POISSON KERNEL FOR A PARABOLIC PROBLEM

NUNZIA A. D'AURIA - ORNELLA FIODO

In this paper we obtain a representation for the solution of a parabolic mixed problem.

Introduction.

In this work we obtain a representation for the Poisson kernel $\Phi\left(\tau, z, z^{\prime} ; \rho\right)$ of the following mixed problem, with real parameter ρ :

$$
\left\{\begin{array}{l}
\partial_{\tau} u=\left(\partial_{z}^{2}-z^{2}\right) u \quad(\tau, z) \in R_{\tau}^{+} \times R_{z}^{+} \tag{I}\\
\left(\partial_{z}-2 \rho\right) u(\tau, 0)=0 \quad \tau \in R_{\tau}^{+} \\
u(0, z)=g(z) \quad z \in R_{z}^{+}
\end{array}\right.
$$

with $g(z) \in L^{2}\left(R_{z}^{+}\right)$.
We construct $\Phi\left(\tau, z, z^{\prime} ; \rho\right)$ using the parabolic cilinder functions $D_{v}(z), z \in R$. The problem (I) arises when we apply the process used in [2] to an oblique derivative problem for the operator $L=\partial_{t}-\partial_{y}^{2}-y^{2} \partial_{x}^{2}$ where $(t, y, x) \in$ $] 0,+\infty[\times] 0,+\infty[\times R$.
The main result can be stated as follows:
Theorem 1. For every $\rho \in R$ there is a sequence of real numbers $\left\{v_{k}(\rho)\right\}_{k \in N_{0}}$, positively diverging such that $\left\{D_{v_{k}(\rho)}(z)\right\}_{k \in N_{0}}$ is orthogonal system in $L^{2}\left(R_{z}^{+}\right)$.

[^0]Moreover, put
(II)

$$
\varphi_{k}(z ; \rho)=\left[D_{\nu}(\sqrt{2 z}) /\left\|D_{\nu}(\sqrt{2 z})\right\|_{L^{2}\left(R_{z}^{+}\right)}\right]_{\nu=\nu_{k}(\rho)} z \geq 0, k \in N_{0}
$$

$$
\begin{equation*}
\Phi\left(\tau, z, z^{\prime} ; \rho\right)=\sum_{k=0}^{+\infty} e^{-\left(2 v_{k}(\rho)+1\right) \tau} \varphi_{k}(z ; \rho) \varphi_{k}\left(z^{\prime} ; \rho\right) \tag{III}
\end{equation*}
$$

$$
\tau>0, z, z^{\prime} \in[0,+\infty[
$$

it results $\Phi\left(\tau, z, z^{\prime} ; \rho\right) \in C^{\infty}\left(R_{\tau}^{+} \times \bar{R}_{z}^{+} \times \bar{R}_{z^{\prime}}^{+}\right) \frown C^{0}\left(\bar{R}_{\tau}^{+} \times \bar{R}_{z}^{+}, D^{\prime}\left(R_{z^{\prime}}^{+}\right)\right)$, and
(IV)

$$
\begin{cases}\left(\partial_{\tau}-\partial_{z}^{2}+z^{2}\right) \Phi\left(\tau, z, z^{\prime} ; \rho\right)=0 & \left(\tau, z, z^{\prime}\right) \in R_{\tau}^{+} \times R_{z}^{+} \times R_{z^{\prime}}^{+} \\ \left(\partial_{z}-2 \rho\right) \Phi\left(\tau, 0, z^{\prime} ; \rho\right)=0 & \left(\tau, z^{\prime}\right) \in R_{\tau}^{+} \times R_{z^{\prime}}^{+} \\ \lim _{\tau \rightarrow 0} \Phi\left(\tau, z, z^{\prime} ; \rho\right)=\delta\left(z^{\prime}-z\right) & (\tau, z) \in R_{\tau}^{+} \times R_{z}^{+}\end{cases}
$$

The elements of the sequence $\left\{v_{k}(\rho)\right\}_{k \in N_{0}}$ are zeros for the function $\rho+\frac{\Gamma((1-v) / 2)}{\Gamma(-v / 2)}$, where Γ is the Eulero function; it follows that $v_{k}(0), k \in N_{0}$, are even natural numbers and $\varphi_{k}(z ; 0), k \in N_{0}$, are the Hermite functions $\varphi_{2 k}(z)$. Then, the result in [2] is obtained for $\rho \rightarrow \infty$.

This paper is organized as follows: in section 1 we study the sequence $\left\{v_{k}(\rho)\right\}_{k \in N_{0}}$; in section 2 we establish estimates for the functions $D_{\nu}(z)$, using well-known integral and asymptotic representations (see. [6], [3]); in section 3 we construct and study the resolvent set of the operator $A=\partial_{z}^{2}-z^{2}$, with domain $D(A, \rho) \subseteq H^{2}\left(R_{z}^{+}\right)$formed by the functions $\omega(z)$ such that $\omega^{\prime}(0)=2 \rho \omega(0)$. In section 4 we prove that A is the generator of a holomorphic semigroup, so we obtain, among other things, the completeness of the system $\left\{\varphi_{k}(z ; \rho)\right\}_{k \in N_{0}}$ in $L^{2}\left(R_{z}^{+}\right)$. Finally in Section 5 we introduce the Poisson kernel $\Phi\left(\tau, z, z^{\prime} ; \rho\right)$ and we complete the proof of Theorem 1.

1. Auxiliary functions.

If $\Gamma(\nu), v \in C$, is the Eulero function, we consider the following analytic function

$$
\begin{equation*}
\alpha(v)=\frac{\Gamma((1-v) / 2)}{\Gamma(-v / 2)} \quad v \in C \tag{1.1}
\end{equation*}
$$

For this function the values $v=2 k, k \in N_{0}$, are zeros of order 1 , while the values $v=2 k+1, k \in N_{0}$, are poles of order 1 . Moreover, if $v \in R$ we have:

$$
\begin{equation*}
v<0 \Rightarrow \alpha(v)>0 \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
v \in] 2 k, 2 k+1\left[, k \in N_{0} \Rightarrow \alpha(v)<0\right. \tag{1.3}
\end{equation*}
$$

Proposition 1.1. If $v \in R$ and $v \neq 2 k+1, k \in N_{0}$, then results:

$$
\begin{equation*}
\alpha^{\prime}(v)<0 . \tag{1.5}
\end{equation*}
$$

Proof. Since the values $v=2 k, k \in N_{0}$, are simple zeros for $\alpha(v)$, we have $\alpha^{\prime}(2 k) \neq 0, \forall k \in N_{0}$. Then it is sufficient to prove (1.5) for $v \notin N_{0}$. That being stated we have

$$
\begin{gather*}
\alpha^{\prime}(v)=-\frac{1}{2} \frac{\Gamma((1-v) / 2)}{\Gamma(-v / 2)}\left[\frac{\Gamma^{\prime}((1-v) / 2)}{\Gamma((1-v) / 2)}-\frac{\Gamma^{\prime}(-v / 2)}{\Gamma(-v / 2)}\right]= \tag{1.6}\\
=-\frac{1}{2} \alpha(v) \beta(v)
\end{gather*}
$$

So we must prove that $\forall v \in R-N_{0}, \beta(v)$ is not zero and it has the sign of $\alpha(v)$. From the well known representation of the logarithmic derivatives of $\Gamma(v)$ (see [6]) we obtain:

$$
\begin{equation*}
\beta(v)=2 \sum_{n=0}^{+\infty} \frac{1}{(v-2 n)(v-(2 n+1))} \tag{1.7}
\end{equation*}
$$

Now we observe that if $v \in] 2 k-1,2 k[, k \in N$, or $v<0$, the terms of series in (1.7) are all positive; it follows that $\beta(\nu)>0$ and so for (1.2), (1.4) and (1.6) we have (1.5) for these values of v.
If $v \in] 2 k, 2 k+1\left[, k \in N_{0}\right.$, in (1.7) the only negative term has index k, moreover we have

$$
\frac{1}{(v-2 k)(v-(2 k+1))} \leq-4
$$

$$
\begin{array}{ll}
\frac{1}{(v-2 n)(v-(2 n+1))}<\frac{1}{4\left(n-k-\frac{1}{2}\right)^{2}} & k<n, n \in N \\
\frac{1}{(v-2 n)(v-(2 n+1))}<\frac{1}{4\left(k-n-\frac{1}{2}\right)^{2}} & n<k, n \in N_{0}
\end{array}
$$

and then

$$
\begin{equation*}
\beta(\nu) \leq 2\left[-4+2 \sum_{h=1}^{+\infty} \frac{1}{h^{2}}\right]=2\left[-4+\frac{\pi^{2}}{6}\right]<0 ; \tag{1.8}
\end{equation*}
$$

from (1.3) the thesis follows.
Let $\rho \in R$, we consider the equation

$$
\begin{equation*}
\alpha(\nu)+\rho=0 \quad v \in R . \tag{1.9}
\end{equation*}
$$

From (1.2), (1.3), (1.4) and from Proposition 1.1, as well as from Dini Theorem, we have the following

Proposition 1.2. The solutions of the equation (1.9) form a sequence $\left\{v_{k}(\rho)\right\}_{k \in N_{0}}$ positively diverging such that $v_{k}(\rho) \in C^{\infty}(R) \quad \forall k \in N_{0}$, and $\left\{v_{k}(0)\right\}_{k \in N_{0}}=\{2 k\}_{k \in N_{0}} ;$ moreover

$$
\begin{gathered}
\left.\rho>0 \Rightarrow v_{k}(\rho) \in\right] 2 k, 2 k+1\left[\quad \forall k \in N_{0},\right. \\
\left.\rho<0 \Rightarrow v_{0}(\rho)<0, \quad v_{k}(\rho) \in\right] 2 k-1,2 k[\quad \forall k \in N \\
\lim _{\rho \rightarrow+\infty} v_{k}(\rho)=2 k+1 \quad \forall k \in N_{0}, \quad \lim _{\rho \rightarrow-\infty} v_{k}(\rho)=2 k-1 \quad \forall k \in N, \\
\lim _{\rho \rightarrow-\infty} v_{0}(\rho)=-\infty, \quad-v_{0}(\rho)<6 \rho^{2} \text { if } \rho<0
\end{gathered}
$$

We observe that we obtain the estimate of $-v_{0}(\rho)$ for $\rho<0$ by (1.9) and (1.1) using the asyimptotic expansion (see [4]):

$$
\Gamma(x)=e^{-x} x^{x-1 / 2}(2 \pi)^{1 / 2} e^{\theta / 12 x} \quad 0<\theta<1 x \in R^{+} .
$$

Afterwards it will be usefull
Proposition 1.3. For every $\rho \in R \exists \delta>0$ depending of ρ such that, if Rev $=2 n+1, n \in N_{0}$ and $|\operatorname{Im} \nu|<\delta$ results:

$$
\begin{equation*}
\left|\frac{\Gamma(-v)}{\alpha(\nu)+\rho}\right| \leq \frac{c}{(2 n+1)!} \tag{1.10}
\end{equation*}
$$

where c is an absolute constant.

Proof. Put $v=2 n+1+i y$, using recurrence formulae of Γ, we have

$$
\begin{equation*}
|\Gamma(-\nu)| \leq \frac{|\Gamma(1-i y)|}{(2 n+1)!|y|} \leq \frac{1}{(2 n+1)!|y|}, \tag{1.11}
\end{equation*}
$$

and for $|y| \leq 1$

$$
\begin{equation*}
|\alpha(\nu)| \geq\left|\frac{\Gamma(1-i y / 2)}{\Gamma((1-i y) / 2)}\right|\left|\frac{1+i y}{y}\right|>\frac{|\Gamma(1-i y / 2)|}{\sqrt{\pi}|y|} \geq \frac{2}{c|y|}, \tag{1.12}
\end{equation*}
$$

where $\frac{2}{c}=\min _{|y| \leq 1} \frac{|\Gamma(1-i y / 2)|}{\sqrt{\pi}}$.
Putting $\delta=\min \{1,1 / c|\rho|\}$ for $\rho \neq 0$ and $\delta=1$ for $\rho=0$, the thesis follows from (1.11) and (1.12).

2. Estimates for the functions $\boldsymbol{D}_{\boldsymbol{v}}(z)$.

We remember that the parabolic cilinder function $D_{v}(z), v \in C$, is solution of (see [6], [4], [3]):

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}} D_{v}(z)-\frac{1}{4} z^{2} D_{v}(z)=-\left(v+\frac{1}{2}\right) D_{v}(z) \quad z \in C \tag{2.1}
\end{equation*}
$$

moreover

$$
\begin{equation*}
D_{v}(0)=\frac{\sqrt{\pi} 2^{v / 2}}{\Gamma((1-v) / 2)} \quad D_{v}^{\prime}(0)=-\frac{\sqrt{2 \pi} 2^{v / 2}}{\Gamma(-v / 2)} \tag{2.2}
\end{equation*}
$$

The functions $D_{v}(z)$ are susceptible of many formulas of representation, we will use the following:

$$
\begin{gather*}
D_{v+1}(z)-z D_{v}(z)+v D_{v-1}(z)=0 \quad \forall v, z \in C \tag{2.3}\\
D_{v}(z)=\frac{2^{-1-v / 2}}{\Gamma(-v)} e^{-z^{2} / 4} \sum_{k=0}^{+\infty} \frac{(-\sqrt{2} z)^{k}}{k!} \Gamma((k-v) / 2) \quad \forall v, z \in C \tag{2.4}
\end{gather*}
$$

By (1.7) (see [3]) we have:

$$
\begin{equation*}
\int_{0}^{+\infty}\left|D_{v}(z)\right|^{2} d z=\sqrt{\pi} 2^{-3 / 2} \beta(v) / \Gamma(-v) \quad v \in C, v \notin N_{0} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{+\infty}\left|D_{n}(z)\right|^{2} d z=\sqrt{2 \pi} n!\quad n \in N_{0} \tag{2.6}
\end{equation*}
$$

We recall that for $n \in N_{0}$ it results

$$
\begin{equation*}
D_{n}(z)=e^{-z^{2} / 4} H_{n}(z) \tag{2.7}
\end{equation*}
$$

where $H_{n}(z)$ is the Hermite polynomial of degree n.
Now we prove the following
Proposition 2.1. If $v \in R-N_{0}$, it results

$$
\begin{equation*}
\sup _{z \in \bar{R}_{z}^{+}}\left|D_{v}(z)\right|=O\left(|v|^{1 / 4}\right)\left\|D_{v}\right\| \tag{2.8}
\end{equation*}
$$

where $\|\cdot\|$ denotes the usual norm in $L^{2}\left(R_{z}^{+}\right)$.
Proof. Multiplying (2.1) by $\bar{D}_{\nu}(z)$ and integrating on R_{z}^{+}, we obtain

$$
D_{v}(0) D_{v}(0)+\left\|D_{v}(z)\right\|^{2}+\frac{1}{4}\left\|z D_{v}(z)\right\|^{2}=\left(v+\frac{1}{2}\right)\left\|D_{v}(z)\right\|^{2}
$$

then from (2.2) and by duplication formula of Legendre (see [4]) we get

$$
\left\|D_{v}^{\prime}(z)\right\|^{2}+\frac{1}{4}\left\|z D_{v}(z)\right\|^{2}=\left(v+\frac{1}{2}\right)\left\|D_{v}(z)\right\|^{2}+\sqrt{\frac{\pi}{2}}(\Gamma(-v))^{-1}
$$

From (2.5), for $v \in R-N_{0}$, we deduce

$$
\left\|D_{\nu}^{\prime}\right\|^{2} \leq\left(|\nu|+2^{-1}+2|\beta(\nu)|^{-1}\right)\left\|D_{\nu}\right\|^{2}
$$

from which

$$
\begin{equation*}
\left\|D_{v}^{\prime}\right\|^{2}=O(|v|)\left\|D_{v}\right\|^{2} \tag{2.9}
\end{equation*}
$$

because the function $|\beta(v)|^{-1}$ is bounded (see Prop. 1.1).
Being $D_{\nu}(z) \in S\left(\bar{R}_{z}^{+}\right)$, it results

$$
\left|D_{v}(z)\right|^{2} \leq 2\left\|D_{v}\right\|\left\|D_{v}^{\prime}\right\| \quad \forall z \in \bar{R}_{z}^{+}
$$

so, by (2.9), we have the thesis.
Remark. If $n \in N_{0}$, from (2.7) and from well known properties of the Hermite function, follows

$$
\begin{equation*}
\sup _{z \in \bar{R}_{z}^{+}}\left|D_{n}(z)\right|=O(1) \sqrt{n!}=O(1)\left\|D_{n}\right\| \tag{2.10}
\end{equation*}
$$

Now we need some estimates for functions $D_{v}(z)$ when $v \in C$ and $\operatorname{Re} v=$ $2 n-1, n \in N$.

Proposition 2.2. - There is a real and continuous function $C(z)$ such that if $\operatorname{Re} v=n \in N$ and $|\operatorname{Im} \nu| \leq 1$:

$$
\begin{equation*}
\left|D_{v}(z)\right| \leq C(z)(1+|z|)^{n} 2^{n} \Gamma(n / 2) \quad \forall z \in C \tag{2.11}
\end{equation*}
$$

Proof. First of all we prove (2.11) when $n=1$. Using (2.4) we have $\forall z \in C$:

$$
\begin{equation*}
\left|D_{-1+i y}(z)\right| \leq \frac{e^{-R e z^{2} / 4}}{|\Gamma(1-i y)|} \sum_{k=0}^{+\infty} \frac{|\sqrt{2} z|^{k}}{k!} \Gamma((k+1) / 2) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\left|D_{i y}(z)\right| \leq \frac{e^{-R e z^{2} / 4}}{|\Gamma(-i y)|}\left(|\Gamma(-i y / 2)|+\sum_{k=1}^{+\infty} \frac{|\sqrt{2} z|^{k}}{k!} \Gamma(k / 2)\right) \tag{2.13}
\end{equation*}
$$

By Legendre duplication formula it results

$$
\begin{align*}
\left|D_{i y}(z)\right| \leq e^{-R e z^{2} / 4} & \left(\frac{2 \sqrt{\pi}}{|\Gamma((1-i y) / 2)|}+\right. \tag{2.14}\\
& \left.+\frac{1}{|\Gamma(-i y)|} \sum_{k=1}^{+\infty} \frac{|\sqrt{2} z|^{k}}{k!} \Gamma(k / 2)\right) .
\end{align*}
$$

Series in (2.12), (2.13) and (2.14) have radius of convergence infinite; so put

$$
M=\max _{|y| \leq 1}\left\{\frac{1}{|\Gamma(1-i y)|}, \frac{2 \sqrt{\pi}}{\Gamma((1-i y) / 2) \mid}, \frac{1}{|\Gamma(-i y)|}\right\}
$$

and

$$
C_{0}(z)=M e^{-\operatorname{Re} z^{2} / 4}\left(1+\Gamma(1 / 2)+\sum_{k=1}^{+\infty} \frac{|\sqrt{2} z|^{k}}{k!}(\Gamma(k / 2)+\Gamma((k+1) / 2))\right)
$$

we have

$$
\begin{equation*}
\left|D_{-1+i y}(z)\right| \leq C_{0}(z), \quad\left|D_{i y}(z)\right| \leq C_{0}(z) \quad \forall y \in[-1,1] \tag{2.15}
\end{equation*}
$$

Utilizing (2.3) with $\nu=1+i y$, we find

$$
\left|D_{1+i y}(z)\right| \leq|z|\left|D_{i y}(z)\right|+|i y|\left|D_{-1+i y}(z)\right|
$$

and so, by (2.15), we have the assert in the case $n=1$, with $C(z)=C_{0}(z)$.
If $n=2$, reasoning as above with $v=2+i y,|y| \leq 1$, and using (2.11) for $n=1$, we obtain

$$
\begin{equation*}
\left|D_{2+i y}(z)\right| \leq 2 C_{0}(z)(1+|z|)^{2} \Gamma(1 / 2) . \tag{2.16}
\end{equation*}
$$

From (2.16) it is clear that the proposition is true if $n=2$, with $C(z)=2 C_{0}(z)$. By (2.16) and (2.11) with $n=1$, by similar arguments one can prove that the proposition is true even if $n=3$, with $C(z)=2 C_{0}(z)$.
Now we suppose that (2.11) holds untill $n=R e v>3$. Then from (2.3) it follows

$$
\begin{align*}
\left|D_{v+1}(z)\right| & \leq C(z)\left\{|z|(1+|z|)^{n} 2^{n} \Gamma(n / 2)+\right. \tag{2.17}\\
& \left.+|n+i y|(1+|z|)^{n-1} 2^{n-1} \Gamma((n-1) / 2)\right\} \quad \forall z \in C .
\end{align*}
$$

Since

$$
\Gamma((n-1) / 2)=2 \Gamma((n+1) / 2) /(n-1), \quad \Gamma(n / 2)<\Gamma((n+1) / 2) \quad n \geq 3
$$

we have for $|y| \leq 1$

$$
\begin{aligned}
\left|D_{v+1}(z)\right| \leq & C(z)\left\{|z|(1+|z|)^{n} 2^{n} \Gamma((n+1) / 2)+\right. \\
& \left.+(1+|z|)^{n-1} 2^{n} \Gamma((n+1) / 2)(n+1) /(n-1)\right\}
\end{aligned}
$$

so the thesis follows.
We observe that if $\operatorname{Rev}=2 n+1, n \in N$ and $|\operatorname{Im} \nu| \leq 1$, then (2.11) entails

$$
\begin{equation*}
\left|D_{v}(z)\right| \leq C(z)(1+|z|)^{2 n} 2^{2 n} n!\quad \forall z \in C . \tag{2.18}
\end{equation*}
$$

Now we conclude with the following

Proposition 2.3. - If $\operatorname{Re} v=2 n+1, n \in N$ and $|\operatorname{Im} v| \leq 1$, there is a positive constant c independent of n such that

$$
\begin{equation*}
\left|\Gamma(-v) e^{z^{2} / 4}\left[D_{v}(z)+D_{v}(-z)\right]\right| \leq c \frac{2^{-n}}{n!}\left(\left(1+|z|^{2}\right)^{n} e^{|z|^{2}}\right) \quad \forall z \in C \tag{2.19}
\end{equation*}
$$

Proof. Put $v=2 n+1+i y$, by (2.4) we deduce

$$
\begin{align*}
\mid \Gamma(-v) e^{z^{2} / 4} & {\left[D_{v}(z)+D_{v}(-z)\right] \mid \leq } \tag{2.20}\\
& \leq 2^{-n} \sum_{h=0}^{+\infty} \frac{|\sqrt{2} z|^{2 h}}{(2 h)!}|\Gamma(h-n-(1+i y) / 2)|
\end{align*}
$$

Now, for $h \leq n$, by recurrence formulae of Γ, being $(2 h)!\geq 2^{h}(h!)^{2}$ we have

$$
\left|\frac{\Gamma(-(n-h)-(1+i y) / 2)}{(2 h)!}\right| \leq \frac{c}{(n-h)!(2 h)!} \leq \frac{c}{n!} 2^{-h}\binom{n}{h}
$$

where $c=\max _{|y| \leq 1}|2 \Gamma((1-i y) / 2) /(1+i y)| ;$ whereas, for $h \geq n+1$,

$$
\left|\frac{\Gamma((h-n)-(1+i y) / 2)}{(2 h)!}\right| \leq \sqrt{\pi} \frac{\Gamma(h-n+1)}{(2 h)!}=\sqrt{\pi} \frac{(h-n)!}{(2 h)!} \leq \frac{\sqrt{\pi}}{2^{h} n!h!}
$$

Because of these inequalities we can increase the sum of series in (2.20) as follows:

$$
\frac{c}{n!}\left[\sum_{h=0}^{n}\binom{n}{h}|z|^{2 h}+\sum_{h=n+1}^{+\infty} \frac{|z|^{2 h}}{h!}\right] \leq \frac{c}{n!}\left[\left(1+|z|^{2}\right)^{n}+e^{|z|^{2}}\right]
$$

This completes the proof.

3. A differential problem with parameter.

Let $f \in S\left(\bar{R}_{z}^{+}\right), \lambda \in C, \rho \in R$, and we consider the following problem:

$$
\left\{\begin{array}{l}
\lambda \omega-\omega^{\prime \prime}+z^{2} \omega=f \tag{3.1}\\
\omega^{\prime}(0)=2 \rho \omega(0)
\end{array}\right.
$$

Our goal is to construct a solution belonging to $\delta\left(\bar{R}_{z}^{+}\right)$.
Putting $\omega(z)=w(\sqrt{2} z)$ in (3.1), by sostitutions $z \rightarrow \sqrt{2} z$ and $v+1 / 2=$ $-\lambda / 2$, we have

$$
\left\{\begin{array}{l}
w^{\prime \prime}+\left(v+\frac{1}{2}-\frac{z^{2}}{4}\right) w=-\frac{1}{2} f(z / \sqrt{2}) \tag{3.2}\\
w^{\prime}(0)=\sqrt{2} \rho w(0) \quad \rho \in R
\end{array}\right.
$$

The homogeneous equation associated to (3.2) coincides with (2.1), so, for $v \notin N_{0}$, it admits two independent solutions $D_{v}(z)$ and $D_{v}(-z)$, and their Wronskiano is

$$
W(\nu)=-2 D_{v}(0) D_{v}^{\prime}(0) ;
$$

consequently, for (2.2) and Legendre duplication formula, we have:

$$
\begin{equation*}
W(\nu)=\frac{\sqrt{2 \pi}}{\Gamma(-\nu)} . \tag{3.3}
\end{equation*}
$$

That being stated, the general solution of equation in (3.2), always for $v \notin N_{0}$, is

$$
\begin{align*}
w(z) & =c_{1}(\nu) D_{v}(z)+c_{2}(\nu) D_{v}(-z)+ \tag{3.4}\\
- & \frac{1}{2 W(v)} \int_{0}^{z}\left[D_{\nu}(s) D_{\nu}(-z)-D_{v}(-s) D_{v}(z)\right] f(s / \sqrt{2}) d s
\end{align*}
$$

Computing $w(0)$ and $w^{\prime}(0)$, and imposing that the function (3.4) is solution of (3.2), we obtain

$$
\begin{equation*}
c_{1}(\nu)\left(\frac{D_{v}^{\prime}(0)}{D_{v}(0)}-\sqrt{2} \rho\right)=c_{2}(\nu)\left(\frac{D_{v}^{\prime}(0)}{D_{\nu}(0)}+\sqrt{2} \rho\right) \tag{3.5}
\end{equation*}
$$

From (2.2), by (1.1), we have

$$
\frac{D_{v}^{\prime}(0)}{D_{v}(0)}=-\sqrt{2} \alpha(\nu)
$$

and so

$$
\begin{equation*}
c_{1}(\nu)=\frac{\alpha(\nu)-\rho}{\alpha(\nu)+\rho} c_{2}(\nu) . \tag{3.6}
\end{equation*}
$$

On the other hand, imposing that function w is rapidly decreasing in \bar{R}_{z}^{+}, we have

$$
\begin{equation*}
c_{2}(v)=\frac{1}{2 W(v)} \int_{0}^{+\infty} D_{v}(s) f(s / \sqrt{2}) d s \tag{3.7}
\end{equation*}
$$

so, if $\alpha(\nu)+\rho \neq 0$ and $w(z) \in \delta\left(\bar{R}_{z}^{+}\right)$is solution of (3.2), it results

$$
\begin{align*}
& w(z)=w_{v}(z ; \rho, f)=\frac{\Gamma(-v)}{2 \sqrt{2 \pi}}\left\{\int_{0}^{+\infty} D_{v}(s)\left[\frac{\alpha(\nu)-\rho}{\alpha(\nu)+\rho} D_{v}(z)+D_{v}(-z)\right]\right. \tag{3.8}\\
& \left.f(s / \sqrt{2}) d s-\int_{0}^{z}\left[D_{v}(s) D_{v}(-z)-D_{v}(-s) D_{v}(z)\right] f(s / \sqrt{2}) d s\right\}
\end{align*}
$$

The function $w_{v}(z ; \rho, f)$, defined in (3.8), is an analytic function of v for every $z \in \bar{R}_{z}^{+}$and $\rho \in R$. Its singular points are the only zeros of $\alpha(\nu)+\rho$ (see section 1). The integer and not negative values of v seem zeros when $\rho \neq 0$. Since these zeros are eigenvalues for the adjoint problem (3.2), such zeros are all real and so they form the sequence $\left\{\nu_{k}(\rho)\right\}_{k \in N_{0}}$ (see section 1).
The following proposition holds
Proposition 3.1. Let $X \subset R_{z}^{+}$a compact set and $f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right)$. Then there is a positive number μ, depending of ρ, X and supp f, and there is a positive number δ, such that if $\operatorname{Re} \nu=2 n+1$ and $|\operatorname{Im} \nu|<\delta$, results

$$
\begin{equation*}
\left|w_{v}(z ; \rho, f)\right| \leq \mu^{n} \max _{\bar{R}_{z}^{+}}|f| \quad \forall z \in X . \tag{3.9}
\end{equation*}
$$

Proof. We rewrite (3.8) as follows

$$
\begin{aligned}
& w_{v}(z ; \rho, f)=\frac{1}{2 \sqrt{2 \pi}}\left\{-D_{v}(-z) \int_{0}^{z} \Gamma(-v)\left[D_{v}(s)+D_{v}(-s)\right] f(s / \sqrt{2}) d s+\right. \\
& +\Gamma(-v)\left[D_{v}(z)+D_{v}(-z)\right] \int_{0}^{z} D_{v}(-s) f(s / \sqrt{2}) d s-\frac{2 \rho}{\alpha(v)+\rho} \Gamma(-v) D_{v}(z)
\end{aligned}
$$

$$
\begin{gathered}
\left.\int_{0}^{+\infty} D_{v}(s) f(s / \sqrt{2}) d s+\Gamma(-v)\left[D_{v}(z)+D_{v}(-z)\right] \int_{0}^{+\infty} D_{v}(s) f(s / \sqrt{2}) d s\right\}= \\
=\frac{1}{2 \sqrt{2 \pi}}\left\{A_{1}(z)+A_{2}(z)+A_{3}(z)+A_{4}(z)\right\}
\end{gathered}
$$

Put $X(f)=\operatorname{supp} f$ and $\alpha=2\left(1+\max _{X \cup X(f)}|z|\right)$, from Propositions 2.2 and 2.3 we draw that there is $\delta>0$ such that if $\operatorname{Re} \nu=2 n+1$ and $|\operatorname{Im} \nu|<\delta$

$$
\left|A_{i}(z)\right| \leq c \alpha^{4 n} \max |f| \quad \forall i \in\{1,2,4\}
$$

uniformly with respect to $\operatorname{Im} v \in]-\delta, \delta[$ and to $z \in X$, with c constant independent of n.
Likewise, from Propositions 1.3 and 2.2 we draw

$$
\left|A_{3}(z)\right| \leq c|\rho| \alpha^{4 n} \max |f|,
$$

hence the thesis.
Now we return to problem (3.1). From arguments above follows that eigenvalues of this problem are:

$$
\begin{equation*}
\lambda_{k}(\rho)=-\left(2 v_{k}(\rho)+1\right) \quad k \in N_{0} \tag{3.10}
\end{equation*}
$$

and respective normalized eigensolutions belonging to $\delta\left(\bar{R}_{z}^{+}\right)$are

$$
\begin{equation*}
\varphi_{k}(z ; \rho)=\left[D_{\nu}(\sqrt{2} z) /\left\|D_{\nu}(\sqrt{2} z)\right\|_{L^{2}\left(R_{z}^{+}\right)}\right]_{\nu=v_{k}(\rho)} \quad k \in N_{0} . \tag{3.11}
\end{equation*}
$$

If λ is not an eigenvalue for the problem (3.1), the function

$$
\begin{equation*}
\omega_{\lambda}(z ; \rho, f)=w_{-\frac{\lambda+1}{2}}(\sqrt{2} z ; \rho, f) \tag{3.12}
\end{equation*}
$$

is solution of (3.1); moreover if this problem admits a solution in $\delta\left(\bar{R}_{z}^{+}\right)$, it is $\omega_{\lambda}(z ; \rho, f)$.
From (3.8) and (3.12) one deduces that the elements of sequence $\left\{\lambda_{k}(\rho)\right\}_{k \in N_{0}}$ are the only singular points of $\omega_{\lambda}(z ; \rho, f)$ and they are poles of first order.

Called $R_{k}(z ; \rho)$ the residue of $\omega_{\lambda}(z ; \rho, f)$ in $\lambda_{k}(\rho)$, by simple calculations one proves

$$
\begin{equation*}
R_{k}(z ; \rho)=\varphi_{k}(z ; \rho) \int_{0}^{+\infty} \varphi_{k}(s ; \rho) f(s) d s \quad k \in N_{0} \tag{3.13}
\end{equation*}
$$

It is easy to prove that from (3.8) and (3.12) follows that if $f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right)$the function $\omega_{\lambda}(z ; \rho, f)$ belongs to $S\left(\bar{R}_{z}^{+}\right)$for every $\lambda \in C$ such that λ is not an eigenvalue for (3.1).

Now fixed $\rho \in R$ and put

$$
m_{\rho}= \begin{cases}0 & \text { if } \rho \geq 0 \tag{3.14}\\ 16 \rho^{2} & \text { if } \rho<0\end{cases}
$$

we prove the following
Theorem 3.2. - Let $f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right)$. If

$$
\begin{equation*}
R e \lambda>m_{\rho} \tag{3.15}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|\omega_{\lambda}(z ; \rho, f)\right\| \leq 2 \sqrt{2} \frac{\|f\|}{|\lambda|} \tag{3.16}
\end{equation*}
$$

Proof. If $\lambda \in C$ verifies (3.15), the function $\omega_{\lambda}(z ; \rho, f)$ is well defined because by Proposition 1.2 we have $\lambda_{0}(\rho)<0$ if $\rho \geq 0$ and $\lambda_{0}(\rho)<12 \rho^{2}$ if $\rho<0$. That being said, because $\omega_{\lambda}(z ; \rho, f) \in S\left(\bar{R}_{z}^{+}\right)$is solution of the problem (3.1), we obtain

$$
\begin{equation*}
\lambda\left\|\omega_{\lambda}\right\|^{2}+2 \rho\left|\omega_{\lambda}(0)\right|^{2}+\left\|\omega_{\lambda}^{\prime}\right\|^{2}+\left\|z \omega_{\lambda}\right\|^{2}=\int_{0}^{+\infty} f(z) \bar{\omega}_{\lambda}(z) d z \tag{3.17}
\end{equation*}
$$

If $|\operatorname{Arg} \lambda| \geq \pi / 4$, equalizing the imaginary parts in (3.17) we have (3.16).
Now we suppose $0 \leq|\operatorname{Arg} \lambda| \leq \pi / 4$. If $\rho \geq 0$, we obtain (3.16) equalizing the real parts in (3.17). If $\rho<0$, being

$$
\begin{equation*}
\left|\omega_{\lambda}(0)\right|^{2} \leq 2\left\|\omega_{\lambda}\right\|\left\|\omega_{\lambda}^{\prime}\right\| \leq 4|\rho|\left\|\omega_{\lambda}\right\|^{2}+\frac{1}{4|\rho|}\left\|\omega_{\lambda}^{\prime}\right\|^{2} \tag{3.18}
\end{equation*}
$$

from (3.17) we have

$$
\begin{equation*}
\left(R e \lambda-8 \rho^{2}\right)\left\|\omega_{\lambda}\right\|^{2}+\frac{1}{2}\left\|\omega_{\lambda}^{\prime}\right\|^{2}+\left\|z \omega_{\lambda}\right\|^{2} \leq\|f\|\left\|\omega_{\lambda}\right\| . \tag{3.19}
\end{equation*}
$$

By (3.14) and (3.15) we have

$$
\operatorname{Re} \lambda-8 \rho^{2} \geq \operatorname{Re} \lambda-\frac{m_{\rho}}{2} \geq \frac{1}{2} \operatorname{Re} \lambda \geq \frac{1}{2 \sqrt{2}}|\lambda|
$$

and so (3.16).
Now we put

$$
\begin{equation*}
\|w\|=\|w\|+\|z w\|+\left\|w^{\prime}\right\| \quad \forall w \in \mathcal{S}\left(\bar{R}_{z}^{+}\right) \tag{3.20}
\end{equation*}
$$

and prove the following
Theorem 3.3. If $\left.\lambda \in C-]-\infty, m_{\rho}\right]$ there is a constant $c=c(\lambda, \rho)$ such that

$$
\begin{equation*}
\left\|\omega_{\lambda}(z ; \rho, f)\right\| \leq c\|f\| \quad \forall f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right) . \tag{3.21}
\end{equation*}
$$

Proof. If $\left.\lambda \in C-]-\infty, m_{\rho}\right]$ with $\operatorname{Im} \lambda \neq 0$ there is $\left.\theta_{0} \in\right] 0, \pi / 2[$ such that $\theta_{0} \leq|\operatorname{Arg} \lambda| \leq \pi-\theta_{0}$.
Equalizing the imaginary parts in (3.17) we have

$$
\begin{equation*}
\left\|\omega_{\lambda}\right\| \leq \frac{\|f\|}{|\lambda| \sin \theta_{0}} \quad f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right), \tag{3.22}
\end{equation*}
$$

and by (3.18) one obtains

$$
\left|\omega_{\lambda}(0)\right|^{2} \leq \frac{4|\rho|}{|\lambda|^{2} \sin ^{2} \theta_{0}}\|f\|^{2}+\frac{1}{4|\rho|}\left\|\omega_{\lambda}^{\prime}\right\|^{2}
$$

so (3.21) follows from (3.17) in the case $\operatorname{Im} \lambda \neq 0$.
If $\lambda=\operatorname{Re} \lambda$, being $\lambda>m_{\rho}$, (3.21) follows directly from (3.19).
From (3.17) by similar calculations we deduce
Proposition 3.4. For every $\delta>0$, if $|\operatorname{Im} \lambda|>\delta$, then

$$
\left|\omega_{\lambda}(z ; \rho, f)\right| \leq c\left(|\lambda|+m_{\rho}\right)^{1 / 2}\|f\| \quad \forall z \in \bar{R}_{z}^{+}, \quad \forall f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right),
$$

where c is a constant depending only of δ.

4. A holomorphic semigroup.

We have recourse to Semigroups Theory to solve the problem (I). In order to make more simple the reading of this section, we report a theorem which descends from the mutually equivalent of three conditions proved by Yosida (see [7]).

Theorem 4.1. - Let $\left\{T_{\tau} ; \tau \geq 0\right\}$ be an equi-continuous semigroup of class $\left(C_{0}\right)$ and let A be its infinitesimal generator. If
i) a positive constant C_{1} exists such that the family of operators

$$
\left\{\left(C_{1} \lambda R(\lambda ; A)\right)^{n}\right\}
$$

is equi-continuous with respect to $n \geq 0$ and to λ with $\operatorname{Re} \lambda \geq 1+\varepsilon, \varepsilon>0$,
then we have also:

1) there exists an angle $\left.\theta_{0} \in\right] 0, \pi / 2[$ such that the resolvent set of $A, \rho(A)$, includes the set

$$
\sum_{m, \theta_{0}}=\left\{\lambda \in C:|\lambda| \geq m \text { and }|\operatorname{Arg} \lambda| \leq \pi-\theta_{0}\right\}
$$

with m suitably large;
2) for every $x \in X$ and $\tau>0$ we have

$$
T_{\tau} x=\frac{1}{2 \pi i} \int_{C_{2}} e^{\lambda \tau} R(\lambda ; A) x d \lambda
$$

where the path of integration $C_{2}=\lambda(\sigma),-\infty<\sigma<+\infty$, is such that $\lim _{|\sigma| \rightarrow+\infty}|\lambda(\sigma)|=+\infty$ and for some $\varepsilon>0$,
$\pi / 2+\varepsilon \leq \operatorname{Arg} \lambda(\sigma) \leq \pi-\theta_{0} \quad$ and $\quad-\left(\pi-\theta_{0}\right) \leq \operatorname{Arg} \lambda(\sigma) \leq-(\pi / 2+\varepsilon)$
when $\sigma \rightarrow+\infty$ and $\sigma \rightarrow-\infty$ respectively;
3) exists $\left.\theta_{1} \in\right] 0, \pi / 2\left[\right.$ such that T_{τ} admits a weakly holomorphic extension T_{λ} for $|\operatorname{Arg} \lambda| \leq \theta_{1}$, that is T_{τ} is a holomorphic semigroup.

Now we introduce the following operator

$$
A: \omega \in S\left(\bar{R}_{z}^{+}\right) \rightarrow A \omega=\left(\frac{d^{2}}{d z^{2}}-z^{2}\right) \omega
$$

By Theorems of section 3 we can be able to extend A to more general spaces. Let $H\left(R_{z}^{+}\right)$be the subspace of $H^{1}\left(R_{z}^{+}\right)$formed by functions ω with $\|\omega\|<$ $+\infty$ for which there is a sequence $\left\{\omega_{n}\right\} \subset \delta\left(\bar{R}_{z}^{+}\right)$such that:

$$
\begin{equation*}
\lim _{n}\left\|\omega_{n}-\omega\right\| \|=0, \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\left\{A \omega_{n}\right\}_{n \in N_{0}} \text { is convergent to an element of } L^{2}\left(R_{z}^{+}\right) \tag{4.2}
\end{equation*}
$$

If $\omega \in H\left(R_{z}^{+}\right)$then $\lim _{n} A \omega_{n}$ is independent of $\left\{\omega_{n}\right\}$, so it is right to put

$$
A \omega=\lim _{n} A \omega_{n} \quad \text { in } L^{2}\left(R_{z}^{+}\right)
$$

We equip $H\left(R_{z}^{+}\right)$by the norm:

$$
\begin{equation*}
\|\omega\|_{H}=\|\omega\| l+\|A \omega\|, \tag{4.3}
\end{equation*}
$$

so $H\left(R_{z}^{+}\right)$is a complete Banach space.
For every $\rho \in R$, let $D(A, \rho)$ be a subspace of $H\left(R_{z}^{+}\right)$. We say that the function ω belongs to $D(A, \rho)$ if

$$
\begin{equation*}
\int_{0}^{+\infty}(A \omega) v d z=\int_{0}^{+\infty} \omega(A v) d z \quad \forall v \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right): \quad \nu^{\prime}(0)=2 \rho v(0) \tag{4.4}
\end{equation*}
$$

It is clear that $D(A, \rho)$ is a close subspace of $H\left(R_{z}^{+}\right)$, dense in $L^{2}\left(R_{z}^{+}\right)$, moreover if $\omega \in H^{2}\left(R_{z}^{+}\right) \cap D(A, \rho)$, we have $\omega^{\prime}(0)=2 \rho \omega(0)$. It is easy to prove that the operator A, with domain $D(A, \rho)$ and range in $L^{2}\left(R_{z}^{+}\right)$, is a close operator.
Let $\omega_{\lambda}(z)=\omega_{\lambda}(z ; \rho, f)$ the function defined by (3.12) and (3.8). We prove:
Proposition 4.2. For every $\rho \in R$, let $\left.\lambda \in C-]-\infty, m_{\rho}\right]$. Then, for every $f \in L^{2}\left(R_{z}^{+}\right)$, the function ω_{λ} belongs to $D(A, \rho)$.
Proof. Let $f \in L^{2}\left(R_{z}^{+}\right)$and $f_{n} \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right), n \in N$, such that

$$
\begin{equation*}
f_{n} \rightarrow f \quad \text { in } L^{2}\left(R_{z}^{+}\right) \tag{4.5}
\end{equation*}
$$

If $\left(\omega_{\lambda}\right)_{n}=\omega_{\lambda}\left(z ; \rho, f_{n}\right), \forall n \in N$, we have that $\left(\omega_{\lambda}\right)_{n}$ is classical solution of problem (3.1), therefore

$$
\begin{equation*}
\left(\omega_{\lambda}\right)_{n} \in D(A, \rho) \cap \delta\left(\bar{R}_{z}^{+}\right) . \tag{4.6}
\end{equation*}
$$

By Theorem 3.3 and by (4.5) we have that the sequence $\left(\omega_{\lambda}\right)_{n}$ is foundamental so it is convergent in $H\left(R_{z}^{+}\right)$. By (3.8) and (3.12) we have

$$
\left(\omega_{\lambda}\right)_{n}(z) \rightarrow \omega_{\lambda}(z) \quad \forall z \in \bar{R}_{z}^{+} .
$$

So $\omega_{\lambda} \in H\left(R_{z}^{+}\right)$and

$$
\left\|\left(\omega_{\lambda}\right)_{n}-\omega_{\lambda}\right\|_{H} \rightarrow 0
$$

Since $D(A, \rho)$ is a closed subset of $H\left(R_{z}^{+}\right)$we have the assert.
We consider the operator

$$
A_{m_{\rho}}: \omega \in S\left(\bar{R}_{z}^{+}\right) \rightarrow\left(A-m_{\rho} I\right) \omega
$$

where I is the identity in $\delta\left(\bar{R}_{z}^{+}\right)$.
By Proposition 4.2 we obtain that $C-$] $-\infty, 0$] is included in the resolvent set of $A_{m_{\rho}}$ in $D(A, \rho)$ and results

$$
\begin{equation*}
R\left(\lambda ; A_{m_{\rho}}\right) f=\omega_{\lambda+m_{\rho}}(f) \quad \forall f \in L^{2}\left(R_{z}^{+}\right) . \tag{4.7}
\end{equation*}
$$

Now we prove the following
Theorem 4.3. For every $\rho \in R$ the operator $A_{m_{\rho}}$, with domain $D(A, \rho)$, is the infinitesimal generator of a contraction semigroup of class $\left(C_{0}\right)$ in $L^{2}\left(R_{z}^{+}\right)$. This semigroup is also holomorphic.
Proof. We prove that for every $\rho \in R, A_{m_{\rho}}$ and $D(A, \rho)$ satisfy hypotheses of Philips and Lumer Theorem (see [7]).
It is obvious that the range of $A_{m_{\rho}}$ and $D(A, \rho)$ are subspaces of $L^{2}\left(R_{z}^{+}\right)$. The density of $D(A, \rho)$ in $L^{2}\left(R_{z}^{+}\right)$has been observed. By Proposition 4.2 and by (4.7) we have that the range of $I-A_{m_{\rho}}$ is $L^{2}\left(R_{z}^{+}\right)$. We must only verify that $A_{m_{\rho}}$ is dissipative. In order to do this, let $\omega \in D(A, \rho)$ and let $\left\{\omega_{n}\right\}$ be a sequence of $\delta\left(\bar{R}_{z}^{+}\right)$corvenging to ω in $H\left(R_{z}^{+}\right)$.
Since

$$
\begin{equation*}
\int_{0}^{+\infty} A_{m_{\rho}}\left(\omega_{n}\right) \bar{\omega}_{n} d z=-m_{\rho}\left\|\omega_{n}\right\|^{2}-2 \rho\left|\omega_{n}(0)\right|^{2}-\left\|\omega_{n}^{\prime}\right\|^{2}-\left\|z \omega_{n}\right\|^{2} \tag{4.8}
\end{equation*}
$$

we have

$$
\operatorname{Re} \int_{0}^{+\infty} A_{m_{\rho}}\left(\omega_{n}\right) \bar{\omega}_{n} d z \leq 0
$$

(this is obvious if $\rho \geq 0$, if $\rho<0$ it follows from (3.18) and (3.16)). Passing to limit in (4.8), we have that the operator $A_{m_{\rho}}$ is dissipative.
We denote by $\left\{\bar{T}_{\tau, \rho}, \tau \geq 0\right\}$ the contraction semigroup of class $\left(C_{0}\right)$ generated by $A_{m_{\rho}}$.
By Theorem 3.2 we have that the condition i) of Theorem 4.1 is verified, so $\left\{\bar{T}_{\tau, \rho}, \tau \geq 0\right\}$ is a holomorphic semigroup.
The theorem is proved.
Now we are able to prove
Theorem 4.4. For every $\rho \in R$ the operator A, with domain $D(A, \rho)$, is the infinitesimal generator of a holomorphic semigroup $\left\{T_{\tau, \rho}, \tau \geq 0\right\}$ and results

$$
\begin{equation*}
T_{\tau, \rho}=e^{m_{\rho} \tau} \bar{T}_{\tau, \rho} \tag{4.9}
\end{equation*}
$$

Proof. Since the operator $m_{\rho} I$ is bounded by Theorem 4.3 we have that $A=A_{m_{\rho}}+m_{\rho} I$ is the infinitesimal generator of a holomorphic semigroup $\left\{T_{\tau, \rho}, \tau \geq 0\right\}$ (see [5], chapter 3, section 3.2, Corollary 2.2), and its expression is given by (4.9).

Theorem 4.5. For every $f \in L^{2}\left(R_{z}^{+}\right)$and for every $\rho \in R$, results

$$
\begin{align*}
& T_{\tau, \rho} f(z)=\sum_{k=0}^{+\infty} e^{\lambda_{k}(\rho) \tau} \varphi_{k}(z ; \rho) \int_{0}^{+\infty} f\left(z^{\prime}\right) \varphi_{k}\left(z^{\prime} ; \rho\right) d z^{\prime} \tag{4.10}\\
& \forall \tau>0, \quad \forall z \in \bar{R}_{z}^{+}
\end{align*}
$$

Proof. By 2) of Theorem 4.1 and by (4.7) we have

$$
\begin{equation*}
\bar{T}_{\tau, \rho} f(z)=\frac{1}{2 \pi i} \int_{C_{2}} e^{\lambda \tau} \omega_{\lambda+m_{\rho}}(z) d \lambda \tag{4.11}
\end{equation*}
$$

By sostitution $\lambda+m_{\rho} \rightarrow \lambda$, from (4.9) we have

$$
\begin{equation*}
T_{\tau, \rho} f(z)=\frac{1}{2 \pi i} \int_{C_{2}} e^{\lambda \tau} \omega_{\lambda}(z) d \lambda \tag{4.12}
\end{equation*}
$$

here C_{2} is the path included in $\sum_{m, \theta_{0}}$ of the type showed in Picture 1

Picture 1

We fix now $z \in \bar{R}_{z}^{+}$. If τ is large enough and $f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right)$, it is possible to evaluate integral (4.12) by residues method. Fixed $n \in N$, let γ_{n} be the path in Picture 2.

Picture 2

By (3.13) we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \lim _{n \rightarrow+\infty} \oint_{\gamma_{n}} e^{\lambda \tau} \omega_{\lambda}(z) d \lambda=\sum_{k=0}^{+\infty} e^{\lambda_{k}(\rho) \tau} R_{k}[z ; \rho]= \tag{4.13}
\end{equation*}
$$

$$
=\sum_{k=0}^{+\infty} e^{\lambda_{k}(\rho) \tau} \varphi_{k}(z ; \rho) \int_{0}^{+\infty} f\left(z^{\prime}\right) \varphi_{k}\left(z^{\prime} ; \rho\right) d z^{\prime}
$$

Let s_{n} be the segment of γ_{n} belonging to the straight line of equation $\operatorname{Re} \lambda=$ $-(4 n+3)$; let δ be a positive number for which the Proposition 3.1 holds. We have:

$$
\left|\left(s_{n}\right) \int_{|I m \lambda|<\delta} e^{\lambda \tau} \omega_{\lambda}(z) d \lambda\right| \leq \delta \mu^{n} e^{-(4 n+3) \tau} \max |f|
$$

so if τ such that

$$
\begin{equation*}
e^{4 \tau}>\mu \tag{4.14}
\end{equation*}
$$

results

$$
\lim _{n \rightarrow+\infty}\left(s_{n}\right) \int_{|I m \lambda|<\delta} e^{\lambda \tau} \omega_{\lambda}(z) d \lambda=0 .
$$

Then by Proposition 3.4 we have

$$
\left|\left(s_{n}\right) \int_{|I m \lambda|>\delta} e^{\lambda \tau} \omega_{\lambda}(z) d \lambda\right| \leq e^{-(4 n+3) \tau} O\left(n^{\frac{3}{2}}\right)\|f\|
$$

and so

$$
\lim _{n \rightarrow+\infty}\left(s_{n}\right) \int_{|I m \lambda|>\delta} e^{\lambda \tau} \omega_{\lambda}(z) d \lambda=0
$$

Then (4.10) follows from (4.13) for $f \in C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right)$and τ satisfying (4.14). Moreover the series

$$
\sum_{k=0}^{+\infty} e^{\lambda_{k}(\rho) \lambda} \varphi_{k}(z ; \rho) \int_{0}^{+\infty} f\left(z^{\prime}\right) \varphi_{k}\left(z^{\prime} ; \rho\right) d z^{\prime} \quad \lambda \in C
$$

for $\operatorname{Re} \lambda \geq a>0$ is increased in absolute value by series $M\|f\| \sum_{k=0}^{+\infty} e^{-(4 k-3) a} k^{\frac{1}{4}}$, for (2.8) and (2.10), so it is a holomorphic function with respect to λ in the halfplane $\operatorname{Re} \lambda>0$. By 3) of Theorem 4.1 and by Principle of identity for holomorphic functions, we have (4.10) $\forall \tau>0$. Since $C_{0}^{\infty}\left(\bar{R}_{z}^{+}\right)$is dense in $L^{2}\left(R_{z}^{+}\right)$we have the thesis.

From this theorem we get

Theorem 4.6. For every $\rho \in R$, the system $\left\{\varphi_{k}(z ; \rho)\right\}_{k \in N_{0}}$ is complete in $L^{2}\left(R_{z}^{+}\right)$.

We conclude this section with a theorem of representation
Theorem 4.7. Let $\rho \in R$ and $\lambda \in C$. If $\lambda \neq \lambda_{k}(\rho), \forall k \in N_{0}$, and $f \in$ $L^{2}\left(R_{z}^{+}\right)$, the function $\omega_{\lambda}(z ; \rho, f)$ belongs to $D(A, \rho)$ and it has the following representation:

$$
\begin{equation*}
\omega_{\lambda}(z ; \rho, f)=\sum_{k=0}^{+\infty} \frac{\varphi_{k}(z ; \rho)}{\lambda-\lambda_{k}(\rho)} \int_{0}^{+\infty} f\left(z^{\prime}\right) \varphi_{k}\left(z^{\prime} ; \rho\right) d z^{\prime} \tag{4.15}
\end{equation*}
$$

Proof. We fix $\lambda \neq \lambda_{k}(\rho), \forall k \in N_{0}$, and $f \in C_{0}^{\infty}\left(R_{z}^{+}\right)$. In this case $\omega_{\lambda}(z ; \rho, f) \in$ $\delta\left(\bar{R}_{z}^{+}\right)$and we find that its Fourier expansion in terms of the system $\left\{\varphi_{k}(z ; \rho)\right\}$ is the series in (4.15).
If $\lambda \notin]-\infty, m_{\rho}$] results $\omega_{\lambda}(z ; \rho, f) \in D(A, \rho)$ for every $f \in L^{2}\left(R_{z}^{+}\right)$(see Prop. 4.2), and by an approximation argument we arrive at (4.15) $\forall f \in L^{2}\left(R_{z}^{+}\right)$. Finally, being $\omega_{\lambda}(z ; \rho, f)$ weakly holomorphic in $C-\bigcup_{k \in N_{0}}\left\{\lambda_{k}(\rho)\right\}$, we have the thesis.

5. Proof of Theorem I.

Let $g \in L^{2}\left(R_{z}^{+}\right)$be, put

$$
u(\tau, z)=T_{\tau, \rho} g(z) ;
$$

by results of previous section we deduce that

$$
u(\tau, z) \in C^{0}\left(\bar{R}_{\tau}^{+}, L^{2}\left(R_{z}^{+}\right)\right) \cap C^{\infty}\left(R_{\tau}^{+} \times \bar{R}_{z}^{+}\right)
$$

and $u(\tau, z)$ is solution of problem (I). If now $\Phi\left(\tau, z, z^{\prime} ; \rho\right)$ is the distribution defined in (II) and (III), by Theorem 4.5 we obtain

$$
u(\tau, z)=\int_{0}^{+\infty} \Phi\left(\tau, z, z^{\prime} ; \rho\right) g\left(z^{\prime}\right) d z^{\prime} \quad \tau>0 .
$$

Now we are able to prove Theorem I.

Since $\lambda_{k}(\rho)=-\left(2 v_{k}(\rho)+1\right) \rightarrow-\infty, \forall \rho \in R$, from Proposition 2.1 follows that series in (III) converges in $C^{\infty}\left(R_{\tau}^{+} \times \bar{R}_{z}^{+} \times \bar{R}_{z^{\prime}}^{+}\right)$. Moreover, denoting by $<,>$ the duality pairing between $C_{0}^{\infty}\left(R_{z}^{+}\right)$and $\mathscr{D}^{\prime}\left(R_{z}^{+}\right)$, if $g \in C_{0}^{\infty}\left(R_{z}^{+}\right)$we have

$$
<\Phi\left(\tau, z, z^{\prime} ; \rho\right), g\left(z^{\prime}\right)>=\sum_{k=0}^{+\infty} e^{\lambda_{k}(\rho) \tau} \varphi_{k}(z ; \rho) g_{k} \quad \tau \geq 0, z \geq 0
$$

where

$$
g_{k}=\int_{0}^{+\infty} g(z) \varphi_{k}(z ; \rho) d z
$$

Being $g \in C_{0}^{\infty}\left(R_{z}^{+}\right)$,

$$
g_{k}=\int_{0}^{+\infty} g(z) \frac{A^{m} \varphi_{k}(z ; \rho)}{\lambda_{k}^{m}(\rho)} d z=\int_{0}^{+\infty} A^{m} g(z) \frac{\varphi_{k}(z ; \rho)}{\lambda_{k}^{m}(\rho)} d z \quad \forall m \in N_{0} \quad \forall k \in N
$$

follows $\forall k \in N$

$$
\left|g_{k}\right| \leq c\left\|A^{m} g\right\| k^{-m} \quad \forall m \in N_{0}
$$

so

$$
\left|<\Phi\left(\tau, z, z^{\prime} ; \rho\right), g\left(z^{\prime}\right)>\right| \leq c\left\|A^{m} g\right\| \quad \forall \tau \geq 0
$$

and

$$
<\Phi\left(\tau, z, z^{\prime} ; \rho\right), g\left(z^{\prime}\right)>\in C^{0}\left(\bar{R}_{\tau}^{+} \times \bar{R}_{z}^{+}\right) \quad \forall g \in C_{0}^{\infty}\left(R_{z}^{+}\right)
$$

In this way we have proved that $\Phi\left(\tau, z, z^{\prime} ; \rho\right) \in C^{0}\left(\bar{R}_{\tau}^{+} \times \bar{R}_{z}^{+}, \mathscr{D}^{\prime}\left(R_{z^{\prime}}^{+}\right)\right)$.
Straight through one proves $(I V)_{1}$ and $(I V)_{2}$; moreover being

$$
<\Phi\left(\tau, z, z^{\prime} ; \rho\right), g\left(z^{\prime}\right)>=T_{\tau, \rho} g(z) \quad(\tau, z) \in R_{\tau}^{+} \times \bar{R}_{z}^{+} \quad \forall g \in C_{0}^{\infty}\left(R_{z^{\prime}}^{+}\right)
$$

we have

$$
\lim _{\tau \rightarrow 0}<\left\langle\Phi\left(\tau, z, z^{\prime} ; \rho\right), g\left(z^{\prime}\right)>=T_{0, \rho} g=g(z)\right.
$$

and so $(I V)_{3}$. This concludes the proof of Theorem.

REFERENCES

[1] A. Avantaggiati, Sviluppi in serie di Hermite-Fourier e condizione di analiticità e quasi analiticità, Methods of Functional Analysis and Theory of Elliptic Equations, Proceeding of the International Meeting, 1982.
[2] N. D'Auria - O. Fiodo, Su un problema parabolico degenere, Rend. Acc. Sc. Fis. e Mat. della Società Naz. Sci. Lettere ed Arti in Napoli, serie IV, vol. LIX, 1992.
[3] E. Magnus - Oberhettinger - Tricomi, Higher transcendental function, "Bateman Project" vol. II McGraw-Hill, New York, 1953.
[4] L. Gatteschi, Funzioni speciali, Collezione di Matematica Applicata, 5 UTET, Torino, 1973.
[5] A. Pazy, Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
[6] F. G. Tricomi, Funzioni ipergeometriche confluenti, Cremonese, Roma, 1954.
[7] K. Yosida, Functional Analysis, Fourth Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Via Cintia, Compl. Monte S. Angelo
80126 Napoli (Italy)

[^0]: Entrato in Redazione il 16 dicembre 1999.

