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SYMMETRIZATION RESULTS FOR A

MULTI-EXPONENT, DEGENERATE AND

ANISOTROPIC ELECTROSTATIC PROBLEM

GONOKOMOUSSA

In this paper, we give some isoperimetric inequalities for the capacity
cp of an anisotropic con�guration where each connected component has the
form �i = ωi \ ω�

i , i ∈ {1, . . . , n}, ωi and ω�
i are regular bounded open sets

in R
Ni , (Ni ≥ 1). The anisotropy of �i is described by a Finsler metric (or

gauge function) φi (ξ), ξ ∈ R
Ni and the growth exponent p may vary with i .

Using the convex symmetrization, we prove in particular that cp ≥ c̃p, where
c̃p is the capacity of a suitable symmetrized anisotropic con�guration.

1. Statement of the problem.

Let �i (i = 1, . . . , n) be open sets of the form �i = ωi \ ω�
i , where ωi

and ω�
i are regular bounded open sets in R

Ni (Ni ≥ 1) such that ω�
i ⊂ ωi . Let

γi = ∂ωi and γ �
i = ∂ω�

i be the respective boundaries of ωi and ω�
i .

Let r = (ri ), p = (pi ), q = (qi ), i = 1 . . . , n be multi-exponents such that

(1.1) 1 ≤ ri ≤ ∞, 1+
1

ri

< pi < ∞, qi =

� pi if ri = ∞
ri

1+ ri
pi if ri < ∞
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(hence 1 < qi ≤ pi ) and let ai : �i → R be a (a.e.) positive function such that

(1.2) ai ∈ L1(�i ), a−1
i =

1

ai
∈ Lri (�i )

where L1(�i ) and Lri (�i ) are classical Lebesgue spaces. Let

L pi
ai
(�i ) =

�
v : �i → R,

�

�i

ai |v|pi dx < +∞
�

be the weighted Lebesgue space equipped with the norm

�v�
L

pi
ai
(�i )

=
��

�i

ai |v|pi dx
�1/pi

and let us introduce the spaces

L
q = {v = (v1, . . . , vn), ∀ i = 1, . . . , n, vi ∈ Lqi (�i )},

L
p
a = {v = (v1, . . . , vn), ∀ i = 1, . . . , n, vi ∈ L pi

ai
(�i )}.

We equip them with the respective norms

�v�
L

q =

n�

i=1

�vi�Lqi (�i )
, �v�

L
p
a

=

n�

i=1

�vi�L
pi
ai
(�i )

.

By Hölder�s inequality, (1.1) and (1.2), it is easy to check that

(1.3) �v�
L

q ≤ max
i∈{1,...,n}

�
�a−1

i �
1/pi

Lr
i
(�i )

�
�v�

L
p
a

and it follows that L
p
a �→ L

q with continuous imbedding. Moreover, let us set

W
1,q =

�
v = (v1, . . . , vn), ∀ i = 1, . . . , n, vi ∈ W 1,qi (�i )

�
,

Wa =
�
v = (v1, . . . , vn), ∀ i = 1, . . . , n, vi ∈ Lqi (�i ), ∇vi ∈ L pi

ai
(�i )

Ni

�
,

where for simplicity∇ denotes the gradient (in the sense of distributions) in any
dimension.

By the previous remark, Wa �→ W
1,q with continuous imbedding. In

particular if v ∈ Wa then v|γi
and v|γ �

i
are well de�ned and belong respectively

to Lqi (γi ) and Lqi (γ �
i ). Hence, we can de�ne

H =
�
v ∈ Wa, v1 = 1 on γ �

1, vn = 0 on γn and vi|γi
= vi+1|γ �

i+1

= ki
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(undetermined constant) for i = 1, . . . , n − 1
�
.

Let φi : R
Ni → [0, +∞[(i = 1, . . . , n), be non negative strictly convex

functions, differentiable off the origin, homogeneous in the sense

(1.4) ∀ t ∈ R, ∀ξ ∈ R
Ni , φi (tξ ) = |t |φi (ξ )

and with linear growth

(1.5) ∃δ > 0, ∀ξ ∈ R
Ni , |ξ | ≤ φi (ξ ) ≤ δ|ξ |,

where |. | denotes the Euclidean norm in R
Ni .

Let Gi : �i × R
Ni → Gi (x , ξ ) ∈ R(i = 1, . . . , n), be Carathéodory

functions (i.e. measurable with respect to x and continuous with respect to ξ )
such that

• for almost every x ∈ �i, Gi(x , .) is strictly convex, homogeneous of degree
pi in the sense

∀ t ∈ R, ∀ξ ∈ R
Ni , Gi(x , tξ ) = |t |pi Gi (x , ξ )

and it admits a gradient gi (x , . ),
• there exists c ≥ 1 such that for almost every x ∈ �i and for every ξ ∈ R

Ni

(1.6) ai (x )φi (ξ )
pi ≤ Gi (x , ξ ) ≤ cai (x )|ξ |pi ·

We consider the following problem

(1.7) inf
�
J (v) =

n�

i=1

1

pi

�

�i

Gi(x , ∇vi ) dx , v ∈ H

�
,

the integral being �nite thanks to (1.6).
For Ni = N, φi (ξ ) = |ξ | and pi = p for any i ∈ {1, . . . , n}, similar

problems have been considered by V. Ferone and L. Boukrim. In an interesting
paper [9], V. Ferone has given an isoperimetric inequality for the p-capacity cp

of a con�guration� = (G\E)\(∪i Hi ), where � represents a nonhomogeneous
isotropic medium, ∂G and ∂E have given potentials respectively equal to 0 and
1, and the Hi have constant unknown potentials Ki . He has shown that cp ≥ c∗

p

where c∗
p is the p-capacity of a symmetrical con�guration which has no interior
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conductor such as Hi . In his thesis [6] (see also the short note [5]), L. Boukrim
has extended and completed Ferone�s result when � is multiconnected and
when the Hi separate the different connected components of �. He proved
that cp ≥ cp ≥ c∗

p , where cp is the p-capacity of a symmetrized isotropic
con�guration (having inner conductors) and gave isoperimetric estimates for
the unknown potentials Ki .

In this paper the anisotropy function φi , as well the growth exponent pi ,
may be different when i varies. Our purpose is to show that the generalized p-
capacity of the collection of �i (i = 1, . . . , n), denoted cp (see section 2 below)
is not smaller than the p-capacity c̃p of a symmetrized anisotropic con�guration
and to give isoperimetric estimates for the unknown potentials Ki . The proof,
inspired by the work of L. Boukrim, uses the notion of relative rearrangement
introduced by J. Mossino and R. Temam [12] and developed in [13, 14]. But the
anisotropy of �i requires other arguments related to the new notion of convex
symmetrization introduced in [1].

2. Study of the problem.

In this section we study the existence, uniqueness and characterization of
solution of problem (1.7).

Theorem 1. Problem (1.7) admits a solution and only one.

Proof. The proof is not quite standard in this context of degenerate problems
in several domains in different dimensions and with different exponents. Let
um be a minimizing sequence: um ∈ H and J (um) → I , where I denotes the
in�mum in (1.7). We have, due to the coerciveness condition in (1.6) together
with (1.5),

n�

i=1

�

�i

ai (x )|∇um
i |pi dx ≤ J (um) ≤ c

and hence �∇um
i �L

pi
ai
(�i )

Ni ≤ c where here (and in the following) we denote by
c any constant.

In particular ∇um
n is bounded in Lqn (�n )

Nn . As um
n = 0 on γn, um

n

is bounded in W 1,qn (�n ) by Poincaré inequality. By continuity of the trace
mapping (i.e. W 1,qn (�n) → Lqn (γ �

n)), k
m
n−1 = um

n|γ �
n
is bounded in R.

Now ∇um
n−1 is bounded in Lqn−1 (�n−1)

Nn−1 and km
n−1 = um

n−1|γn−1
is

bounded in R. It follows from Poincaré inequality that um
n−1 is bounded

in W 1,qn−1 (�n−1) and, just as above km
n−2 = um

n−1|γ �
n−1

is bounded in R, so
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that by induction um
i is bounded in W 1,qi (�i ) (for any i = 1, . . . , n) and

km
i = um

i|γi
= um

i+1|γ �
i+1
is bounded in R (for any i = 1, . . . , n − 1).

Up to an extraction of a subsequence we may suppose that for any i =

1, . . . , n

um
i � ui weakly inW 1,qi (�i ),

um
i → ui strongly in Lqi (�i ) (by compactness),

um
i|γi
(resp. um

i|γ �
i
) → ui|γi

((resp. ui|γ �
i
) strongly in Lqi (�i ) (resp. L

qi (γ �
i )),

∇um
i � ζi weakly in L pi

ai
(�i )

Ni ,

km
i → ki in R.

As um ∈ H, we get u1 = 1 on γ �
1, un = 0 on γn, ui|γi

= ui+1|γ �
i+1

= ki (i =

1, . . . , n −1). As ∇um
i � ζi weakly in L

pi
ai (�i )

Ni , we get ∇um
i � ζi weakly in

Lqi (�i )
Ni by using the continuity of the imbedding L

pi
ai (�i ) �→ Lqi (�i ). Since

um
i → ui in Lqi (�i ), it follows that ζi = ∇ui ∈ L

pi
ai (�i )

Ni and u ∈ H.
It remains to prove that u solves (1.7). We note that (x , ξ )∈ �i × R

Ni →

Gi (x , ξ )∈ R is a Carathéodory function such that by (1.5) and (1.6)

ai (x )|ξ |pi ≤ Gi (x , ξ ) ≤ cai (x )|ξ |pi ·

Hence the mapping r → Gi (x , r) is continuous from L
pi
ai (�i )

Ni into L1(�i )
and the mapping r →

�
�i

Gi (x , r) dx is continuous from L
pi
ai (�i )

Ni into R.
It is also convex, so that it is lower semicontinuous for the weak topology of
L

pi
ai (�i )

Ni and as ∇um
i � ∇ui in L

pi
ai (�i )

Ni ,

I = lim inf

n�

i=1

1

pi

�

�i

Gi (x , ∇um
i ) dx ≥

n�

i=1

1

pi
lim inf

�

�i

Gi (x , ∇um
i ) dx

≥

n�

i=1

1

pi

�

�i

Gi(x , ∇ui ) dx

which proves that u solves (1.7). By the strict convexity, the gradient is the same
in each �i for all solutions of (1.7) and it follows from the boundary conditions
in H that the solution of (1.7) is unique (and then the above convergences hold
for the whole sequence um ). This �nishes the proof of Theorem 1. �

Let u be the solution of (1.7). It is classical that u is characterized by the
variational formulation: u ∈ H and

(2.1) 0 =

n�

i=1

1

pi

�

�i

gi (x , ∇ui).∇vi dx , ∀v ∈ H0,
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with

H0 =
�
v ∈ Wa, v1 = 0 on γ �

1, vn = 0 on γn and vi|γi
= vi+1|γ �

i+1
= ki

(undetermined constant) for i = 1, . . . , n − 1
�
.

It follows that u satis�es






Ai ui = 0 in �i (in the sense of distributions)
u1 = 1 on γ �

1,
un = 0 on γn,

ui|γi
= ui+1|γ �

i+1

= ki (unprescribed constant) for i = 1, . . . , n − 1,

where

Ai ui = −
1

pi
div (gi (x , ∇ui))

and for simplicity div (resp. ∇ ) denotes the divergence (resp. gradient in any
dimension Ni .

Let vi (i = 1, . . . , n) be the unique solution of

(2.2) inf
� 1

pi

�

�i

Gi(x , ∇w) dx , w ∈ Wai
(�i ), w = 1 on γ �

i , w = 0 on γi

�
,

where

Wai
(�i ) = {v ∈ Lqi (�i ), ∇v ∈ L pi

ai
(�i )

Ni }.

Then vi is characterized by vi ∈ Wai
(�i ), vi = 1 on γ �

i , vi = 0 on γi and

(2.3)

�

�i

gi (x , ∇vi).∇ϕ dx = 0, ∀ϕ ∈ Wai
(�i ), ϕ = 0 on γ �

i ∪ γi ,

and it follows that

(2.4)

�
Aivi = 0 in �i (in the sense of distributions),

vi = 1 on γ �
i ,

vi = 0 on γi .

Next, we prove that the solution u of (1.7) is explicit in terms of the
solutions vi (i = 1, . . . , n) of (2.2).
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Theorem 2. Let u be the solution of (1.7), ki = ui+1|γ �
i+1

and let vi be the

solution of (2.2). Let

cp =

n�

i=1

�

�i

Gi(x , ∇ui ) dx

be a generalized p-capacity of the collection of �i (i = 1, . . . , n). We have

(a) cp > 0,

(b) cp =
1

pi

�

�i

gi (x , ∇ui).∇vi dx , for i = 1, 2, . . . , n,

(c)

�

�i

Gi(x , ∇ui ) dx > 0,

(d) ki �= ki−1 ,

(e) ui = (ki−1 − ki )vi + ki ,

(f)

�

�i

Gi(x , ∇ui ) dx = (ki−1 − ki )cp ,

(g) 0 = kn < kn−1 < . . . < ki+1 < ki < . . . < ki < k0 = 1,

(h)

�

�i

Gi(x , ∇vi ) dx =
cp

(ki−1 − ki )pi−1
,

(i) 0 < vi < 1, ki < ui < ki−1 .

Proof. (a) If cp = 0 then we get from (1.5) and (1.6) that ui is constant in each
connected component �i . Using the transmission conditions (because u ∈ H),
we obtain a contradiction.

(b) Let ṽi = (ṽi
1, . . . ,�vi

n) be the function de�ned by

ṽi
i = vi , ṽi

j =

�
1 if j < i
0 if j > i.

As ṽi − u ∈ H0, we get, using the variational formulation of u,

0 =
�

j

1

pj

�

�j

gj (x , ∇uj ).∇(ṽ
i
j − uj ) dx

which is equivalent to

cp =
�

j

�

�j

Gj (x , ∇uj ) dx =
1

pi

�

�i

gi (x , ∇ui).∇vi dx .
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(c) If
�
�i

Gi(x , ∇ui ) dx = 0 then from (1.5) and (1.6), we have ∇ui = 0
and hence cp = 0 using (b); but this contradicts (a).

(d) If ki = ki−1 , then we can de�ne mi = (mi
1, . . . , mi

n) by

mi
j =

�
ki for j = i
ui otherwise

and mi belongs to H. It follows from (c) that

�

j

�

�j

1

pj
Gj (x , ∇mi

j ) dx <
�

j

�

�j

1

pj
Gj (x , ∇uj ) dx

which contradicts the minimality property of u.
(e) Following (d), one can de�ne wi = ui−ki

ki−1−ki
. It is easy to check (from

Ai ui = 0), that Aiwi = 0, wi = 1 on γ �
i , wi = 0 on γi . The functions vi

and wi satisfy the same equation which has a unique solution. It follows that
wi = vi .

(f) It is suf�cient to replace vi by
ui−ki

ki−1−ki
in (b).

(g) Clear from (a), (c) and (f).

(h) Replace ui by (ki−1 − ki )vi + ki in (b).

(i)Using convenient test functions in (2.3), it is easy to prove that 0 < vi <

1 and then (e) gives ki < ui < ki−1 . �

Remark 1. From (h) of Theorem 2,
n�

i=1

(ki−1 − ki ) = 1 and ki = 1−
i�

j=1

(kj−1 −

kj ), we get

1 =

n�

i=1

�
cp�

�i
Gi (x , ∇vi) dx

� 1
pi−1

and

ki = 1−

i�

j=1

�
cp�

�j
Gj (x , ∇vj ) dx

� 1
pj −1

Remark 2. If Green�s formula is valid, then we have from Ai ui = 0 in �i and
from (b) of Theorem 2 that for all i = 1, . . . , n

cp = −

�

γ �
i

∂ui

∂vAi
dγ = −

�

γi

∂ui

∂vAi
dγ
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where
∂ui

∂vAi
=
1

pi
gi(x , ∇ui ). v

and for simplicity v denotes the outer normal to �i on γi as well as the inner
normal to �i on γ �

i .

3. Main inequalities.

Let us recall some notions of (unidimensional and relative) rearrangement
(see for example [3], [8], [11], [12], [13], [14]). In this paper, we use only the
Lebesgue measure on R

N (for different values of N ). For a measurable set E in
R

N , let |E | be its measure. Let u be a measurable function from E into R. The
(unidimensional) decreasing rearrangement u∗ of u is de�ned on E

∗
= [0, |E |]

by u∗(|E |) = essE inf u and for s < |E |, u∗(s) = inf{θ ∈ R, |u > θ | ≤ s}
where |u > θ | = |{x ∈ E : u(x ) > θ}|; the increasing rearrangement of u,
denoted u∗ , is then u∗(s) = u∗(|E | − s). The functions u, u∗ and u∗ satisfy
|u > θ | = |u∗ > θ | = |u∗ > θ |.

For v ∈ L1(E) and u : E → R measurable, we de�ne the function W on
E∗ by

W(s) =






�

u>u∗(s)

v(x ) dx if |u = u∗(s)| = 0,

�

u>u∗(s)

v(x ) dx +

� s−|u>u∗(s)|

0

(v|P(s))∗(σ ) dσ otherwise,

where (v|P(s))∗ is the decreasing rearrangement of v restricted to P(s) = {x ∈

E : u(x ) = u∗(s)}. The integrable function
dW

ds
is called (according to [12],

[13], [14]) the relative rearrangement of v with respect to u and is denoted v∗u
.

We recall also some facts about the function φi de�ned in section 1. As
it has been said earlier, the function φi : R

Ni → [0, +∞[ is strictly convex,
homogeneous of degree one, with linear growth and differentiable off the origin.

Let

Bφi
= {ξ ∈ R

Ni ; φi (ξ ) ≤ 1}

be the unit ball of R
Ni relative to φi . It follows from the de�nition of φi that

the ball Bφi
(the so-called Wulff shape relative to φi ) is bounded, convex and

symmetric with respect to the origin.
We denote by φ0i : R

Ni → [0, +∞[ the dual function of φi de�ned by
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φ0i (ξ
∗) = sup{ξ∗. ξ; ξ ∈ Bφi

} = sup
ξ �=0

ξ∗. ξ

φi (ξ )
, ∀ξ∗ ∈ R

Ni .

One can check that φ0i is also a convex function and satis�es the properties (1.4)
and 1

δ
|ξ∗| ≤ φ0i (ξ

∗) ≤ |ξ∗| (see for example [15]). In the sequel, we assume

that the dual function φ0i is strictly convex and differentiable everywhere but in
the origin. The corresponding unit ball Bφ0

i
is known as Frank diagram. One

can also prove from (1.4) the following useful properties of the functions φi and
φ0i (see for example [4]). Let ξ ∈ R

Ni \ {0} and let t �= 0, then

(3.1) ∇φi (tξ ) =
t

|t |
∇φi (ξ ), ∇φ0i (tξ ) =

t

|t |
∇φ0i (ξ )

(3.2) φi (ξ ) = ∇φi (ξ ). ξ, φ0i (ξ ) = ∇φ0i (ξ ). ξ

(3.3) 1 = φi (∇φ0i (ξ )) = φ0i (∇φi (ξ ))

(3.4) ξ = φ0i (ξ )∇φi (∇φ0i (ξ )) = φi (ξ )∇φ0i (∇φi (ξ )).

All the isoperimetric inequalities of this section are consequences of the follow-
ing theorem.

Theorem 3. Let i ∈ {1, . . . , n}. Let αi be the Lebesgue measure of the unit ball
(i.e. Frank diagram) Bφ0

i
= {ξ ∈ R

Ni ; φ0i (ξ ) ≤ 1} in R
Ni . Let p�

i be such that
1
pi

+ 1
p�

i
= 1 and let vi be the unique solution of (2.2). Then for all t, t � such

that 0 ≤ t ≤ t � ≤ 1, we have

t � − t ≤ N
−p�

i

i α
−p�

i
/Ni

i

��

�i

Gi (x , ∇vi) dx
�p�

i
/pi

·

·

� |vi >t |

|vi >t �|

(|ω�
i | + σ )

p�
i

Ni
−p�

i (a∗
i )

−
p�
i

pi (σ − |vi > t �|) dσ.

Proof. For θ ∈ ]0, 1[, let us set

zi = θ − (vi − θ )− =

�
vi if vi ≤ θ

θ if vi > θ.
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Then the function ϕ = zi − θvi satis�es the conditions ϕ ∈ Wai
(�i ), ϕ = 0 on

γ �
i ∪ γi+1. In consequence, we have using (2.3)

0 =

�

�i

gi (x , ∇vi).∇(zi − θvi) dx .

Hence �

vi ≤θ

Gi(x , ∇vi ) dx = θ

�

�i

Gi (x , ∇vi) dx

and then

(3.5)
d

dθ

�

vi >θ

Gi (x , ∇vi) dx = −

�

�i

Gi (x , ∇vi) dx .

Moreover, by using (1.6), (1.2) and Hölder�s inequality, we have for h > 0,

1

h

�

θ<vi ≤θ+h

φi (∇vi ) dx ≤

�
1

h

�

θ<vi ≤θ+h

a
−p�

i
/pi

i dx

�1/p�
i

·

·

�
1

h

�

θ<vi ≤θ+h

Gi(x , ∇vi ) dx

�1/pi

and letting h tend to 0, we get (thanks to (3.5))

−
d

dθ

�

vi >θ

φi (∇vi ) dx ≤

�

−
d

dθ

�

vi >θ

a
−p�

i
/pi

i dx

�1/p�
i

·

·

��

�i

Gi(x , ∇vi ) dx

�1/pi

By using the following formula of derivation (see [14])

d

dθ

�

vi >θ

a
−p�

i
/pi

i dx = W
�(vi (θ ))v

�
i (θ )

where vi (θ ) = |vi > θ | and W
� =

�
a

−p�
i
/pi

i

�
∗vi
is the relative rearrangement of

a
−p�

i
/pi

i with respect to vi it comes

(3.6) −
d

dθ

�

vi >θ

φi (∇vi ) dx ≤

�

−W
�(vi (θ ))v

�
i (θ )

�1/p�
i
��

�i

Gi(x , ∇vi ) dx

�1/pi
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Let Pφi ,�i
({vi > θ}) be the generalized perimeter relative to φi and �i of the

set {x ∈ �i , vi(x ) > θ} de�ned in [2] by

Pφi ,�i
({vi > θ}) = sup

� �

vi >θ

div(σ ) dx; σ ∈ C1
0 (�i , R

Ni ), φ0i (σ ) ≤ 1

�

.

The following two results hold (see [1]):

(3.7) −
d

dθ

�

vi >θ

φi (∇vi ) dx = Pφi ,�i
({vi > θ}),

(3.8) Pφi ,�i
({vi > θ}) ≤ Niα

1/Ni

i (|ω�
i | + vi (θ ))

1− 1
Ni

Let�s note that for φi (ξ ) = |ξ |, the result (3.7) is nothing else the Fleming-
Rishel formula (see [10]) and the corresponding inequality (3.8) is known as the
isoperimetric inequality for the perimeter of De Giorgi (see [7]).

Now, using (3.6), (3.7) and (3.8), we get

1 ≤ N
−p�

i

i α
−p�

i
/Ni

i

��

�i

Gi (x , ∇vi) dx

�p�
i /pi

·

·(|ω�
i | + vi (θ ))

p�
i

Ni
−p�

i W
�(vi (θ ))(−v�

i (θ )).

By integrating between t and t �,

t � − t ≤ N
−p�

i

i α
−p�

i
/Ni

i

��

�i

Gi (x , ∇vi) dx
�p�

i
/pi

·

·

� |�i |

0

χ [vi(t
�), (t)](σ )(|ω�

i | + σ )
p�
i

Ni
−p�

i

�
a

−p�
i
/pi

i

�

∗vi

(σ ) dσ

≤ N
−p�

i

i α
−p�

i
/Ni

i

� �

�i

Gi(x , ∇vi ) dx
�p�

i
/pi

·

·

� |�i |

0

�
χ [vi(t

�), vi (t)](. )(|ω
�
i |+. )

p�
i

Ni
−p�

i

�

∗
(σ )

�
a

−p�
i
/pi

i

�
∗
(σ ) dσ

(for this latest inequality, see Theorem 3 in [13])

= N
−p�

i

i α
−p�

i
/Ni

i

��

�i

Gi (x , ∇vi) dx
�p�

i
/pi

·
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·

� |�i |

0

χ [0, vi(t)− vi (t
�)](σ )(|ω�

i | + vi (t
�)+ σ )

p�
i

Ni
−p�

i (a∗
i )

−
p�
i

pi (σ ) dσ

(using the properties of the (unidimensional) decreasing rearrangement)

= N
−p�

i

i α
−p�

i/Ni

i

��

�i

Gi (x , ∇vi) dx
�p�

i /pi

·

·

� vi (t )

vi (t �)

(|ω�
i | + σ )

p�
i

NI
−p�

i (a∗
i )

−
p�
i

pi (σ − vi (t
�)) dσ.

Therefore

t � − t ≤ N
−p�

i

i α
−p�

i
/Ni

i

��

�i

Gi (x , ∇vi) dx
�p�

i
/pi

·

·

� |vi >t |

|vi >t �|

(|ω�
i | + σ )

p�
i

Ni
−p�

i (a∗
i )

−
p�
i

pi (σ − |vi > t �|) dσ

for all t, t � such that 0 ≤ t ≤ t � ≤ 1. �

Making t = 0 and t � = 1 in Theorem 3, we obtain

Corollary 1. Let i ∈ {1, . . . , n}, fi(σ ) = (|ω�
i | + σ )

p�
i

Ni
−p�

i (a∗
i )

−
p�
i

pi (σ ) for σ ∈

[0, |�i |] and Ii =
� |�i |

0
fi (σ )dσ. We have

��

�i

Gi (x , ∇vi) dx

�p�
i
/pi

≥
N

p�
i

i α

p�
i

Ni

i

Ii
.

Now we are able to state our main results of this section.

Theorem 4. Let S be the unique positive solution of
�

n
i=1

Ii S
p�
i
−1

N
p�
i

i
α

p�
i
/Ni

i

= 1.

We have cp ≥ S. Moreover for any s ∈ [0, |�i |],

(3.9) (cp)
−

p�
i

pi (ki−1 − ui∗(s)) ≤ N
−p�

i

i α
−

p�
i

Ni

i

� s

0

fi (σ )dσ,

which gives for s = |�i |

(3.10) (cp)
−

p�
i

pi (ki−1 − ki ) ≤ N
−p�

i

i α
−

p�
i

Ni

i Ii .
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Proof. (a) From Remark 1 and Corollary 1, we have

1 =

n�

i=1

�
cp�

�i
Gi (x , ∇vi) dx

� 1
pi −1

≤

n�

i=1

Ii c
p�

i
−1

p

N
p�

i

i α
p�

i
/Ni

i

.

As the last expression is (strictly) increasing in cp , we get cp ≥ S .
(b) From Theorem 2 and Theorem 3, we deduce that for all t such that

ki ≤ t ≤ ki−1

ki−1 − t ≤ N
−p�

i

i α
−

p�
i

Ni

i (cp)
p�
i

pi

� |ui >t |

0

fi (σ )dσ.

Making t = ui∗(s), s in [0, |�i |] and noticing that |ui > ui∗(s)| ≤ s , we obtain
(3.9).

4. Symmetrized problem and isoperimetric inequalities.

We begin by recalling the notion of convex symmetrization introduced in
the paper of A. Alvino, V. Ferone, P. L. Lions and Trombetti [1].

For i = 1, . . . , n, let φi : R
Ni → [0, +∞[ be a strictly convex function,

differen differentiable off the origin, satisfying (1.4) and (1.5). Let φ0i be its dual
and Bφ0i

= {ξ ∈ R
Ni ; φ0i (ξ ) ≤ 1} be the unit ball of R

Ni relative to φ0i (i.e. the
Frank diagram relative to φi ) with Lebesgue measure αi . Moreover, we assume
that the dual function φ0i is strictly convex and differentiable everywhere but in
the origin.

Let E be a measurable set in R
Ni and let u be a measurable function from

E into R. Let �Ei be the set homothetic to the Frank diagram Bφ0
i
such that

|�Ei | = |E |. Note that both E and �Ei are subsets of R
Ni .

The convex symmetrization (or convex symmetric decreasing rearrange-
ment) relative to φ0i of u, denoted by uc

i is de�ned on �Ei by

uc
i (x ) = u∗(αi (φ

0
i (x ))

Ni ); x ∈ �Ei .

The function u and uc
i are equimeasurable. The level sets of uc

i , {x ∈
�Ei ; uc

i (x ) > t}, are homothetic to Bφ0
i
and have the same measure as

{x ∈ E; u(x ) > t}. Indeed, the convex symmetrization coincides with the
Schwarz symmetrization (or spherically symmetric increasing rearrangement)
when φi (ξ ) = |ξ |.
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Now let ω̃i (resp. ω̃�
i ) be the set of R

Ni , homothetic to the ball Bφ0
i
such

that |ω̃i | = |ωi | (resp. |ω̃�
i | = |ω�

i |). The sets ω̃i and ω̃�
i are bounded, convex,

symmetric with respect to the origin and homothetic. Moreover ω̃�
i ⊂ ω̃i . Let

Ai = ω̃i \ ω̃�
i , γ̃i = ∂ω̃i, γ̃ �

i = ∂ω̃�
i . Let µ be the normal to γ̃i pointing outside

Ai or the normal to γ̃ �
i pointing inside Ai .

Let ãi : Ai → R be the function de�ned by

ãi(x ) = a∗
i (αi (φ

0
i (x ))

Ni − |ω̃�
i |)

where a∗
i is the increasing rearrangement of ai . As the function ai , the function

ãi also satis�es (1.2) (with Ai instead of �i ).
We begin by the explicit resolution of the symmetrized problem corre-

sponding to (2.4) in Ai .

Proposition 1. For i ∈ {1, . . . , n}, let Bi and ∂
∂µBi

be the operators de�ned by

Bi V = −div[ãiφi (∇V )pi −1∇φi (∇V )],

∂V

∂µBi
= ãiφi (∇V )pi−1∇φi (∇V ). µ

and let Vi be the solution of the following problem

(4.1)






Bi Vi = 0 in Ai ,

Vi = 0 on γ̃i ,

Vi = 1 on γ̃ �
i .

We have, with fi and Ii de�ned in Corollary 1,

(a) Vi(x ) =
1

Ii

� |�i |

αi φ
0
i
(x)Ni −|ω�

i
|

fi (σ )dσ ,

(b) −

�

γ̃ �
i

∂Vi

∂µBi
dγ = N

pi

i α
pi/Ni

i I
1−pi

i .

Proof. (a) With x ∈ Ai and r = φ0i (x ), we obtain ∇Vi = dVi

dr
∇φ0i . Using the

properties of φi and φ0i , we get for x ∈ Ai ,

φi (∇Vi(x )) = φi

�dVi

dr
∇φ0i (x )

�
=

�
�
�
�
�

dVi

dr

�
�
�
�
�
by (1.4) and (3.3),
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∇φi (∇Vi(x )) = ∇φi

�dVi

dr
∇φ0i (x )

�
=

dVi

dr

�
�
�
�
�

dVi

dr

�
�
�
�
�

−1
x

φ0i (x )
by (3.1) and (3.4).

Therefore the operator Bi can be rewritten as

−Bi Vi = a∗
i (αi r

Ni − |ω�
i |)

�
�
�
�
�

dVi

dr

�
�
�
�
�

pi−2
dVi

dr

1

r

�
Ni −

1

r
∇φ0i (x ). x

�

+ (pi − 1)a∗
i (αi r

Ni − |ω�
i |)

�
�
�
�
�

dVi

dr

�
�
�
�
�

pi−2
d2Vi

dr2
1

r
∇φ0i (x ). x

+
d

dr
a∗

i (αi r
Ni − |ω�

i |)

�
�
�
�
�

dVi

dr

�
�
�
�
�

pi−2
dVi

dr

1

r
∇φ0i (x ). x .

We see by (3.2) that
∇φ0i (x ). x = φ0i (x ) = r

and �nally

−Bi Vi =

�
�
�
�
�

dVi

dr

�
�
�
�
�

pi−2� d

dr
a∗

i (αi r
Ni − |ω�

i |)
dVi

dr
+

+ a∗
i (αi r

Ni − |ω�
i |)

�
(pi − 1)

d2Vi

dr2
+

Ni − 1

r

dVi

dr

��
.

Therefore Bi Vi = 0 is equivalent to

dVi

dr
= kr

Ni−1

1−pi (a∗
i )

−
p�
i

pi (αi r
Ni − |ω�

i |)

where k is a constant. Hence, since Vi = 0 on γ̃i and Vi = 1 on γ̃ �
i , we deduce

that

Vi(x ) =
1

Ii

� |�i |

αi φ
0
i
(x)Ni −|ω�

i
|

fi (σ ) dσ

for all x ∈ Ai .

(b)We have, from earlier computations, for x in γ̃ �
i ,

∂Vi

∂µBi
= a∗

i (αi r
Ni − |ω�

i |)
�
�
�
dVi

dr

�
�
�
pi−2 dVi

dr

x . µ

φ0i (x )
=
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= − N
pi −1
i α

pi
Ni

−1

i r−Ni (Ii )
1−pi x . µ

and then,

−

�

γ̃ �
i

∂Vi

∂µBi
dγ = N

pi −1
i α

pi
Ni

−1

i r−Ni (Ii )
1−pi

�

γ̃ �
i

x . µdγ = N
pi

i α
pi/Ni

i I
1−pi

i

because
�
γ̃ �

i
x . µ dγ = Ni |ω̃

�
i | = Ni |ω

�
i | and if x ∈ γ̃ �

i we have αiφ
0
i (x )

Ni =

|ω̃�
i | = |ω�

i |.

This ends the proof of Proposition 1. �

Remark 3. Similar computations show that one has also

�

γ̃i

∂Vi

∂µBi
dγ =

�

γ̃ �
i

∂Vi

∂µBi
dγ,

�

Ai

ãiφi (∇Vi)
pi dx = N

pi

i α
pi/Ni

i I
1−pi

i = −

�

γ̃ �
i

∂Vi

∂µBi
dγ

that is Green�s formula is valid.

We consider the symmetrized problem de�ned as follows

(4.2) inf

�
n�

i=1

1

pi

�

Ai

Qi (x , ∇Vi(x )) dx , V ∈ H̃

�

where

Qi(x , ξ ) = ãi(x )φi (ξ )
pi

and

H̃ =
�
V ∈ Wã, V1 = 1 on γ̃ �

i , Vn = 0 on γ̃n and Vi|γ̃i
= Vi+1|γ̃ �

i+1
= Ki

(undetermined constant) for i = 1, . . . , n − 1}.

Remark 4. It follows from Theorem 1 that the symmetrized problem (4.2)
admits too one solution and only one.
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Let us denote by U the solution of the symmetrized problem (4.2). Let Ki

be the common value of Ui on γ̃i and Ui+1 on γ̃ �
i+1(i = 1, . . . , n − 1). Let

c̃p =
�n

1

�
Ai

Qi (x , ∇Ui (x )) dx be the generalized p-capacity of the collection
of Ai (i = 1, . . . , n). It follows from Theorem 2 applied with c̃p,Ui , Ki , Vi

instead of cp, ui , ki , vi and Remark 3 that Green�s formula is also valid for Ui ,
so that U1, . . . ,Un satisfy:

(4.3)






BiUi = 0 in Ai ,

Ui = 1 on γ̃ �
1,

Un = 0 on γ̃n,

Ui|γ̃i
= Ui+1|γ̃ �

i+1
= Ki (unprescribed constant)

for (i = 1, . . . , n − 1),
�

γ̃i

∂Ui

∂µBi
dγ =

�

γ̃ �
i

∂Ui

∂µBi
d γ is independent of i = 1, . . . , n.

The symmetrized problem can be solved explicitly:

Theorem 5. (explicit resolution of the symmetrized problem). Let U be the so-
lution of (4.2), Ki = Ui|γ̃i

= Ui+1|γ̃ �
i+1
(i = 1, . . . , n − 1). Let c̃p =

n�

i=1

�

Ai

Qi(x , ∇Ui (x )) dx . Then the values c̃p, Ki and Ui are given respectively

by

(1) 1 =

n�

i=1

Ii (c̃p)
p�

i
−1

N
p�

i

i α
p�

i/Ni

i

(2) Ki = 1−

i�

j=1

Ij (c̃p)
p�

j
−1

N
p�

j

j α
p�

j/Nj

j

and for i ∈ {1, . . . , n}, x ∈ Ai

(3) Ui (x ) = Ki−1 − N
−p�

i

i α
−p�

i
/Ni

i (c̃p)
p�
i

pi

� αi φ
0
i
(x)Ni −|ω�

i
|

0

fi (σ ) dσ .

(As already mentioned there exists a unique c̃p > 0 solution of (1).)

Proof. Using Theorem 2, Proposition 1 and Remarks 1 and 3, we have

1 =

n�

i=1

�
c̃p�

Ai
ãiφi (∇Vi)pi dx

� 1
pi −1

=

n�

i=1

Ii (c̃p)
p�

i
−1

N
p�

i

i α
p�

i
/Ni

i

,
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1− Ki =

i�

j=1

�
c̃p�

Aj
ãjφj (∇Vj )pj dx

� 1
pj −1

=

i�

j=1

Ij (c̃p)
p�

j
−1

N
p�

j

j α
p�

j
/Nj

j

,

and �nally for x ∈ Ai (i = 1, . . . , n),

Ui (x ) = (Ki−1 − Ki )Vi(x )+ Ki = Ki−1 − (Ki−1 − Ki)(1− Vi(x ))

= Ki−1 −
Ii (c̃p)

p�
i
−1

N
P �

i

i α
p�

i
/Ni

i

�

1−
1

Ii

� |�i |

αi φ
0
i (x)

Ni −|ω�
i |

fi (σ ) dσ

�

= Ki−1 − N
−p�

i

i α
−p�

i
/Ni

i (c̃p)
p�
i

pi

� αi φ
0
i
(x)Ni −|ω�

i
|

0

fi (σ ) dσ.

�

Remark 5. For the symmetrized problem, it follows from Theorem 5 that (3.9)
becomes an equality. Actually for x ∈ Ai , s = αiφ

0
i (x )

Ni − |ω�
i | belongs to

[0, |�i |] and Ui∗ (s) = Ui (x ).

To summarize, the following theorem says that the inequalities in Theo-
rem 4 are all isoperimetric.

Theorem 6. (isoperimetric inequalities).
a) cp ≥ c̃p ,

b) (cp)
−

p�
i

pi (ki−1 − ui∗ (αiφ
0
i (x )

Ni − |ω�
i |)) ≤ (c̃p)

−
p�
i

pi (Ki−1 −Ui (x )) for x ∈ Ai ,

c) (cp)
−

p�
i

pi (ki−1 − ki ) ≤ (c̃p)
−

p�
i

pi (Ki−1 − Ki ).

Proof. a) is already proved (see Theorem 4 and (1) in Theorem 5).
b) Let i ∈ {1, . . . , n}. For x ∈ Ai and s = αiφ

0
i (x )

Ni − |ω�
i |, we have by (3.9)

of Theorem 4 and (3) of Theorem 5,

(cp)
−

p�
i

pi (ki−1 − ui∗ (s)) ≤ N
−p�

i

i α
−

p�
i

Ni

i

� αi φ
0
i
(x)Ni −|ω�

i
|

0

fi (σ ) dσ

= (c̃p)
−

p�
i

pi (Ki−1 − Ui (x )).

Finally, (c) is a particular case of (b) with x ∈ γ̃i . �
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Centre de Mathématiques et de Leurs Applications,
Ecole Normale Supérieure de Cachan,

61, Avenue du Président Wilson,
94235 Cachan cedex, (France)


