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ON THE EIGENVALUES OF A KERNEL
CONSIDERED BY A.M. OSTROWSKI

SILVIA NOSCHESE - PAOLO EMILIO RICCI

Dedicated to Mario R. Occorsio on his 65th birthday.

By using the inverse iteration method we improve approximation of
the eigenvalues of a kernel connected with a problem considered by A.M.
Ostrowski.

1. Introduction.

A.M. Ostrowski [10] considered the problem of finding the maximum
value M of the functional, V¢ € L*(0, 1):

1 -1 1 1 1 X 2
(1) 1(¢) ::[/ ¢2(t)dt] // [ /¢>(t)dt] dxdy.
0 o Jo LX =Y Jy

As a consequence of a theorem by A. Garsia, cited in the same article of A.M.
Ostrowski, the preceding problem can be reduced to the computation of the
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greatest eigenvalue 1, of the positive compact operator, defined in L?(0, 1):

1
(2) J<¢>=/ K(x, y)p(y)dy,
2
where
1_
210gu, fo0<y<x<l
x_
3) K(x,y)= " _yx)
2log—, if0<x<y<l1
y—x

This problem was solved by G. Fichera - M.A. Sneider in a paper [7]
dedicated to Mauro Picone on the occasion of his 90th birthday. By a very
accurate computation they have found the inequalities

1.202931525711 < M = p; < 1.202931525733.

They used the classical Rayleigh-Ritz method for the lower bounds, and
the orthogonal invariants method (a method developed by G. Fichera, see e.g.
[5]) for computing the upper bounds.

The computation of lower bounds for M was considerably simplified by
A. Ghizzetti in [8] by using a basis of modified Legendre polynomials, instead
of powers, in the application of the Rayleigh-Ritz method.

In the above mentioned paper [7] G. Fichera - M.A. Sneider dealing
with a more general framework with respect to the problem introduced by
A.M. Ostrowski, considered also the problem of approximating the first few
eigenvalues of the same operator (2) with kernel (3).

They have found these following results for the first five eigenvalues
(K=1,2,3,4,5):

1.202931525711 < p; < 1.202931525733
0.729012156602 < p, < 0.740766
0.52709392618 < w3 < 0.54902
0.4135343103 < ug4 < 0.44775
0.3407196076 < us < 0.38842

Table 1
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In a recent paper [4], by using a refinement of the orthogonal invariants
technique, B. Firmani and M.L. Leuzzi have obtained a sensible improvement
for lower and upper bounds of the eigenvalue u, : 0.73041 < u, < 0.73130.
Also, they have provided better estimates for the eigenvalues u3;(< 0.54483)
and p4(< 0.44141).

In the sequel we will apply a method proposed in [1] in order to improve
bounds for the eigenvalues of Table I. This can be done by using the inverse
iteration method described in [1], which will be summarized in Section 2,
anyway we want to point out that our method cannot ensure a monotone
convergence of the iterations, while in the method of Fichera a monotone but
cumbersome approach to the approximation of eigenvalues is given.

2. The inverse iteration method.

Let X : L?(0, 1) — L?(0, 1) be a compact operator defined by

1
4 Kep = f K(x, v)o() dy,
2

denote by I the identity operator, and consider the second kind homogeneous
Fredholm integral equation

(3) (I —-AK)¢p =0,

where A € C is a complex parameter.

By Fredholm theorems, it is well known that eq. (5) admits at most a de-
numerable set of non vanishing characteristic values which does not accumulate
to finite points.

Writing (5) in the form
(6) (K—uDp=0, (u=2r")
1e.
() K¢ = o,

the eigenvalues of the operator X can be ordered with respect to their modulus
in a decreasing sequence:

0<...=< w3l = lpal < el
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In the particular case of symmetric or hermitian positive K (x, y) = K(y, x) or
K(x,y) = K(y,x), (K¢, ¢) > 0if ¢ # 0e L?*(0, 1), in the last formula the
modulus symbol can be avoided, since the eigenvalues are real and positive:

(8) 0<...=u3 = pa < .

We will limit ourselves to this last case, since this is the most important
case in physical applications.

Suppose we know an initial approximation [ of the searched eigenvalue
w;, such that

_ [
— M| < = min — U
=l <5 min- e — ]
k=1,2,...,v

for a suitable choice of the integer v. In practice in this condition the eigenvalues
will be replaced by their Raileigh-Ritz approximations, for sufficiently large v:

1
~ (v) : (v) (v)
— U — min — ;.
©) A=l <5 min | = )
kT

k=1,2,...,v

From (7) we get:

(10) (K —pnDo = (n— ).

Consequently, if p; is an eigenvalue of JK with eigenfunction ¢;, then u; — [
is an eigenvalue of K — 1T with eigenfunction ¢;. By writing (10) in the form

(11) (K—aD'¢=wu-n""¢

it follows that (u; — @)~' is an eigenvalue of (X — l)~' with the same
eigenfunction ¢;.

By using condition (9), for v sufficiently large, the eigenvalue (11; — 1)
becomes the (unique) eigenvalue of maximum modulus for the operator (KX —
f27)~!. This leads to the possibility to apply the Kellog method (see [9]) in order
to approximate (1; —f1)~ ', and a corresponding eigenfunction. This can be done
in the usual way, starting from an arbitrary function wq (which theoretically
should not be orthogonal to the eigenspace associated with (u; — 1)~"), and
defining the sequence

Wns1 = (K — D) w,, n=0,1,2,..)).
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Then (see [9]):

1) i M0l _

n—00 ”wn”Z

(13) lim —2 = 4.

n—>o0 ||wa, |2

After computing with prescribed accuracy (see Section 3) the eigenvalue

& = — )",
one finds |
W =—+ /17
] Ej

so that, by recalling u = A~' (2 =: A~"), we obtain for the characteristic values
of the kernel the expressions

LE;
A== 5
A+§;

It is important to note that (as in the finite dimensional case) we can avoid
the determination of the inverse operator (X — j11)~!, since the equation

Wnp1 = (K =AD" o,
is equivalent to
(14) (K — ADwys1 = wy.

However, this leads to the necessity to solve numerically, at each step, a
Fredholm integral equation of the first kind.

This can be done by using different methods (see [2]-[3]), namely we could
use, e.g., the Fast Galerkin method, or the Nystrdm method. The latter method
was used, since it turned out to be very simple and efficient both with respect to
time and number of iterations. In applying the Nystrom method we have used
the modified Gauss-Legendre quadrature formula with 60 nodes.
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3. Error estimate and prescribed accuracy.

The rate of convergence of the method is given by the formula:

”a)nHZ _ / ~ n
= 0Ol (j — )"l
llwoll2

where u' # (u; — 1)~ denotes a suitable eigenvalue of (KX — 2 I)~" (see [12]).
As a matter of fact, by the numerical point of view, the use of Nystrom
method in the solution of equation (14) is substantially equivalent to the substi-
tution of the original kernel K (x, y) by an approximating kernel K(x, y) given
by a suitably defined two-dimensional step function (i.e. instead of the orig-
inal operator, we consider an approximating finite dimensional operator given
by a suitable matrix). In order to define this finite dimensional operator, and to
discuss the accuracy of our approximation we introduce some notations.

Let n be the number of nodes in the application of the Nystrom method,
and denote by x1, x2, ..., x, (or y1, Y2, ..., y,) the knots of the modified Gauss-
Legendre quadrature formula on the x (or y) axis, and by wy, ws, ..., w, the
corresponding Christoffel constants.

Divide the square Q := [0, 1]x[0, 1] into the sub-squares Q; ; defined by

i—1 i j-1 j
Qi = {(x,y)lZwl <x; < Zwl;Zwk <y < Zwk}
=1 =1 k=1 k=1

assuming le;ll w; := 0, if i = 1, and recalling that obviously Y |_, wy = 1.
Then define

- K(x;, y;), ifi;éj,and(x,y)eQi;
(15) K(x,y)= SO !
M; ifi = j,

where M, are such constants that

1K, y) = K 0., < €PSS
where eps denotes the smallest positive number used by the computer (i.e. the
machine epsilon). This condition can always be satisfied provided that n is
sufficiently large.

Then the numerical computation by using the inverse power method yields
to approximate the exact eigenvalues f[i;,(j = 1,2,...,n) of the kernel

K (x, y). Anyway, by using the well known Aronszajn Theorem (see e.g. [6]),
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it is possible to find an upper bound for the absolute error |u; — ft;|, which is
given simply, for every j, by the estimate

I — il < 1K G, y) = K 0z

Then, in order to find an approximation j; which is exact, with respect
to the corresponding w;, up to the p-th digit, it is sufficient to increase n
(and eventually to use adaptive composite quadrature formulas, increasing the
number of knots close to the singularities) in such a way that further inequality
IK(x,y)— K(x, Y120 < -5x10~7 holds true.

This can always be done, and permits to control the error of our approxi-
mation, independently by the use of the orthogonal invariants method.

4. Approximation of the first five eigenvalues of the kernel considered by
A.M. Ostrowski.

The numerical results for the first five eigenvalue of the kernel (3) consid-
ered by A.M. Ostrowski have been obtained by using a Turbo C*+ program
written by S. Delle Monache.

The computer algebra system MATHEMATICA® has been used in order
to compute the above mentioned a priori estimate of the absolute error.

Starting from the secular equation considered by A. Ghizzetti in Section 3
of paper [8], we have found (for n = 4) the fifth order equation:

W’ —2.76u* 4+ 2.6896291° — 1.1314120370374 1> +

4 0.2013052983538111 — 0.01241169410151 =0

whose roots are given by:
i = 1.20292106807967

i, = 0.71630799473620
i3 = 0.50460544336472
s = 0.20035867193046
s = 0.14247348855561.

By considering n = 19, and the corresponding equation of order 20, we
have found the first Rayleigh-Ritz approximation values:

i1 = 1.20293152571347
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2 = 0.72901215660725
3 = 0.52709392620653
g = 0.41353431036983

s = 0.34071960754549,

which improve the Rayleigh-Ritz (lower) approximations of Table I.

These roots have been considered as initial approximations [ for the
inverse iteration method.

Our results are contained in the following Table II.

1.20293152571347 < p; < 1.209
0.72901215660725 < u, < 0.739
0.52709392620653 < usz < 0.530
0.41353431036983 < u4 < 0.414
0.34071960754549 < us < 0.345

Table II

Since we have used a simple personal computer, we have chosen p = 2,
and consequently we can find only the first two correct decimal figures of the
eigenvalues ui(k = 1, 2, 3, 4, 5) of the given kernel. We want to point out that
the very close approximation for the first eigenvalue which appears in Table I
was obtained by G. Fichera and M.A. Sneider by using an IBM mainframe, and
setting a 100 digits multiple precision during computations. Anyway by using
the orthogonal invariants method they was able to find only the first correct
decimal figure for the subsequent four eigenvalues of the operator K.
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(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

ON THE EIGENVALUES OF A KERNEL. .. 317

REFERENCES

V.M. Arena - B. Germano - P.E. Ricci, On a method for computing the eigenvalues
of second kind Fredholm operators, J. Applied Math. and Informatics, 3 (1998),
pp. 12-23.

C.T.H. Baker, The numerical treatment of integral equations, Clarendon Press
Oxford, 1977.

L.M. Delves - J.L. Mohamed, Computational methods for integral equations,
Cambridge Univ. Press, Cambridge, 1985.

B. Firmani - M.L. Leuzzi, A Remark on the Fichera-Temple Formula Conferenze
in onore di Calogero Vinti, Universita degli Studi di Perugia - Dipartimento di
Matematica Centro Studi Interfacolta Lamberto Cesari, 1996.

G. Fichera, Abstract and Numerical Aspects of Eigenvalue Theory, Lecture Notes
The University of Alberta Dept. of Math. Edmonton, 1973.

G. Fichera, Metodi e risultati concernenti I’analisi numerica e quantitativa, Atti
Acc. Naz. Licei Memorie, Vol. XII Sez. I (1974).

G. Fichera - M.A. Sneider, Un problema di autovalori proposto da Alexander M.
Ostrowski, Rend. Mat., s. VII 8 (1975), pp. 201-224.

A. Ghizzetti, Sul calcolo del massimo di un certo funzionale considerato da
Ostrowski, Pubbl. Ist. Mat. Appl. Fac. Ing. Univ. Stud. Roma, Quad. 22 (1984),
pp- 3-8.

S.G. Mikhlin, Integral equations and their applications, 2nd Ed., Pergamon Press
Oxford, 1964.

AM. Ostrowski, Integral Inequalities, C.1.M.E. 1970 “Functional equations and
inequalities*, Cremonese Roma, 1971.

J. Stoer - R. Bulirsch, Introduzione all’analisi numerica, Zanichelli, Bologna,
1975.

F. Stummel - K. Heiner, Infroduction to numerical analysis, Scottish Academic
Press, Edinburgh, 1980.

Dipartimento di Matematica “Guido Castenuovo”,
Universita degli Studi di Roma “La Sapienza”,
p.le A. Moro, 2

00185 Roma (Italy)

e-mail: noschese@mat.uniromal .it
paoloemilio.ricci@uniromal .it



