $u \in \mathbb{H}$.

It remains to prove that u solves (1.7). We note that $(x, \xi) \in \Omega_{i} \times \mathbb{R}^{N_{i}} \rightarrow$ $G_{i}(x, \xi) \in \mathbb{R}$ is a Carathéodory function such that by (1.5) and (1.6)

$$
a_{i}(x)|\xi|^{p_{i}} \leq G_{i}(x, \xi) \leq c a_{i}(x)|\xi|^{p_{i}}
$$

Hence the mapping $r \rightarrow G_{i}(x, r)$ is continuous from $L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}$ into $L^{1}\left(\Omega_{i}\right)$ and the mapping $r \rightarrow \int_{\Omega_{i}} G_{i}(x, r) d x$ is continuous from $L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}$ into \mathbb{R}. It is also convex, so that it is lower semicontinuous for the weak topology of $L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}$ and as $\nabla u_{i}^{m} \rightharpoonup \nabla u_{i}$ in $L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}$,

$$
\begin{gathered}
I=\liminf \sum_{i=1}^{n} \frac{1}{p_{i}} \int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}^{m}\right) d x \geq \sum_{i=1}^{n} \frac{1}{p_{i}} \liminf \int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}^{m}\right) d x \\
\geq \sum_{i=1}^{n} \frac{1}{p_{i}} \int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}\right) d x
\end{gathered}
$$

which proves that u solves (1.7). By the strict convexity, the gradient is the same in each Ω_{i} for all solutions of (1.7) and it follows from the boundary conditions in \mathbb{H} that the solution of (1.7) is unique (and then the above convergences hold for the whole sequence u^{m}). This finishes the proof of Theorem 1.

Let u be the solution of (1.7). It is classical that u is characterized by the variational formulation: $u \in \mathbb{H}$ and

$$
\begin{equation*}
0=\sum_{i=1}^{n} \frac{1}{p_{i}} \int_{\Omega_{i}} g_{i}\left(x, \nabla u_{i}\right) . \nabla v_{i} d x, \quad \forall v \in \mathbb{H}_{0} \tag{2.1}
\end{equation*}
$$

with

$$
\begin{aligned}
& \mathbb{H}_{0}=\left\{v \in \mathbb{W}_{a}, v_{1}=0 \text { on } \gamma_{1}^{\prime}, v_{n}=0 \text { on } \gamma_{n} \text { and } v_{i \mid \gamma_{i}}=v_{i+1 \mid \gamma_{i+1}^{\prime}}=k_{i}\right. \\
& \quad \text { (undetermined constant) for } i=1, \ldots, n-1\} .
\end{aligned}
$$

It follows that u satisfies

$$
\left\{\begin{array}{cl}
\mathcal{A}_{i} u_{i}=0 & \text { in } \Omega_{i} \text { (in the sense of distributions) } \\
u_{1}=1 & \text { on } \gamma_{1}^{\prime}, \\
u_{n}=0 & \text { on } \gamma_{n}, \\
u_{i \mid \gamma_{i}}=u_{i+\left.1\right|_{\gamma_{i+1}^{\prime}}}=k_{i} & \text { (unprescribed constant) for } i=1, \ldots, n-1,
\end{array}\right.
$$

where

$$
\mathcal{A}_{i} u_{i}=-\frac{1}{p_{i}} \operatorname{div}\left(g_{i}\left(x, \nabla u_{i}\right)\right)
$$

and for simplicity div (resp. ∇) denotes the divergence (resp. gradient in any dimension N_{i}.

Let $v_{i}(i=1, \ldots, n)$ be the unique solution of
(2.2) $\inf \left\{\frac{1}{p_{i}} \int_{\Omega_{i}} G_{i}(x, \nabla w) d x, w \in W_{a_{i}}\left(\Omega_{i}\right), w=1\right.$ on $\gamma_{i}^{\prime}, w=0$ on $\left.\gamma_{i}\right\}$,
where

$$
W_{a_{i}}\left(\Omega_{i}\right)=\left\{v \in L^{q_{i}}\left(\Omega_{i}\right), \nabla v \in L_{a_{i}}^{p_{i}}\left(\Omega_{i}\right)^{N_{i}}\right\} .
$$

Then v_{i} is characterized by $v_{i} \in W_{a_{i}}\left(\Omega_{i}\right), v_{i}=1$ on $\gamma_{i}^{\prime}, v_{i}=0$ on γ_{i} and

$$
\begin{equation*}
\int_{\Omega_{i}} g_{i}\left(x, \nabla v_{i}\right) . \nabla \varphi d x=0, \forall \varphi \in W_{a_{i}}\left(\Omega_{i}\right), \varphi=0 \text { on } \gamma_{i}^{\prime} \cup \gamma_{i} \tag{2.3}
\end{equation*}
$$

and it follows that

$$
\left\{\begin{align*}
\mathscr{A}_{i} v_{i}=0 & \text { in } \Omega_{i} \text { (in the sense of distributions), } \tag{2.4}\\
v_{i}=1 & \text { on } \gamma_{i}^{\prime} \\
v_{i}=0 & \text { on } \gamma_{i}
\end{align*}\right.
$$

Next, we prove that the solution u of (1.7) is explicit in terms of the solutions $v_{i}(i=1, \ldots, n)$ of (2.2).

Theorem 2. Let u be the solution of (1.7), $k_{i}=u_{i+\left.1\right|_{r_{i+1}^{\prime}}}$ and let v_{i} be the solution of (2.2). Let

$$
c_{p}=\sum_{i=1}^{n} \int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}\right) d x
$$

be a generalized p-capacity of the collection of $\Omega_{i}(i=1, \ldots, n)$. We have
(a) $c_{p}>0$,
(b) $c_{p}=\frac{1}{p_{i}} \int_{\Omega_{i}} g_{i}\left(x, \nabla u_{i}\right) . \nabla v_{i} d x$, for $i=1,2, \ldots, n$,
(c) $\int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}\right) d x>0$,
(d) $k_{i} \neq k_{i-1}$,
(e) $u_{i}=\left(k_{i-1}-k_{i}\right) v_{i}+k_{i}$,
(f) $\int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}\right) d x=\left(k_{i-1}-k_{i}\right) c_{p}$,
(g) $0=k_{n}<k_{n-1}<\ldots<k_{i+1}<k_{i}<\ldots<k_{i}<k_{0}=1$,
(h) $\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x=\frac{c_{p}}{\left(k_{i-1}-k_{i}\right)^{p_{i-1}}}$,
(i) $0<v_{i}<1, k_{i}<u_{i}<k_{i-1}$.

Proof. (a) If $c_{p}=0$ then we get from (1.5) and (1.6) that u_{i} is constant in each connected component Ω_{i}. Using the transmission conditions (because $u \in \mathbb{H}$), we obtain a contradiction.
(b) Let $\tilde{v}^{i}=\left(\tilde{v}_{1}^{i}, \ldots, \widetilde{v}_{n}^{i}\right)$ be the function defined by

$$
\tilde{v}_{i}^{i}=v_{i}, \quad \tilde{v}_{j}^{i}=\left\{\begin{array}{lll}
1 & \text { if } & j<i \\
0 & \text { if } & j>i
\end{array}\right.
$$

As $\tilde{v}^{i}-u \in \mathbb{H}_{0}$, we get, using the variational formulation of u,

$$
0=\sum_{j} \frac{1}{p_{j}} \int_{\Omega_{j}} g_{j}\left(x, \nabla u_{j}\right) . \nabla\left(\tilde{v}_{j}^{i}-u_{j}\right) d x
$$

which is equivalent to

$$
c_{p}=\sum_{j} \int_{\Omega_{j}} G_{j}\left(x, \nabla u_{j}\right) d x=\frac{1}{p_{i}} \int_{\Omega_{i}} g_{i}\left(x, \nabla u_{i}\right) . \nabla v_{i} d x
$$

(c) If $\int_{\Omega_{i}} G_{i}\left(x, \nabla u_{i}\right) d x=0$ then from (1.5) and (1.6), we have $\nabla u_{i}=0$ and hence $c_{p}=0$ using (b); but this contradicts (a).
(d) If $k_{i}=k_{i-1}$, then we can define $m^{i}=\left(m_{1}^{i}, \ldots, m_{n}^{i}\right)$ by

$$
m_{j}^{i}=\left\{\begin{array}{lc}
k_{i} & \text { for } \quad j=i \\
u_{i} & \text { otherwise }
\end{array}\right.
$$

and m^{i} belongs to \mathbb{H}. It follows from (c) that

$$
\sum_{j} \int_{\Omega_{j}} \frac{1}{p_{j}} G_{j}\left(x, \nabla m_{j}^{i}\right) d x<\sum_{j} \int_{\Omega_{j}} \frac{1}{p_{j}} G_{j}\left(x, \nabla u_{j}\right) d x
$$

which contradicts the minimality property of u.
(e) Following (d), one can define $w_{i}=\frac{u_{i}-k_{i}}{k_{i-1}-k_{i}}$. It is easy to check (from $\mathcal{A}_{i} u_{i}=0$), that $\mathcal{A}_{i} w_{i}=0, w_{i}=1$ on $\gamma_{i}^{\prime}, w_{i}=0$ on γ_{i}. The functions v_{i} and w_{i} satisfy the same equation which has a unique solution. It follows that $w_{i}=v_{i}$.
(f) It is sufficient to replace v_{i} by $\frac{u_{i}-k_{i}}{k_{i-1}-k_{i}}$ in (b).
(g) Clear from (a), (c) and (f).
(h) Replace u_{i} by $\left(k_{i-1}-k_{i}\right) v_{i}+k_{i}$ in (b).
(i) Using convenient test functions in (2.3), it is easy to prove that $0<v_{i}<$ 1 and then (e) gives $k_{i}<u_{i}<k_{i-1}$.

Remark 1. From (h) of Theorem 2, $\sum_{i=1}^{n}\left(k_{i-1}-k_{i}\right)=1$ and $k_{i}=1-\sum_{j=1}^{i}\left(k_{j-1}-\right.$ k_{j}), we get

$$
1=\sum_{i=1}^{n}\left(\frac{c_{p}}{\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x}\right)^{\frac{1}{p_{i}-1}}
$$

and

$$
k_{i}=1-\sum_{j=1}^{i}\left(\frac{c_{p}}{\int_{\Omega_{j}} G_{j}\left(x, \nabla v_{j}\right) d x}\right)^{\frac{1}{p_{j}-1}}
$$

Remark 2. If Green's formula is valid, then we have from $\mathcal{A}_{i} u_{i}=0$ in Ω_{i} and from (b) of Theorem 2 that for all $i=1, \ldots, n$

$$
c_{p}=-\int_{\gamma_{i}^{\prime}} \frac{\partial u_{i}}{\partial v^{\mathcal{A}_{i}}} d \gamma=-\int_{\gamma_{i}} \frac{\partial u_{i}}{\partial v^{\mathcal{A}_{i}}} d \gamma
$$

where

$$
\frac{\partial u_{i}}{\partial v^{A_{i}}}=\frac{1}{p_{i}} g_{i}\left(x, \nabla u_{i}\right) \cdot v
$$

and for simplicity v denotes the outer normal to Ω_{i} on γ_{i} as well as the inner normal to Ω_{i} on γ_{i}^{\prime}.

3. Main inequalities.

Let us recall some notions of (unidimensional and relative) rearrangement (see for example [3], [8], [11], [12], [13], [14]). In this paper, we use only the Lebesgue measure on \mathbb{R}^{N} (for different values of N). For a measurable set E in \mathbb{R}^{N}, let $|E|$ be its measure. Let u be a measurable function from E into \mathbb{R}. The (unidimensional) decreasing rearrangement u_{*} of u is defined on $\bar{E}^{*}=[0,|E|]$ by $u_{*}(|E|)=e s s_{E} \inf u$ and for $s<|E|, u_{*}(s)=\inf \{\theta \in \mathbb{R},|u>\theta| \leq s\}$ where $|u>\theta|=|\{x \in E: u(x)>\theta\}|$; the increasing rearrangement of u, denoted u^{*}, is then $u^{*}(s)=u_{*}(|E|-s)$. The functions u, u_{*} and u^{*} satisfy $|u>\theta|=\left|u_{*}>\theta\right|=\left|u^{*}>\theta\right|$.

For $v \in L^{1}(E)$ and $u: E \rightarrow \mathbb{R}$ measurable, we define the function \mathcal{W} on $\overline{E^{*}}$ by

$$
\mathcal{W}(s)= \begin{cases}\int_{u>u_{*}(s)} v(x) d x & \text { if }\left|u=u_{*}(s)\right|=0, \\ \int_{u>u_{*}(s)} v(x) d x+\int_{0}^{s-\left|u>u_{*}(s)\right|}\left(\left.v\right|_{P(s))_{*}(\sigma) d \sigma}\right. & \text { otherwise }\end{cases}
$$

where $\left(\left.v\right|_{P(s)}\right)_{*}$ is the decreasing rearrangement of v restricted to $P(s)=\{x \in$ $\left.E: u(x)=u_{*}(s)\right\}$. The integrable function $\frac{d W}{d s}$ is called (according to [12], [13], [14]) the relative rearrangement of v with respect to u and is denoted $v_{*_{u}}$.

We recall also some facts about the function ϕ_{i} defined in section 1 . As it has been said earlier, the function $\phi_{i}: \mathbb{R}^{N_{i}} \rightarrow[0,+\infty[$ is strictly convex, homogeneous of degree one, with linear growth and differentiable off the origin.

Let

$$
B_{\phi_{i}}=\left\{\xi \in \mathbb{R}^{N_{i}} ; \phi_{i}(\xi) \leq 1\right\}
$$

be the unit ball of $\mathbb{R}^{N_{i}}$ relative to ϕ_{i}. It follows from the definition of ϕ_{i} that the ball $B_{\phi_{i}}$ (the so-called Wulff shape relative to ϕ_{i}) is bounded, convex and symmetric with respect to the origin.

We denote by $\phi_{i}^{0}: \mathbb{R}^{N_{i}} \rightarrow\left[0,+\infty\left[\right.\right.$ the dual function of ϕ_{i} defined by

$$
\phi_{i}^{0}\left(\xi^{*}\right)=\sup \left\{\xi^{*} \cdot \xi ; \xi \in B_{\phi_{i}}\right\}=\sup _{\xi \neq 0} \frac{\xi^{*} \cdot \xi}{\phi_{i}(\xi)}, \quad \forall \xi^{*} \in \mathbb{R}^{N_{i}}
$$

One can check that ϕ_{i}^{0} is also a convex function and satisfies the properties (1.4) and $\frac{1}{\delta}\left|\xi^{*}\right| \leq \phi_{i}^{0}\left(\xi^{*}\right) \leq\left|\xi^{*}\right|$ (see for example [15]). In the sequel, we assume that the dual function ϕ_{i}^{0} is strictly convex and differentiable everywhere but in the origin. The corresponding unit ball $B_{\phi_{i}^{0}}$ is known as Frank diagram. One can also prove from (1.4) the following useful properties of the functions ϕ_{i} and ϕ_{i}^{0} (see for example [4]). Let $\xi \in \mathbb{R}^{N_{i}} \backslash\{0\}$ and let $t \neq 0$, then

$$
\begin{equation*}
\phi_{i}(\xi)=\nabla \phi_{i}(\xi) \cdot \xi, \quad \phi_{i}^{0}(\xi)=\nabla \phi_{i}^{0}(\xi) \cdot \xi \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \phi_{i}(t \xi)=\frac{t}{|t|} \nabla \phi_{i}(\xi), \quad \nabla \phi_{i}^{0}(t \xi)=\frac{t}{|t|} \nabla \phi_{i}^{0}(\xi) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
1=\phi_{i}\left(\nabla \phi_{i}^{0}(\xi)\right)=\phi_{i}^{0}\left(\nabla \phi_{i}(\xi)\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\xi=\phi_{i}^{0}(\xi) \nabla \phi_{i}\left(\nabla \phi_{i}^{0}(\xi)\right)=\phi_{i}(\xi) \nabla \phi_{i}^{0}\left(\nabla \phi_{i}(\xi)\right) \tag{3.4}
\end{equation*}
$$

All the isoperimetric inequalities of this section are consequences of the following theorem.

Theorem 3. Let $i \in\{1, \ldots, n\}$. Let α_{i} be the Lebesgue measure of the unit ball (i.e. Frank diagram) $B_{\phi_{i}^{0}}=\left\{\xi \in \mathbb{R}^{N_{i}} ; \phi_{i}^{0}(\xi) \leq 1\right\}$ in $\mathbb{R}^{N_{i}}$. Let p_{i}^{\prime} be such that $\frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1$ and let v_{i} be the unique solution of (2.2). Then for all t, t^{\prime} such that $0 \leq t \leq t^{\prime} \leq 1$, we have

$$
\begin{aligned}
t^{\prime}-t \leq N_{i}^{-p_{i}^{\prime}} & \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} . \\
& \cdot \int_{\left|v_{i}>t^{\prime}\right|}^{\left|v_{i}>t\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p_{i}^{\prime}}{N_{i}}-p_{i}^{\prime}}\left(a_{i}^{*}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(\sigma-\left|v_{i}>t^{\prime}\right|\right) d \sigma
\end{aligned}
$$

Proof. For $\theta \in] 0,1[$, let us set

$$
z_{i}=\theta-\left(v_{i}-\theta\right)_{-}=\left\{\begin{array}{llr}
v_{i} & \text { if } \quad v_{i} \leq \theta \\
\theta & \text { if } & v_{i}>\theta
\end{array}\right.
$$

Then the function $\varphi=z_{i}-\theta v_{i}$ satisfies the conditions $\varphi \in W_{a_{i}}\left(\Omega_{i}\right), \varphi=0$ on $\gamma_{i}^{\prime} \cup \gamma_{i+1}$. In consequence, we have using (2.3)

$$
0=\int_{\Omega_{i}} g_{i}\left(x, \nabla v_{i}\right) . \nabla\left(z_{i}-\theta v_{i}\right) d x
$$

Hence

$$
\int_{v_{i} \leq \theta} G_{i}\left(x, \nabla v_{i}\right) d x=\theta \int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x
$$

and then

$$
\begin{equation*}
\frac{d}{d \theta} \int_{v_{i}>\theta} G_{i}\left(x, \nabla v_{i}\right) d x=-\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x \tag{3.5}
\end{equation*}
$$

Moreover, by using (1.6), (1.2) and Hölder's inequality, we have for $h>0$,

$$
\begin{aligned}
& \frac{1}{h} \int_{\theta<v_{i} \leq \theta+h} \phi_{i}\left(\nabla v_{i}\right) d x \leq\left(\frac{1}{h} \int_{\theta<v_{i} \leq \theta+h} a_{i}^{-p_{i}^{\prime} / p_{i}} d x\right)^{1 / p_{i}^{\prime}} \\
& \cdot\left(\frac{1}{h} \int_{\theta<v_{i} \leq \theta+h} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{1 / p_{i}}
\end{aligned}
$$

and letting h tend to 0 , we get (thanks to (3.5))

$$
\begin{aligned}
&-\frac{d}{d \theta} \int_{v_{i}>\theta} \phi_{i}\left(\nabla v_{i}\right) d x \leq\left(-\frac{d}{d \theta} \int_{v_{i}>\theta} a_{i}^{-p_{i}^{\prime} / p_{i}} d x\right)^{1 / p_{i}^{\prime}} \\
& \cdot\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{1 / p_{i}}
\end{aligned}
$$

By using the following formula of derivation (see [14])

$$
\frac{d}{d \theta} \int_{v_{i}>\theta} a_{i}^{-p_{i}^{\prime} / p_{i}} d x=\mathcal{W}^{\prime}\left(v_{i}(\theta)\right) v_{i}^{\prime}(\theta)
$$

where $v_{i}(\theta)=\left|v_{i}>\theta\right|$ and $\mathcal{W}^{\prime}=\left(a_{i}^{-p_{i}^{\prime} / p_{i}}\right)_{* v_{i}}$ is the relative rearrangement of $a_{i}^{-p_{i}^{\prime} / p_{i}}$ with respect to v_{i} it comes

$$
\begin{equation*}
-\frac{d}{d \theta} \int_{v_{i}>\theta} \phi_{i}\left(\nabla v_{i}\right) d x \leq\left(-\mathcal{W}^{\prime}\left(v_{i}(\theta)\right) v_{i}^{\prime}(\theta)\right)^{1 / p_{i}^{\prime}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{1 / p_{i}} \tag{3.6}
\end{equation*}
$$

Let $P_{\phi_{i}, \Omega_{i}}\left(\left\{v_{i}>\theta\right\}\right)$ be the generalized perimeter relative to ϕ_{i} and Ω_{i} of the set $\left\{x \in \Omega_{i}, v_{i}(x)>\theta\right\}$ defined in [2] by

$$
P_{\phi_{i}, \Omega_{i}}\left(\left\{v_{i}>\theta\right\}\right)=\sup \left\{\int_{v_{i}>\theta} \operatorname{div}(\sigma) d x ; \sigma \in C_{0}^{1}\left(\Omega_{i}, \mathbb{R}^{N_{i}}\right), \phi_{i}^{0}(\sigma) \leq 1\right\}
$$

The following two results hold (see [1]):

$$
\begin{equation*}
-\frac{d}{d \theta} \int_{v_{i}>\theta} \phi_{i}\left(\nabla v_{i}\right) d x=P_{\phi_{i}, \Omega_{i}}\left(\left\{v_{i}>\theta\right\}\right), \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
P_{\phi_{i}, \Omega_{i}}\left(\left\{v_{i}>\theta\right\}\right) \leq N_{i} \alpha_{i}^{1 / N_{i}}\left(\left|\omega_{i}^{\prime}\right|+v_{i}(\theta)\right)^{1-\frac{1}{N_{i}}} \tag{3.8}
\end{equation*}
$$

Let's note that for $\phi_{i}(\xi)=|\xi|$, the result (3.7) is nothing else the FlemingRishel formula (see [10]) and the corresponding inequality (3.8) is known as the isoperimetric inequality for the perimeter of De Giorgi (see [7]).

Now, using (3.6), (3.7) and (3.8), we get

$$
\begin{aligned}
1 \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} \\
\cdot\left(\left|\omega_{i}^{\prime}\right|+v_{i}(\theta)\right)^{\frac{p_{i}^{\prime}}{N_{i}}-p_{i}^{\prime}} \mathcal{W}^{\prime}\left(v_{i}(\theta)\right)\left(-v_{i}^{\prime}(\theta)\right)
\end{aligned}
$$

By integrating between t and t^{\prime},

$$
\begin{gathered}
t^{\prime}-t \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} \cdot \\
\cdot \int_{0}^{\left|\Omega_{i}\right|} \chi\left[v_{i}\left(t^{\prime}\right),(t)\right](\sigma)\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p_{i}^{\prime}}{N_{i}}-p_{i}^{\prime}}\left(a_{i}^{-p_{i}^{\prime} / p_{i}}\right)_{* v_{i}}(\sigma) d \sigma \\
\leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} \cdot \\
\cdot \int_{0}^{\left|\Omega_{i}\right|}\left(\chi\left[v_{i}\left(t^{\prime}\right), v_{i}(t)\right](.)\left(\left|\omega_{i}^{\prime}\right|+.\right)^{\frac{p_{i}^{\prime}}{N_{i}}-p_{i}^{\prime}}\right)_{*}(\sigma)\left(a_{i}^{-p_{i}^{\prime} / p_{i}}\right)_{*}(\sigma) d \sigma
\end{gathered}
$$

(for this latest inequality, see Theorem 3 in [13])

$$
=N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}}
$$

$$
\cdot \int_{0}^{\left|\Omega_{i}\right|} \chi\left[0, v_{i}(t)-v_{i}\left(t^{\prime}\right)\right](\sigma)\left(\left|\omega_{i}^{\prime}\right|+v_{i}\left(t^{\prime}\right)+\sigma\right)^{\frac{p_{i}^{\prime}}{N_{i}}-p_{i}^{\prime}}\left(a_{i}^{*}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}(\sigma) d \sigma
$$

(using the properties of the (unidimensional) decreasing rearrangement)

$$
\begin{gathered}
=N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} \\
\cdot \int_{v_{i}\left(t^{\prime}\right)}^{v_{i}(t)}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p_{i}^{\prime}}{N_{l}}-p_{i}^{\prime}}\left(a_{i}^{*}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(\sigma-v_{i}\left(t^{\prime}\right)\right) d \sigma
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& t^{\prime}-t \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} \\
& \int_{\left|v_{i}>t^{\prime}\right|}^{\left|v_{i}>t\right|}\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p_{i}^{\prime}}{N_{i}}}-p_{i}^{\prime} \\
& \left(a_{i}^{*}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(\sigma-\left|v_{i}>t^{\prime}\right|\right) d \sigma
\end{aligned}
$$

for all t, t^{\prime} such that $0 \leq t \leq t^{\prime} \leq 1$.
Making $t=0$ and $t^{\prime}=1$ in Theorem 3, we obtain
Corollary 1. Let $i \in\{1, \ldots, n\}, f_{i}(\sigma)=\left(\left|\omega_{i}^{\prime}\right|+\sigma\right)^{\frac{p_{i}^{\prime}}{N_{i}}-p_{i}^{\prime}}\left(a_{i}^{*}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}(\sigma)$ for $\sigma \in$ $\left[0,\left|\Omega_{i}\right|\right]$ and $I_{i}=\int_{0}^{\left|\Omega_{i}\right|} f_{i}(\sigma) d \sigma$. We have

$$
\left(\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x\right)^{p_{i}^{\prime} / p_{i}} \geq \frac{N_{i}^{p_{i}^{\prime}} \alpha_{i}^{\frac{p_{i}^{\prime}}{N_{i}}}}{I_{i}}
$$

Now we are able to state our main results of this section.
Theorem 4. Let S be the unique positive solution of $\sum_{i=1}^{n} \frac{I_{i} S^{p_{i}^{\prime}-1}}{N_{i}^{p_{i}^{\prime}} \alpha_{i}^{p_{i}^{\prime} / N_{i}}}=1$.
We have $c_{p} \geq S$. Moreover for any $s \in\left[0,\left|\Omega_{i}\right|\right]$,

$$
\begin{equation*}
\left(c_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(k_{i-1}-u_{i *}(s)\right) \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-\frac{p_{i}^{\prime}}{N_{i}}} \int_{0}^{s} f_{i}(\sigma) d \sigma \tag{3.9}
\end{equation*}
$$

which gives for $s=\left|\Omega_{i}\right|$

$$
\begin{equation*}
\left(c_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(k_{i-1}-k_{i}\right) \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-\frac{p_{i}^{\prime}}{N_{i}}} I_{i} \tag{3.10}
\end{equation*}
$$

Proof. (a) From Remark 1 and Corollary 1, we have

$$
1=\sum_{i=1}^{n}\left(\frac{c_{p}}{\int_{\Omega_{i}} G_{i}\left(x, \nabla v_{i}\right) d x}\right)^{\frac{1}{p_{i}-1}} \leq \sum_{i=1}^{n} \frac{I_{i} c_{p}^{p_{i}^{\prime}-1}}{N_{i}^{p_{i}^{p}} \alpha_{i}^{p_{i}^{\prime} / N_{i}}} .
$$

As the last expression is (strictly) increasing in c_{p}, we get $c_{p} \geq S$.
(b) From Theorem 2 and Theorem 3, we deduce that for all t such that $k_{i} \leq t \leq k_{i-1}$

$$
k_{i-1}-t \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-\frac{p_{i}^{\prime}}{N_{i}}}\left(c_{p}\right)^{\frac{p_{i}^{\prime}}{p_{i}}} \int_{0}^{\left|u_{i}>t\right|} f_{i}(\sigma) d \sigma .
$$

Making $t=u_{i *}(s), s$ in $\left[0,\left|\Omega_{i}\right|\right]$ and noticing that $\left|u_{i}>u_{i *}(s)\right| \leq s$, we obtain (3.9).

4. Symmetrized problem and isoperimetric inequalities.

We begin by recalling the notion of convex symmetrization introduced in the paper of A. Alvino, V. Ferone, P. L. Lions and Trombetti [1].

For $i=1, \ldots, n$, let $\phi_{i}: \mathbb{R}^{N_{i}} \rightarrow[0,+\infty[$ be a strictly convex function, differen differentiable off the origin, satisfying (1.4) and (1.5). Let ϕ_{i}^{0} be its dual and $B_{\phi_{i}^{0}}=\left\{\xi \in \mathbb{R}^{N_{i}} ; \phi_{i}^{0}(\xi) \leq 1\right\}$ be the unit ball of $\mathbb{R}^{N_{i}}$ relative to ϕ_{i}^{0} (i.e. the Frank diagram relative to ϕ_{i}) with Lebesgue measure α_{i}. Moreover, we assume that the dual function ϕ_{i}^{0} is strictly convex and differentiable everywhere but in the origin.

Let E be a measurable set in $\mathbb{R}^{N_{i}}$ and let u be a measurable function from E into \mathbb{R}. Let \widetilde{E}_{i} be the set homothetic to the Frank diagram $B_{\phi_{i}^{0}}$ such that $\left|\widetilde{E}_{i}\right|=|E|$. Note that both E and \widetilde{E}_{i} are subsets of $\mathbb{R}^{N_{i}}$.

The convex symmetrization (or convex symmetric decreasing rearrangement) relative to ϕ_{i}^{0} of u, denoted by u_{i}^{c} is defined on \widetilde{E}_{i} by

$$
u_{i}^{c}(x)=u_{*}\left(\alpha_{i}\left(\phi_{i}^{0}(x)\right)^{N_{i}}\right) ; \quad x \in \widetilde{E}_{i} .
$$

The function u and u_{i}^{c} are equimeasurable. The level sets of $u_{i}^{c},\{x \in$ $\left.\widetilde{E}_{i} ; u_{i}^{c}(x)>t\right\}$, are homothetic to $B_{\phi_{i}^{0}}$ and have the same measure as $\{x \in E ; u(x)>t\}$. Indeed, the convex symmetrization coincides with the Schwarz symmetrization (or spherically symmetric increasing rearrangement) when $\phi_{i}(\xi)=|\xi|$.

Now let $\tilde{\omega}_{i}\left(\operatorname{resp} . \tilde{\omega}_{i}^{\prime}\right)$ be the set of $\mathbb{R}^{N_{i}}$, homothetic to the ball $B_{\phi_{i}^{0}}$ such that $\left|\tilde{\omega}_{i}\right|=\left|\omega_{i}\right|$ (resp. $\left.\left|\tilde{\omega}_{i}^{\prime}\right|=\left|\omega_{i}^{\prime}\right|\right)$. The sets $\tilde{\omega}_{i}$ and $\tilde{\omega}_{i}^{\prime}$ are bounded, convex, symmetric with respect to the origin and homothetic. Moreover $\overline{\tilde{\omega}_{i}^{\prime}} \subset \tilde{\omega}_{i}$. Let $A_{i}=\tilde{\omega}_{i} \backslash \overline{\tilde{\omega}_{i}^{\prime}}, \tilde{\gamma}_{i}=\partial \tilde{\omega}_{i}, \tilde{\gamma}_{i}^{\prime}=\partial \tilde{\omega}_{i}^{\prime}$. Let μ be the normal to $\tilde{\gamma}_{i}$ pointing outside A_{i} or the normal to $\tilde{\gamma}_{i}^{\prime}$ pointing inside A_{i}.

Let $\tilde{a}_{i}: A_{i} \rightarrow \mathbb{R}$ be the function defined by

$$
\tilde{a}_{i}(x)=a_{i}^{*}\left(\alpha_{i}\left(\phi_{i}^{0}(x)\right)^{N_{i}}-\left|\tilde{\omega}_{i}^{\prime}\right|\right)
$$

where a_{i}^{*} is the increasing rearrangement of a_{i}. As the function a_{i}, the function \tilde{a}_{i} also satisfies (1.2) (with A_{i} instead of Ω_{i}).

We begin by the explicit resolution of the symmetrized problem corresponding to (2.4) in A_{i}.
Proposition 1. For $i \in\{1, \ldots, n\}$, let \mathscr{B}_{i} and $\frac{\partial}{\partial_{\mu} \mathscr{B}_{i}}$ be the operators defined by

$$
\begin{aligned}
\mathcal{B}_{i} V & =-\operatorname{div}\left[\tilde{a}_{i} \phi_{i}(\nabla V)^{p_{i}-1} \nabla \phi_{i}(\nabla V)\right], \\
\frac{\partial V}{\partial \mu^{\mathcal{B}_{i}}} & =\tilde{a}_{i} \phi_{i}(\nabla V)^{p_{i}-1} \nabla \phi_{i}(\nabla V) \cdot \mu
\end{aligned}
$$

and let V_{i} be the solution of the following problem

$$
\left\{\begin{align*}
\mathscr{B}_{i} V_{i}=0 & \text { in } \quad A_{i} \tag{4.1}\\
V_{i}=0 & \text { on } \quad \tilde{\gamma}_{i} \\
V_{i}=1 & \text { on } \quad \tilde{\gamma}_{i}^{\prime}
\end{align*}\right.
$$

We have, with f_{i} and I_{i} defined in Corollary 1,
(a) $V_{i}(x)=\frac{1}{I_{i}} \int_{\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|}^{\left|\Omega_{i}\right|} f_{i}(\sigma) d \sigma$,
(b) $-\int_{\tilde{\gamma}_{i}^{\prime}} \frac{\partial V_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma=N_{i}^{p_{i}} \alpha_{i}^{p_{i} / N_{i}} I_{i}^{1-p_{i}}$.

Proof. (a) With $x \in A_{i}$ and $r=\phi_{i}^{0}(x)$, we obtain $\nabla V_{i}=\frac{d V_{i}}{d r} \nabla \phi_{i}^{0}$. Using the properties of ϕ_{i} and ϕ_{i}^{0}, we get for $x \in A_{i}$,

$$
\phi_{i}\left(\nabla V_{i}(x)\right)=\phi_{i}\left(\frac{d V_{i}}{d r} \nabla \phi_{i}^{0}(x)\right)=\left|\frac{d V_{i}}{d r}\right| \quad \text { by (1.4) and (3.3) }
$$

$$
\nabla \phi_{i}\left(\nabla V_{i}(x)\right)=\nabla \phi_{i}\left(\frac{d V_{i}}{d r} \nabla \phi_{i}^{0}(x)\right)=\frac{d V_{i}}{d r}\left|\frac{d V_{i}}{d r}\right|^{-1} \frac{x}{\phi_{i}^{0}(x)} \text { by (3.1) and (3.4). }
$$

Therefore the operator \mathscr{B}_{i} can be rewritten as

$$
\begin{aligned}
-\mathcal{B}_{i} V_{i} & =a_{i}^{*}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)\left|\frac{d V_{i}}{d r}\right|^{p_{i}-2} \frac{d V_{i}}{d r} \frac{1}{r}\left(N_{i}-\frac{1}{r} \nabla \phi_{i}^{0}(x) \cdot x\right) \\
& +\left(p_{i}-1\right) a_{i}^{*}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)\left|\frac{d V_{i}}{d r}\right|^{p_{i}-2} \frac{d^{2} V_{i}}{d r^{2}} \frac{1}{r} \nabla \phi_{i}^{0}(x) \cdot x \\
& +\frac{d}{d r} a_{i}^{*}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)\left|\frac{d V_{i}}{d r}\right|^{p_{i}-2} \frac{d V_{i}}{d r} \frac{1}{r} \nabla \phi_{i}^{0}(x) \cdot x .
\end{aligned}
$$

We see by (3.2) that

$$
\nabla \phi_{i}^{0}(x) \cdot x=\phi_{i}^{0}(x)=r
$$

and finally

$$
\begin{aligned}
-\mathcal{B}_{i} V_{i} & =\left|\frac{d V_{i}}{d r}\right|^{p_{i}-2}\left[\frac{d}{d r} a_{i}^{*}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right) \frac{d V_{i}}{d r}+\right. \\
+ & \left.a_{i}^{*}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)\left(\left(p_{i}-1\right) \frac{d^{2} V_{i}}{d r^{2}}+\frac{N_{i}-1}{r} \frac{d V_{i}}{d r}\right)\right]
\end{aligned}
$$

Therefore $\mathscr{B}_{i} V_{i}=0$ is equivalent to

$$
\frac{d V_{i}}{d r}=k r^{\frac{N_{i}-1}{1-p_{i}}}\left(a_{i}^{*}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)
$$

where k is a constant. Hence, since $V_{i}=0$ on $\tilde{\gamma}_{i}$ and $V_{i}=1$ on $\tilde{\gamma}_{i}^{\prime}$, we deduce that

$$
V_{i}(x)=\frac{1}{I_{i}} \int_{\alpha_{i} \phi_{i}^{0}(x)^{N_{i}-\left|\omega_{i}^{\prime}\right|}}^{\left|\Omega_{i}\right|} f_{i}(\sigma) d \sigma
$$

for all $x \in A_{i}$.
(b) We have, from earlier computations, for x in $\tilde{\gamma}_{i}^{\prime}$,

$$
\frac{\partial V_{i}}{\partial \mu^{B_{i}}}=a_{i}^{*}\left(\alpha_{i} r^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)\left|\frac{d V_{i}}{d r}\right|^{p_{i}-2} \frac{d V_{i}}{d r} \frac{x \cdot \mu}{\phi_{i}^{0}(x)}=
$$

$$
=-N_{i}^{p_{i}-1} \alpha_{i}^{\frac{p_{i}}{N_{i}}-1} r^{-N_{i}}\left(I_{i}\right)^{1-p_{i}} x . \mu
$$

and then,

$$
-\int_{\tilde{\gamma}_{i}^{\prime}} \frac{\partial V_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma=N_{i}^{p_{i}-1} \alpha_{i}^{\frac{p_{i}}{N_{i}}-1} r^{-N_{i}}\left(I_{i}\right)^{1-p_{i}} \int_{\tilde{\gamma}_{i}^{\prime}} x . \mu d \gamma=N_{i}^{p_{i}} \alpha_{i}^{p_{i} / N_{i}} I_{i}^{1-p_{i}}
$$

because $\int_{\tilde{\gamma}_{i}^{\prime}} x . \mu d \gamma=N_{i}\left|\tilde{\omega}_{i}^{\prime}\right|=N_{i}\left|\omega_{i}^{\prime}\right|$ and if $x \in \tilde{\gamma}_{i}^{\prime}$ we have $\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}=$ $\left|\tilde{\omega}_{i}^{\prime}\right|=\left|\omega_{i}^{\prime}\right|$.

This ends the proof of Proposition 1.
Remark 3. Similar computations show that one has also

$$
\begin{gathered}
\int_{\tilde{\gamma}_{i}} \frac{\partial V_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma=\int_{\tilde{\gamma}_{i}^{\prime}} \frac{\partial V_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma \\
\int_{A_{i}} \tilde{a}_{i} \phi_{i}\left(\nabla V_{i}\right)^{p_{i}} d x=N_{i}^{p_{i}} \alpha_{i}^{p_{i} / N_{i}} I_{i}^{1-p_{i}}=-\int_{\tilde{\gamma}_{i}^{\prime}} \frac{\partial V_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma
\end{gathered}
$$

that is Green's formula is valid.
We consider the symmetrized problem defined as follows

$$
\begin{equation*}
\inf \left\{\sum_{i=1}^{n} \frac{1}{p_{i}} \int_{A_{i}} Q_{i}\left(x, \nabla V_{i}(x)\right) d x, \quad V \in \tilde{\mathbb{H}}\right\} \tag{4.2}
\end{equation*}
$$

where

$$
Q_{i}(x, \xi)=\tilde{a}_{i}(x) \phi_{i}(\xi)^{p_{i}}
$$

and

$$
\begin{array}{r}
\tilde{\mathbb{H}}=\left\{V \in \mathbb{W}_{\tilde{a}}, V_{1}=1 \text { on } \tilde{\gamma}_{i}^{\prime}, V_{n}=0 \text { on } \tilde{\gamma}_{n} \text { and } V_{i \mid \tilde{\gamma}_{i}}=V_{i+1 \mid \tilde{\gamma}_{i+1}^{\prime}}=K_{i}\right. \\
\text { (undetermined constant) for } \quad i=1, \ldots, n-1\} .
\end{array}
$$

Remark 4. It follows from Theorem 1 that the symmetrized problem (4.2) admits too one solution and only one.

Let us denote by U the solution of the symmetrized problem (4.2). Let K_{i} be the common value of U_{i} on $\tilde{\gamma}_{i}$ and U_{i+1} on $\tilde{\gamma}_{i+1}^{\prime}(i=1, \ldots, n-1)$. Let $\tilde{c}_{p}=\sum_{1}^{n} \int_{A_{i}} Q_{i}\left(x, \nabla U_{i}(x)\right) d x$ be the generalized p-capacity of the collection of $A_{i}(i=1, \ldots, n)$. It follows from Theorem 2 applied with $\tilde{c}_{p}, U_{i}, K_{i}, V_{i}$ instead of $c_{p}, u_{i}, k_{i}, v_{i}$ and Remark 3 that Green's formula is also valid for U_{i}, so that U_{1}, \ldots, U_{n} satisfy:

$$
\left\{\begin{array}{l}
\mathscr{B}_{i} U_{i}=0 \quad \text { in } \quad A_{i}, \tag{4.3}\\
U_{i}=1 \quad \text { on } \quad \tilde{\gamma}_{1}^{\prime}, \\
U_{n}=0 \quad \text { on } \quad \tilde{\gamma}_{n}, \\
U_{i \mid \tilde{\gamma}_{i}}=U_{i+1 \mid \tilde{\gamma}_{i+1}^{\prime}}=K_{i} \quad \text { (unprescribed constant) } \\
\int_{\tilde{\gamma}_{i}} \frac{\partial U_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma=\int_{\tilde{\gamma}_{i}^{\prime}} \frac{\partial U_{i}}{\partial \mu^{\mathcal{B}_{i}}} d \gamma \quad \text { for } \quad(i=1, \ldots, n-1),
\end{array}\right.
$$

The symmetrized problem can be solved explicitly:
Theorem 5. (explicit resolution of the symmetrized problem). Let U be the solution of (4.2), $\quad K_{i}=U_{i \mid \tilde{\gamma}_{i}}=U_{i+1 \mid \tilde{\gamma}_{i+1}^{\prime}}(i=1, \ldots, n-1)$. Let $\tilde{c}_{p}=$ $\sum_{i=1}^{n} \int_{A_{i}} Q_{i}\left(x, \nabla U_{i}(x)\right) d x$. Then the values \tilde{c}_{p}, K_{i} and U_{i} are given respectively by
(1) $1=\sum_{i=1}^{n} \frac{I_{i}\left(\tilde{c}_{p}\right)^{p_{i}^{\prime}-1}}{N_{i}^{p_{i}^{\prime}} \alpha_{i}^{p_{i}^{\prime} / N_{i}}}$
(2) $K_{i}=1-\sum_{j=1}^{i} \frac{I_{j}\left(\tilde{c}_{p}\right)^{p_{j}^{\prime}-1}}{N_{j}^{p_{j}^{\prime}} \alpha_{j}^{p_{j}^{\prime} / N_{j}}}$
and for $i \in\{1, \ldots, n\}, x \in A_{i}$
(3) $U_{i}(x)=K_{i-1}-N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\tilde{c}_{p}\right)^{\frac{p_{i}^{\prime}}{p_{i}}} \int_{0}^{\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|} f_{i}(\sigma) d \sigma$.
(As already mentioned there exists a unique $\tilde{c}_{p}>0$ solution of (1).)
Proof. Using Theorem 2, Proposition 1 and Remarks 1 and 3, we have

$$
1=\sum_{i=1}^{n}\left(\frac{\tilde{c}_{p}}{\int_{A_{i}} \tilde{a}_{i} \phi_{i}\left(\nabla V_{i}\right)^{p_{i}} d x}\right)^{\frac{1}{p_{i}-1}}=\sum_{i=1}^{n} \frac{I_{i}\left(\tilde{c}_{p}\right)^{p_{i}^{\prime}-1}}{N_{i}^{p_{i}^{\prime}} \alpha_{i}^{p_{i}^{\prime} / N_{i}}}
$$

$$
1-K_{i}=\sum_{j=1}^{i}\left(\frac{\tilde{c}_{p}}{\int_{A_{j}} \tilde{a}_{j} \phi_{j}\left(\nabla V_{j}\right)^{p_{j}} d x}\right)^{\frac{1}{p_{j}-1}}=\sum_{j=1}^{i} \frac{I_{j}\left(\tilde{c}_{p}\right)^{p_{j}^{\prime}-1}}{N_{j}^{p_{j}^{\prime}} \alpha_{j}^{p_{j}^{\prime} / N_{j}}}
$$

and finally for $x \in A_{i}(i=1, \ldots, n)$,

$$
\begin{aligned}
U_{i}(x)= & \left(K_{i-1}-K_{i}\right) V_{i}(x)+K_{i}=K_{i-1}-\left(K_{i-1}-K_{i}\right)\left(1-V_{i}(x)\right) \\
& =K_{i-1}-\frac{I_{i}\left(\tilde{c}_{p}\right)^{p_{i}^{\prime}-1}}{N_{i}^{P_{i}^{\prime}} \alpha_{i}^{p_{i}^{\prime} / N_{i}}}\left(1-\frac{1}{I_{i}} \int_{\alpha_{i} \phi_{i}^{0}(x)^{N_{i}-\left|\omega_{i}^{\prime}\right|}}^{\left|\Omega_{i}\right|} f_{i}(\sigma) d \sigma\right) \\
& =K_{i-1}-N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-p_{i}^{\prime} / N_{i}}\left(\tilde{c}_{p}\right)^{\frac{p_{i}^{\prime}}{p_{i}}} \int_{0}^{\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|} f_{i}(\sigma) d \sigma .
\end{aligned}
$$

Remark 5. For the symmetrized problem, it follows from Theorem 5 that (3.9) becomes an equality. Actually for $x \in \bar{A}_{i}, s=\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|$ belongs to $\left[0,\left|\Omega_{i}\right|\right]$ and $U_{i_{*}}(s)=U_{i}(x)$.

To summarize, the following theorem says that the inequalities in Theorem 4 are all isoperimetric.

Theorem 6. (isoperimetric inequalities).
a) $c_{p} \geq \tilde{c}_{p}$,
b) $\left(c_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(k_{i-1}-u_{i_{*}}\left(\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|\right)\right) \leq\left(\tilde{c}_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(K_{i-1}-U_{i}(x)\right)$ for $x \in \bar{A}_{i}$,
c) $\left(c_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(k_{i-1}-k_{i}\right) \leq\left(\tilde{c}_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(K_{i-1}-K_{i}\right)$.

Proof. a) is already proved (see Theorem 4 and (1) in Theorem 5).
b) Let $i \in\{1, \ldots, n\}$. For $x \in \bar{A}_{i}$ and $s=\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|$, we have by (3.9) of Theorem 4 and (3) of Theorem 5,

$$
\begin{aligned}
\left(c_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(k_{i-1}-u_{i_{*}}(s)\right) & \leq N_{i}^{-p_{i}^{\prime}} \alpha_{i}^{-\frac{p_{i}^{\prime}}{N_{i}}} \int_{0}^{\alpha_{i} \phi_{i}^{0}(x)^{N_{i}}-\left|\omega_{i}^{\prime}\right|} f_{i}(\sigma) d \sigma \\
& =\left(\tilde{c}_{p}\right)^{-\frac{p_{i}^{\prime}}{p_{i}}}\left(K_{i-1}-U_{i}(x)\right) .
\end{aligned}
$$

Finally, (c) is a particular case of (b) with $x \in \tilde{\gamma}_{i}$.
Acknowledgments. The author wishes to thank J. Mossino for her assistance during the realization of this work.

REFERENCES

[1] A. Alvino - V. Ferone - P.L. Lions - G. Trombetti, Convex symmetrization and application, Ann. Inst. Henri Poincaré Analyse non linéaire, 14-2 (1997), pp. 275-293.
[2] M. Amar-G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. Henri Poincaré Analyse non linéaire, 11-1 (1994), pp. 91-133.
[3] C. Bandle, Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1980.
[4] G. Bellettini - M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), pp. 537-566.
[5] L. Boukrim, Inégalités isopérimétriques pour un problème d'électrostatique,
C. R. Acad. Sci. Paris t., 318 série I (1994), pp. 435-438.
[6] L. Boukrim, Inégalités isopérimétriques pour certains problèmes de conductivité dans des milieux non homogènes, Doctoral Thesis Université Paris-sud Orsay, France, 1994.
[7] E. De Giorgi, Su una teoria generale della misura $(r-1)$ dimensionale in uno spazio ad r dimenzioni, Ann. Mat. Pura Appl., 36 (1954), pp. 191-213.
[8] J. I. Diaz, Nonlinear partial differential equations and free boundaries Elliptic equation, vol. 1, Pitman Advanced Publishing Program, Boston-LondonMelbourne, 1985.
[9] V. Ferone, Symmetrization results in electrostatic problems, Ric. di Mat. vol., 37 (1988), pp. 359-370.
[10] W. Fleming - R. Rishel, An integral formula for total gradient variation, Arch. Math., 11 (1960), pp. 218-222.
[11] J. Mossino, Inégalités isopérimétriques et applications en Physique, Travaux en cours, Hermann, 1984.
[12] J. Mossino - R. Temam, Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J., 48 (1981), pp. 475-495.
[13] J. M. Rakotoson, Some properties of the relative rearrangement, J. Math. An. Appl. , 135 (1988), pp. 488-500.
[14] J. M. Rakotoson - R. Temam, Relative rearrangement in quasilinear elliptic variational inequalities, Ind. Univ. Math. J., 36 (1987), pp. 757-810.
[15] R. T. Rockafellar, Convex analysis, Princeton University Press Princeton, New Jersey, 1972.

Centre de Mathématiques et de Leurs Applications,
Ecole Normale Supérieure de Cachan,
61, Avenue du Président Wilson,
94235 Cachan cedex, (France)

