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ON THE EIGENVALUES OF A KERNEL

CONSIDERED BY A.M. OSTROWSKI

SILVIA NOSCHESE - PAOLO EMILIO RICCI

Dedicated to Mario R. Occorsio on his 65th birthday.

By using the inverse iteration method we improve approximation of
the eigenvalues of a kernel connected with a problem considered by A.M.
Ostrowski.

1. Introduction.

A.M. Ostrowski [10] considered the problem of �nding the maximum
value M of the functional, ∀φ ∈ L2(0, 1):

(1) I (φ) :=

�� 1

0

φ2(t) dt

�−1 � 1

0

� 1

0

�
1

x − y

� x

y

φ(t) dt

�2
dxdy.

As a consequence of a theorem by A. Garsia, cited in the same article of A.M.
Ostrowski, the preceding problem can be reduced to the computation of the
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greatest eigenvalue µ1 of the positive compact operator, de�ned in L2(0, 1):

(2) Kφ =

� 1

2

K (x , y)φ(y) dy,

where

(3) K (x , y) =






2 log
x (1− y)

x − y
, if 0 ≤ y < x ≤ 1

2 log
y(1− x )

y − x
, if 0 ≤ x < y ≤ 1.

This problem was solved by G. Fichera - M.A. Sneider in a paper [7]
dedicated to Mauro Picone on the occasion of his 90th birthday. By a very
accurate computation they have found the inequalities

1.202931525711< M = µ1 < 1.202931525733.

They used the classical Rayleigh-Ritz method for the lower bounds, and
the orthogonal invariants method (a method developed by G. Fichera, see e.g.
[5]) for computing the upper bounds.

The computation of lower bounds for M was considerably simpli�ed by
A. Ghizzetti in [8] by using a basis of modi�ed Legendre polynomials, instead
of powers, in the application of the Rayleigh-Ritz method.

In the above mentioned paper [7] G. Fichera - M.A. Sneider dealing
with a more general framework with respect to the problem introduced by
A.M. Ostrowski, considered also the problem of approximating the �rst few
eigenvalues of the same operator (2) with kernel (3).

They have found these following results for the �rst �ve eigenvalues µk

(K = 1, 2, 3, 4, 5):

1.202931525711 < µ1 < 1.202931525733

0.729012156602 < µ2 < 0.740766

0.52709392618 < µ3 < 0.54902

0.4135343103 < µ4 < 0.44775

0.3407196076 < µ5 < 0.38842

Table I
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In a recent paper [4], by using a re�nement of the orthogonal invariants
technique, B. Firmani and M.L. Leuzzi have obtained a sensible improvement
for lower and upper bounds of the eigenvalue µ2 : 0.73041 ≤ µ2 ≤ 0.73130.
Also, they have provided better estimates for the eigenvalues µ3(≤ 0.54483)
and µ4(≤ 0.44141).

In the sequel we will apply a method proposed in [1] in order to improve
bounds for the eigenvalues of Table I. This can be done by using the inverse
iteration method described in [1], which will be summarized in Section 2,
anyway we want to point out that our method cannot ensure a monotone
convergence of the iterations, while in the method of Fichera a monotone but
cumbersome approach to the approximation of eigenvalues is given.

2. The inverse iteration method.

Let K : L2(0, 1) → L2(0, 1) be a compact operator de�ned by

(4) Kφ =

� 1

2

K (x , y)φ(y) dy,

denote by I the identity operator, and consider the second kind homogeneous
Fredholm integral equation

(5) (I − λK)φ = 0,

where λ ∈C is a complex parameter.
By Fredholm theorems, it is well known that eq. (5) admits at most a de-

numerable set of non vanishing characteristic values which does not accumulate
to �nite points.

Writing (5) in the form

(6) (K − µI)φ = 0 , (µ = λ−1)

i.e.

(7) Kφ = µφ,

the eigenvalues of the operator K can be ordered with respect to their modulus
in a decreasing sequence:

0 < . . . ≤ |µ3| ≤ |µ2| ≤ |µ1|.
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In the particular case of symmetric or hermitian positive K (x , y) = K (y, x ) or
K (x , y) = K (y, x ), (Kφ, φ) > 0 if φ �= 0 ∈ L2(0, 1), in the last formula the
modulus symbol can be avoided, since the eigenvalues are real and positive:

(8) 0 < . . . ≤ µ3 ≤ µ2 ≤ µ1.

We will limit ourselves to this last case, since this is the most important
case in physical applications.

Suppose we know an initial approximation µ̃ of the searched eigenvalue
µj , such that

|µ̃ − µj | <
1

2
min
µk �=µj

k=1,2,...,ν

|µk − µj |

for a suitable choice of the integer ν . In practice in this condition the eigenvalues
will be replaced by their Raileigh-Ritz approximations, for suf�ciently large ν:

(9) |µ̃ − µ
(ν)
j | <

1

2
min

µ
(ν)
k

�=µ
(ν)
j

k=1,2,...,ν

|µ
(ν)
k − µ

(ν)
j | .

From (7) we get:

(10) (K − µ̃I)φ = (µ − µ̃)φ.

Consequently, if µj is an eigenvalue of K with eigenfunction φj , then µj − µ̃

is an eigenvalue of K − µ̃I with eigenfunction φj . By writing (10) in the form

(11) (K − µ̃I)−1φ = (µ − µ̃)−1φ

it follows that (µj − µ̃)−1 is an eigenvalue of (K − µ̃I)−1 with the same
eigenfunction φj .

By using condition (9), for ν suf�ciently large, the eigenvalue (µj − µ̃)−1

becomes the (unique) eigenvalue of maximum modulus for the operator (K −

µ̃I)−1 . This leads to the possibility to apply the Kellogmethod (see [9]) in order
to approximate (µj−µ̃)−1 , and a corresponding eigenfunction. This can be done
in the usual way, starting from an arbitrary function ω0 (which theoretically
should not be orthogonal to the eigenspace associated with (µj − µ̃)−1), and
de�ning the sequence

ωn+1 := (K − µ̃I)−1ωn, (n = 0, 1, 2, . . .).
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Then (see [9]):

(12) lim
n→∞

�ωn+1�2

�ωn�2
= (µj − µ̃)−1,

(13) lim
n→∞

ω2n

�ω2n�2
= ±φj .

After computing with prescribed accuracy (see Section 3) the eigenvalue

ξj := (µj − µ̃)−1,

one �nds

µj =
1

ξj
+ µ̃,

so that, by recalling µ = λ−1 (µ̃ =: λ̃−1), we obtain for the characteristic values
of the kernel the expressions

λj =
λ̃ξj

λ̃ + ξj
.

It is important to note that (as in the �nite dimensional case) we can avoid
the determination of the inverse operator (K − µ̃I)−1, since the equation

ωn+1 = (K − µ̃I)−1ωn

is equivalent to

(14) (K − µ̃I)ωn+1 = ωn.

However, this leads to the necessity to solve numerically, at each step, a
Fredholm integral equation of the �rst kind.

This can be done by using different methods (see [2]�[3]), namely we could
use, e.g., the Fast Galerkin method, or the Nyström method. The latter method
was used, since it turned out to be very simple and ef�cient both with respect to
time and number of iterations. In applying the Nyström method we have used
the modi�ed Gauss-Legendre quadrature formula with 60 nodes.
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3. Error estimate and prescribed accuracy.

The rate of convergence of the method is given by the formula:

�ωn�2

�ω0�2
= O[(µ�(µj − µ̃))n],

where µ� �= (µj − µ̃)−1 denotes a suitable eigenvalue of (K− µ̃I)−1 (see [12]).
As a matter of fact, by the numerical point of view, the use of Nyström

method in the solution of equation (14) is substantially equivalent to the substi-
tution of the original kernel K (x , y) by an approximating kernel K̃ (x , y) given
by a suitably de�ned two-dimensional step function (i.e. instead of the orig-
inal operator, we consider an approximating �nite dimensional operator given
by a suitable matrix). In order to de�ne this �nite dimensional operator, and to
discuss the accuracy of our approximation we introduce some notations.

Let n be the number of nodes in the application of the Nyström method,
and denote by x1, x2, . . . , xn (or y1, Y2, . . . , yn) the knots of themodi�ed Gauss-
Legendre quadrature formula on the x (or y) axis, and by w1, w2, . . . , wn the
corresponding Christoffel constants.

Divide the square Q := [0, 1]x [0, 1] into the sub-squares Qi, j de�ned by

Qi, j :=
�
(x , y)|

i−1�

l=1

wl < xi <

i�

l=1

wl ;

j−1�

k=1

wk < yj <

j�

k=1

wk

�
,

assuming
�i−1

s=1 ws := 0, if i = 1, and recalling that obviously
�n

s=1 ws = 1.
Then de�ne

(15) K̃ (x , y) =

�
K (xi, yj ), if i �= j , and (x , y)∈ Qi, j

Mi , if i = j ,

where Mi are such constants that

�K (x , y)− K̃ (x , y)�
L2(∪i �= j Qi, j )

< eps,

where eps denotes the smallest positive number used by the computer (i.e. the
machine epsilon). This condition can always be satis�ed provided that n is
suf�ciently large.

Then the numerical computation by using the inverse power method yields
to approximate the exact eigenvalues µ̃j , ( j = 1, 2, . . . , n) of the kernel

K̃ (x , y). Anyway, by using the well known Aronszajn Theorem (see e.g. [6]),
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it is possible to �nd an upper bound for the absolute error |µj − µ̃j |, which is
given simply, for every j , by the estimate

|µj − µ̃j | ≤ �K (x , y)− K̃ (x , y)�L2(Q).

Then, in order to �nd an approximation µ̃j which is exact, with respect
to the corresponding µj , up to the p-th digit, it is suf�cient to increase n
(and eventually to use adaptive composite quadrature formulas, increasing the
number of knots close to the singularities) in such a way that further inequality
�K (x , y)− K̃ (x , y)�L2(Q) < .5x10−p holds true.

This can always be done, and permits to control the error of our approxi-
mation, independently by the use of the orthogonal invariants method.

4. Approximation of the �rst �ve eigenvalues of the kernel considered by
A.M. Ostrowski.

The numerical results for the �rst �ve eigenvalue of the kernel (3) consid-
ered by A.M. Ostrowski have been obtained by using a Turbo C++ program
written by S. Delle Monache.

The computer algebra system MATHEMATICA c� has been used in order
to compute the above mentioned a priori estimate of the absolute error.

Starting from the secular equation considered by A. Ghizzetti in Section 3
of paper [8], we have found (for n = 4) the �fth order equation:

µ5 − 2.76µ4 + 2.689629µ3 − 1.1314120370374µ2 +

+ 0.20130529835381µ − 0.01241169410151= 0

whose roots are given by:

µ̃1 = 1.20292106807967

µ̃2 = 0.71630799473620

µ̃3 = 0.50460544336472

µ̃4 = 0.20035867193046

µ̃5 = 0.14247348855561.

By considering n = 19, and the corresponding equation of order 20, we
have found the �rst Rayleigh-Ritz approximation values:

µ̃1 = 1.20293152571347
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µ̃2 = 0.72901215660725

µ̃3 = 0.52709392620653

µ̃4 = 0.41353431036983

µ̃5 = 0.34071960754549,

which improve the Rayleigh-Ritz (lower) approximations of Table I.

These roots have been considered as initial approximations µ̃ for the
inverse iteration method.

Our results are contained in the following Table II.

1.20293152571347 < µ1 < 1.209

0.72901215660725 < µ2 < 0.739

0.52709392620653 < µ3 < 0.530

0.41353431036983 < µ4 < 0.414

0.34071960754549 < µ5 < 0.345

Table II

Since we have used a simple personal computer, we have chosen p = 2,
and consequently we can �nd only the �rst two correct decimal �gures of the
eigenvalues µk (k = 1, 2, 3, 4, 5) of the given kernel. We want to point out that
the very close approximation for the �rst eigenvalue which appears in Table I
was obtained by G. Fichera and M.A. Sneider by using an IBM mainframe, and
setting a 100 digits multiple precision during computations. Anyway by using
the orthogonal invariants method they was able to �nd only the �rst correct
decimal �gure for the subsequent four eigenvalues of the operator K.

Acknowledgement. The authors are grateful to the referee for having brought
to their attention the article in [4].
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