POISSON KERNEL FOR A PARABOLIC PROBLEM

NUNZIA A. D'AURIA - ORNELLA FIODO

In this paper we obtain a representation for the solution of a parabolic mixed problem.

Introduction.

In this work we obtain a representation for the Poisson kernel $\Phi(\tau, z, z'; \rho)$ of the following mixed problem, with real parameter ρ :

(I)
$$\begin{cases} \partial_{\tau} u = (\partial_{z}^{2} - z^{2})u & (\tau, z) \in R_{\tau}^{+} \times R_{z}^{+} \\ (\partial_{z} - 2\rho)u(\tau, 0) = 0 & \tau \in R_{\tau}^{+} \\ u(0, z) = g(z) & z \in R_{z}^{+}. \end{cases}$$

with $g(z) \in L^2(\mathbb{R}^+_z)$.

We construct $\Phi(\tau, z, z'; \rho)$ using the parabolic cilinder functions $D_v(z), z \in R$. The problem (I) arises when we apply the process used in [2] to an oblique derivative problem for the operator $L = \partial_t - \partial_y^2 - y^2 \partial_x^2$ where $(t, y, x) \in [0, +\infty[\times]0, +\infty[\times]R$.

The main result can be stated as follows:

Theorem 1. For every $\rho \in R$ there is a sequence of real numbers $\{v_k(\rho)\}_{k \in N_0}$, positively diverging such that $\{D_{v_k(\rho)}(z)\}_{k \in N_0}$ is orthogonal system in $L^2(R_z^+)$.

Entrato in Redazione il 16 dicembre 1999.

Moreover, put

(II)
$$\varphi_k(z; \rho) = \left[D_{\nu}(\sqrt{2z}) / \|D_{\nu}(\sqrt{2z})\|_{L^2(R_z^+)} \right]_{\nu = \nu_k(\rho)} z \ge 0, \ k \in N_0$$

(III)
$$\Phi(\tau, z, z'; \rho) = \sum_{k=0}^{+\infty} e^{-(2\nu_k(\rho)+1)\tau} \varphi_k(z; \rho) \varphi_k(z'; \rho)$$

 $\tau > 0, \ z, z' \in [0, +\infty[,$

it results $\Phi(\tau, z, z'; \rho) \in C^{\infty}(R_{\tau}^+ \times \overline{R}_z^+ \times \overline{R}_{z'}^+) \frown C^0(\overline{R}_{\tau}^+ \times \overline{R}_z^+, D'(R_{z'}^+))$, and

(IV)
$$\begin{cases} (\partial_{\tau} - \partial_{z}^{2} + z^{2})\Phi(\tau, z, z'; \rho) = 0 & (\tau, z, z') \in R_{\tau}^{+} \times R_{z}^{+} \times R_{z'}^{+} \\ (\partial_{z} - 2\rho)\Phi(\tau, 0, z'; \rho) = 0 & (\tau, z') \in R_{\tau}^{+} \times R_{z'}^{+} \\ \lim_{\tau \to 0} \Phi(\tau, z, z'; \rho) = \delta(z' - z) & (\tau, z) \in R_{\tau}^{+} \times R_{z}^{+}. \end{cases}$$

The elements of the sequence $\{\nu_k(\rho)\}_{k\in N_0}$ are zeros for the function $\rho + \frac{\Gamma((1-\nu)/2)}{\Gamma(-\nu/2)}$, where Γ is the Eulero function; it follows that $\nu_k(0), k \in N_0$, are even natural numbers and $\varphi_k(z; 0), k \in N_0$, are the Hermite functions $\varphi_{2k}(z)$. Then, the result in [2] is obtained for $\rho \to \infty$.

This paper is organized as follows: in section 1 we study the sequence $\{v_k(\rho)\}_{k\in N_0}$; in section 2 we establish estimates for the functions $D_v(z)$, using well-known integral and asymptotic representations (see. [6], [3]); in section 3 we construct and study the resolvent set of the operator $A = \partial_z^2 - z^2$, with domain $D(A, \rho) \subseteq H^2(R_z^+)$ formed by the functions $\omega(z)$ such that $\omega'(0) = 2\rho\omega(0)$. In section 4 we prove that A is the generator of a holomorphic semigroup, so we obtain, among other things, the completeness of the system $\{\varphi_k(z; \rho)\}_{k\in N_0}$ in $L^2(R_z^+)$. Finally in Section 5 we introduce the Poisson kernel $\Phi(\tau, z, z'; \rho)$ and we complete the proof of Theorem 1.

1. Auxiliary functions.

If $\Gamma(\nu)$, $\nu \in C$, is the Eulero function, we consider the following analytic function

(1.1)
$$\alpha(\nu) = \frac{\Gamma((1-\nu)/2)}{\Gamma(-\nu/2)} \qquad \nu \in C.$$

320

For this function the values v = 2k, $k \in N_0$, are zeros of order 1, while the values v = 2k + 1, $k \in N_0$, are poles of order 1. Moreover, if $v \in R$ we have:

(1.2)
$$\nu < 0 \Rightarrow \alpha(\nu) > 0,$$

(1.3)
$$\nu \in]2k, 2k+1[, k \in N_0 \Rightarrow \alpha(\nu) < 0,$$

(1.4)
$$\nu \in]2k-1, 2k[, k \in N \Rightarrow \alpha(\nu) > 0.$$

Proposition 1.1. If $v \in R$ and $v \neq 2k + 1$, $k \in N_0$, then results:

$$(1.5) \qquad \qquad \alpha'(\nu) < 0.$$

Proof. Since the values v = 2k, $k \in N_0$, are simple zeros for $\alpha(v)$, we have $\alpha'(2k) \neq 0$, $\forall k \in N_0$. Then it is sufficient to prove (1.5) for $v \notin N_0$. That being stated we have

(1.6)
$$\alpha'(\nu) = -\frac{1}{2} \frac{\Gamma((1-\nu)/2)}{\Gamma(-\nu/2)} \left[\frac{\Gamma'((1-\nu)/2)}{\Gamma((1-\nu)/2)} - \frac{\Gamma'(-\nu/2)}{\Gamma(-\nu/2)} \right] =$$
$$= -\frac{1}{2} \alpha(\nu)\beta(\nu).$$

So we must prove that $\forall v \in R - N_0$, $\beta(v)$ is not zero and it has the sign of $\alpha(v)$. From the well known representation of the logarithmic derivatives of $\Gamma(v)$ (see [6]) we obtain:

(1.7)
$$\beta(\nu) = 2\sum_{n=0}^{+\infty} \frac{1}{(\nu - 2n)(\nu - (2n+1))}$$

Now we observe that if $v \in [2k - 1, 2k[, k \in N, \text{ or } v < 0, \text{ the terms of series} in (1.7) are all positive; it follows that <math>\beta(v) > 0$ and so for (1.2), (1.4) and (1.6) we have (1.5) for these values of v.

If $v \in [2k, 2k+1]$, $k \in N_0$, in (1.7) the only negative term has index k, moreover we have

$$\frac{1}{(\nu - 2k)(\nu - (2k + 1))} \le -4$$

$$\frac{1}{(\nu - 2n)(\nu - (2n+1))} < \frac{1}{4(n-k-\frac{1}{2})^2} \qquad k < n, \ n \in \mathbb{N}$$
$$\frac{1}{(\nu - 2n)(\nu - (2n+1))} < \frac{1}{4(k-n-\frac{1}{2})^2} \qquad n < k, \ n \in \mathbb{N}_0,$$

and then

(1.8)
$$\beta(\nu) \le 2\left[-4 + 2\sum_{h=1}^{+\infty} \frac{1}{h^2}\right] = 2\left[-4 + \frac{\pi^2}{6}\right] < 0;$$

from (1.3) the thesis follows.

Let $\rho \in R$, we consider the equation

(1.9)
$$\alpha(\nu) + \rho = 0 \qquad \nu \in R.$$

From (1.2), (1.3), (1.4) and from Proposition 1.1, as well as from Dini Theorem, we have the following

Proposition 1.2. The solutions of the equation (1.9) form a sequence $\{v_k(\rho)\}_{k\in N_0}$ positively diverging such that $v_k(\rho) \in C^{\infty}(R) \quad \forall k \in N_0$, and $\{v_k(0)\}_{k\in N_0} = \{2k\}_{k\in N_0}$; moreover

$$\begin{split} \rho > 0 \Rightarrow \nu_k(\rho) \in]2k, 2k + 1[\quad \forall k \in N_0, \\ \rho < 0 \Rightarrow \nu_0(\rho) < 0, \quad \nu_k(\rho) \in]2k - 1, 2k[\quad \forall k \in N, \\ \lim_{\rho \to -\infty} \nu_k(\rho) = 2k + 1 \quad \forall k \in N_0, \quad \lim_{\rho \to -\infty} \nu_k(\rho) = 2k - 1 \quad \forall k \in N, \\ \lim_{\rho \to -\infty} \nu_0(\rho) = -\infty, \quad -\nu_0(\rho) < 6\rho^2 \quad if \quad \rho < 0. \end{split}$$

We observe that we obtain the estimate of $-\nu_0(\rho)$ for $\rho < 0$ by (1.9) and (1.1) using the asymptotic expansion (see [4]):

$$\Gamma(x) = e^{-x} x^{x-1/2} (2\pi)^{1/2} e^{\theta/12x} \qquad 0 < \theta < 1 \ x \in \mathbb{R}^+.$$

Afterwards it will be usefull

Proposition 1.3. For every $\rho \in R \exists \delta > 0$ depending of ρ such that, if $Re \nu = 2n + 1$, $n \in N_0$ and $|Im \nu| < \delta$ results:

(1.10)
$$\left|\frac{\Gamma(-\nu)}{\alpha(\nu)+\rho}\right| \le \frac{c}{(2n+1)!}$$

where c is an absolute constant.

Proof. Put v = 2n + 1 + iy, using recurrence formulae of Γ , we have

(1.11)
$$|\Gamma(-\nu)| \le \frac{|\Gamma(1-iy)|}{(2n+1)!|y|} \le \frac{1}{(2n+1)!|y|}$$

and for $|y| \leq 1$

(1.12)
$$|\alpha(v)| \ge \left| \frac{\Gamma(1 - iy/2)}{\Gamma((1 - iy)/2)} \right| \left| \frac{1 + iy}{y} \right| > \frac{|\Gamma(1 - iy/2)|}{\sqrt{\pi}|y|} \ge \frac{2}{c|y|},$$

where $\frac{2}{c} = \min_{|y| \le 1} \frac{|\Gamma(1 - iy/2)|}{\sqrt{\pi}}$. Putting $\delta = \min\{1, 1/c|\rho|\}$ for $\rho \ne 0$ and $\delta = 1$ for $\rho = 0$, the thesis follows from (1.11) and (1.12).

2. Estimates for the functions $D_{\nu}(z)$.

We remember that the parabolic cilinder function $D_{\nu}(z)$, $\nu \in C$, is solution of (see [6], [4], [3]):

(2.1)
$$\frac{d^2}{dz^2} D_{\nu}(z) - \frac{1}{4} z^2 D_{\nu}(z) = -\left(\nu + \frac{1}{2}\right) D_{\nu}(z) \quad z \in C$$

moreover

(2.2)
$$D_{\nu}(0) = \frac{\sqrt{\pi} 2^{\nu/2}}{\Gamma((1-\nu)/2)} \qquad D'_{\nu}(0) = -\frac{\sqrt{2\pi} 2^{\nu/2}}{\Gamma(-\nu/2)}.$$

The functions $D_{\nu}(z)$ are susceptible of many formulas of representation, we will use the following:

(2.3)
$$D_{\nu+1}(z) - zD_{\nu}(z) + \nu D_{\nu-1}(z) = 0 \quad \forall \nu, z \in C,$$

(2.4)
$$D_{\nu}(z) = \frac{2^{-1-\nu/2}}{\Gamma(-\nu)} e^{-z^2/4} \sum_{k=0}^{+\infty} \frac{(-\sqrt{2} z)^k}{k!} \Gamma((k-\nu)/2) \quad \forall \ \nu, z \in C.$$

By (1.7) (see [3]) we have:

(2.5)
$$\int_{0}^{+\infty} |D_{\nu}(z)|^{2} dz = \sqrt{\pi} \ 2^{-3/2} \beta(\nu) / \Gamma(-\nu) \quad \nu \in C, \ \nu \notin N_{0},$$

NUNZIA A. D'AURIA - ORNELLA FIODO

(2.6)
$$\int_{0}^{+\infty} |D_n(z)|^2 dz = \sqrt{2\pi} n! \quad n \in N_0$$

We recall that for $n \in N_0$ it results

(2.7)
$$D_n(z) = e^{-z^2/4} H_n(z),$$

where $H_n(z)$ is the Hermite polynomial of degree n. Now we prove the following

Proposition 2.1. If $v \in R - N_0$, it results

(2.8)
$$\sup_{z \in \overline{R}_{z}^{+}} |D_{\nu}(z)| = O(|\nu|^{1/4}) ||D_{\nu}||,$$

where $\|\cdot\|$ denotes the usual norm in $L^2(R_z^+)$.

Proof. Multiplying (2.1) by $\overline{D}_{\nu}(z)$ and integrating on R_z^+ , we obtain

$$D_{\nu}(0)D_{\nu}(0) + \|D_{\nu}(z)\|^{2} + \frac{1}{4}\|zD_{\nu}(z)\|^{2} = (\nu + \frac{1}{2})\|D_{\nu}(z)\|^{2};$$

then from (2.2) and by duplication formula of Legendre (see [4]) we get

$$\|D_{\nu}'(z)\|^{2} + \frac{1}{4}\|zD_{\nu}(z)\|^{2} = (\nu + \frac{1}{2})\|D_{\nu}(z)\|^{2} + \sqrt{\frac{\pi}{2}}(\Gamma(-\nu))^{-1}$$

From (2.5), for $\nu \in R - N_0$, we deduce

$$\|D'_{\nu}\|^{2} \leq (|\nu| + 2^{-1} + 2|\beta(\nu)|^{-1})\|D_{\nu}\|^{2},$$

from which

(2.9)
$$||D'_{\nu}||^{2} = O(|\nu|)||D_{\nu}||^{2}.$$

because the function $|\beta(\nu)|^{-1}$ is bounded (see Prop. 1.1). Being $D_{\nu}(z) \in \mathcal{S}(\overline{R}_{z}^{+})$, it results

$$|D_{\nu}(z)|^{2} \leq 2||D_{\nu}|| ||D_{\nu}'|| \qquad \forall z \in \overline{R}_{z}^{+}$$

so, by (2.9), we have the thesis.

Remark. If $n \in N_0$, from (2.7) and from well known properties of the Hermite function, follows

(2.10)
$$\sup_{z \in \overline{R}_{z}^{+}} |D_{n}(z)| = O(1)\sqrt{n!} = O(1)||D_{n}||.$$

324

Now we need some estimates for functions $D_{\nu}(z)$ when $\nu \in C$ and $Re \nu = 2n - 1$, $n \in N$.

Proposition 2.2. - There is a real and continuous function C(z) such that if $Re v = n \in N$ and $|Im v| \le 1$:

(2.11)
$$|D_{\nu}(z)| \leq C(z)(1+|z|)^n 2^n \Gamma(n/2) \quad \forall z \in C.$$

Proof. First of all we prove (2.11) when n = 1. Using (2.4) we have $\forall z \in C$:

(2.12)
$$|D_{-1+iy}(z)| \le \frac{e^{-Rez^2/4}}{|\Gamma(1-iy)|} \sum_{k=0}^{+\infty} \frac{|\sqrt{2}z|^k}{k!} \, \Gamma((k+1)/2)$$

(2.13)
$$|D_{iy}(z)| \leq \frac{e^{-Rez^2/4}}{|\Gamma(-iy)|} \left(|\Gamma(-iy/2)| + \sum_{k=1}^{+\infty} \frac{|\sqrt{2}z|^k}{k!} \, \Gamma(k/2) \right).$$

By Legendre duplication formula it results

$$(2.14) |D_{iy}(z)| \le e^{-Rez^2/4} \left(\frac{2\sqrt{\pi}}{|\Gamma((1-iy)/2)|} + \frac{1}{|\Gamma(-iy)|} \sum_{k=1}^{+\infty} \frac{|\sqrt{2}z|^k}{k!} \Gamma(k/2) \right)$$

Series in (2.12), (2.13) and (2.14) have radius of convergence infinite; so put

$$M = \max_{|y| \le 1} \left\{ \frac{1}{|\Gamma(1 - iy)|}, \frac{2\sqrt{\pi}}{\Gamma((1 - iy)/2)|}, \frac{1}{|\Gamma(-iy)|} \right\}$$

and

$$C_0(z) = M \ e^{-Re \ z^2/4} \left(1 + \Gamma(1/2) + \sum_{k=1}^{+\infty} \frac{|\sqrt{2}z|^k}{k!} \left(\Gamma(k/2) + \Gamma((k+1)/2) \right) \right)$$

we have

$$(2.15) |D_{-1+iy}(z)| \le C_0(z) , |D_{iy}(z)| \le C_0(z) \forall y \in [-1, 1].$$

Utilizing (2.3) with v = 1 + iy, we find

$$|D_{1+iy}(z)| \le |z| |D_{iy}(z)| + |iy| |D_{-1+iy}(z)|$$

and so, by (2.15), we have the assert in the case n = 1, with $C(z) = C_0(z)$. If n = 2, reasoning as above with v = 2 + iy, $|y| \le 1$, and using (2.11) for n = 1, we obtain

(2.16)
$$|D_{2+iy}(z)| \le 2C_0(z)(1+|z|)^2 \Gamma(1/2).$$

From (2.16) it is clear that the proposition is true if n = 2, with $C(z) = 2C_0(z)$. By (2.16) and (2.11) with n = 1, by similar arguments one can prove that the proposition is true even if n = 3, with $C(z) = 2C_0(z)$. Now we suppose that (2.11) holds untill $n = Re \nu > 3$. Then from (2.3) it follows

(2.17)
$$|D_{\nu+1}(z)| \le C(z) \Big\{ |z|(1+|z|)^n 2^n \Gamma(n/2) +$$

+
$$|n + iy|(1 + |z|)^{n-1} 2^{n-1} \Gamma((n-1)/2)$$
 $\forall z \in C.$

Since

$$\Gamma((n-1)/2) = 2\Gamma((n+1)/2)/(n-1), \quad \Gamma(n/2) < \Gamma((n+1)/2) \quad n \ge 3$$

we have for $|y| \le 1$

$$|D_{\nu+1}(z)| \le C(z) \Big\{ |z|(1+|z|)^n 2^n \Gamma((n+1)/2) + (1+|z|)^{n-1} 2^n \Gamma((n+1)/2)(n+1)/(n-1) \Big\}$$

so the thesis follows. $\hfill \Box$

We observe that if Re v = 2n + 1, $n \in N$ and $|Im v| \le 1$, then (2.11) entails

(2.18)
$$|D_{\nu}(z)| \le C(z)(1+|z|)^{2n}2^{2n}n! \quad \forall z \in C.$$

Now we conclude with the following

Proposition 2.3. - *If* Re v = 2n + 1, $n \in N$ and $|Im v| \le 1$, there is a positive constant *c* independent of *n* such that

(2.19)
$$\left| \Gamma(-\nu) e^{z^2/4} \left[D_{\nu}(z) + D_{\nu}(-z) \right] \right| \le c \frac{2^{-n}}{n!} \left((1+|z|^2)^n e^{|z|^2} \right) \quad \forall z \in C.$$

Proof. Put v = 2n + 1 + iy, by (2.4) we deduce

(2.20)
$$|\Gamma(-\nu)e^{z^2/4}[D_{\nu}(z) + D_{\nu}(-z)]| \le$$

 $\le 2^{-n}\sum_{h=0}^{+\infty} \frac{|\sqrt{2}z|^{2h}}{(2h)!}|\Gamma(h-n-(1+iy)/2)|$

Now, for $h \le n$, by recurrence formulae of Γ , being $(2h)! \ge 2^h (h!)^2$ we have

$$\left|\frac{\Gamma(-(n-h) - (1+iy)/2)}{(2h)!}\right| \le \frac{c}{(n-h)!(2h)!} \le \frac{c}{n!} 2^{-h} \binom{n}{h}$$

where $c = \max_{|y| \le 1} |2\Gamma((1 - iy)/2)/(1 + iy)|$; whereas, for $h \ge n + 1$,

$$\left|\frac{\Gamma((h-n) - (1+iy)/2)}{(2h)!}\right| \le \sqrt{\pi} \ \frac{\Gamma(h-n+1)}{(2h)!} = \sqrt{\pi} \ \frac{(h-n)!}{(2h)!} \le \ \frac{\sqrt{\pi}}{2^h n! h!}$$

Because of these inequalities we can increase the sum of series in (2.20) as follows:

$$\frac{c}{n!} \left[\sum_{h=0}^{n} \binom{n}{h} |z|^{2h} + \sum_{h=n+1}^{+\infty} \frac{|z|^{2h}}{h!} \right] \le \frac{c}{n!} \left[(1+|z|^2)^n + e^{|z|^2} \right].$$

This completes the proof. \Box

3. A differential problem with parameter.

Let $f \in \mathcal{S}(\overline{R}_z^+)$, $\lambda \in C$, $\rho \in R$, and we consider the following problem:

(3.1)
$$\begin{cases} \lambda \,\omega - \omega'' + z^2 \omega = f \\ \omega'(0) = 2\rho \,\omega(0) \end{cases}$$

•

Our goal is to construct a solution belonging to $\mathcal{S}(\overline{R}_z^+)$. Putting $\omega(z) = w(\sqrt{2} z)$ in (3.1), by sostitutions $z \to \sqrt{2} z$ and $\nu + 1/2 = -\lambda/2$, we have

(3.2)
$$\begin{cases} w'' + \left(v + \frac{1}{2} - \frac{z^2}{4}\right)w = -\frac{1}{2}f(z/\sqrt{2})\\ w'(0) = \sqrt{2}\rho \ w(0) \quad \rho \in R. \end{cases}$$

The homogeneous equation associated to (3.2) coincides with (2.1), so, for $\nu \notin N_0$, it admits two independent solutions $D_{\nu}(z)$ and $D_{\nu}(-z)$, and their Wronskiano is $W(\nu) = -2D_{\nu}(0)D'(0);$

$$W(v) = -2D_v(0)D'_v(0);$$

consequently, for (2.2) and Legendre duplication formula, we have:

(3.3)
$$W(\nu) = \frac{\sqrt{2\pi}}{\Gamma(-\nu)}.$$

That being stated, the general solution of equation in (3.2), always for $\nu \notin N_0$, is

(3.4)
$$w(z) = c_1(\nu)D_{\nu}(z) + c_2(\nu)D_{\nu}(-z) +$$

$$-\frac{1}{2W(\nu)}\int_{0}^{z} \left[D_{\nu}(s)D_{\nu}(-z) - D_{\nu}(-s)D_{\nu}(z) \right] f(s/\sqrt{2}) ds.$$

Computing w(0) and w'(0), and imposing that the function (3.4) is solution of (3.2), we obtain

(3.5)
$$c_1(\nu) \left(\frac{D'_{\nu}(0)}{D_{\nu}(0)} - \sqrt{2} \rho \right) = c_2(\nu) \left(\frac{D'_{\nu}(0)}{D_{\nu}(0)} + \sqrt{2} \rho \right).$$

From (2.2), by (1.1), we have

$$\frac{D_{\nu}'(0)}{D_{\nu}(0)} = -\sqrt{2}\,\alpha(\nu)$$

and so

(3.6)
$$c_1(\nu) = \frac{\alpha(\nu) - \rho}{\alpha(\nu) + \rho} c_2(\nu).$$

On the other hand, imposing that function w is rapidly decreasing in \overline{R}_z^+ , we have

(3.7)
$$c_2(\nu) = \frac{1}{2W(\nu)} \int_0^{+\infty} D_{\nu}(s) f(s/\sqrt{2}) \, ds.$$

so, if $\alpha(v) + \rho \neq 0$ and $w(z) \in \mathcal{S}(\overline{R}_z^+)$ is solution of (3.2), it results

(3.8)
$$w(z) = w_{\nu}(z; \rho, f) = \frac{\Gamma(-\nu)}{2\sqrt{2\pi}} \left\{ \int_{0}^{+\infty} D_{\nu}(s) \left[\frac{\alpha(\nu) - \rho}{\alpha(\nu) + \rho} D_{\nu}(z) + D_{\nu}(-z) \right] \right\}$$

$$f(s/\sqrt{2})\,ds - \int_{0}^{z} \left[D_{\nu}(s)D_{\nu}(-z) - D_{\nu}(-s)D_{\nu}(z) \right] f(s/\sqrt{2})\,ds \bigg\}.$$

The function $w_{\nu}(z; \rho, f)$, defined in (3.8), is an analytic function of ν for every $z \in \overline{R}_{z}^{+}$ and $\rho \in R$. Its singular points are the only zeros of $\alpha(\nu) + \rho$ (see section 1). The integer and not negative values of ν seem zeros when $\rho \neq 0$. Since these zeros are eigenvalues for the adjoint problem (3.2), such zeros are all real and so they form the sequence $\{\nu_{k}(\rho)\}_{k \in N_{0}}$ (see section 1). The following proposition holds

Proposition 3.1. Let $X \subset R_z^+$ a compact set and $f \in C_0^{\infty}(\overline{R}_z^+)$. Then there is a positive number μ , depending of ρ , X and supp f, and there is a positive number δ , such that if Re v = 2n + 1 and $|Im v| < \delta$, results

(3.9)
$$|w_{\nu}(z;\rho,f)| \leq \mu^n \max_{\overline{R}_z^+} |f| \quad \forall z \in X.$$

Proof. We rewrite (3.8) as follows

$$w_{\nu}(z;\rho,f) = \frac{1}{2\sqrt{2\pi}} \left\{ -D_{\nu}(-z) \int_{0}^{z} \Gamma(-\nu) \left[D_{\nu}(s) + D_{\nu}(-s) \right] f(s/\sqrt{2}) \, ds + \Gamma(-\nu) \left[D_{\nu}(z) + D_{\nu}(-z) \right] \int_{0}^{z} D_{\nu}(-s) f(s/\sqrt{2}) \, ds - \frac{2\rho}{\alpha(\nu) + \rho} \Gamma(-\nu) D_{\nu}(z) \right\}$$

$$\int_{0}^{+\infty} D_{\nu}(s) f(s/\sqrt{2}) ds + \Gamma(-\nu) [D_{\nu}(z) + D_{\nu}(-z)] \int_{0}^{+\infty} D_{\nu}(s) f(s/\sqrt{2}) ds \bigg\} =$$
$$= \frac{1}{2\sqrt{2\pi}} \{A_{1}(z) + A_{2}(z) + A_{3}(z) + A_{4}(z)\}.$$

Put X(f) = supp f and $\alpha = 2\left(1 + \max_{X \cup X(f)} |z|\right)$, from Propositions 2.2 and 2.3 we draw that there is $\delta > 0$ such that if Re v = 2n + 1 and $|Im v| < \delta$

$$|A_i(z)| \le c \,\alpha^{4n} \max |f| \qquad \forall i \in \{1, 2, 4\}$$

uniformly with respect to $Im v \in] - \delta, \delta[$ and to $z \in X$, with c constant independent of n.

Likewise, from Propositions 1.3 and 2.2 we draw

$$|A_3(z)| \le c |\rho| \alpha^{4n} \max |f|,$$

hence the thesis. \Box

Now we return to problem (3.1). From arguments above follows that eigenvalues of this problem are:

(3.10)
$$\lambda_k(\rho) = -(2\nu_k(\rho) + 1) \qquad k \in N_0$$

and respective normalized eigensolutions belonging to $\mathcal{S}(\overline{R}_z^+)$ are

(3.11)
$$\varphi_k(z;\rho) = \left[D_{\nu}(\sqrt{2}z) / \|D_{\nu}(\sqrt{2}z)\|_{L^2(R_z^+)} \right]_{\nu=\nu_k(\rho)} \qquad k \in N_0.$$

If λ is not an eigenvalue for the problem (3.1), the function

(3.12)
$$\omega_{\lambda}(z;\rho,f) = w_{-\frac{\lambda+1}{2}}(\sqrt{2}z;\rho,f)$$

is solution of (3.1); moreover if this problem admits a solution in $\mathcal{S}(\overline{R}_z^+)$, it is $\omega_{\lambda}(z; \rho, f)$.

From (3.8) and (3.12) one deduces that the elements of sequence $\{\lambda_k(\rho)\}_{k \in N_0}$ are the only singular points of $\omega_{\lambda}(z; \rho, f)$ and they are poles of first order.

Called $R_k(z; \rho)$ the residue of $\omega_{\lambda}(z; \rho, f)$ in $\lambda_k(\rho)$, by simple calculations one proves

(3.13)
$$R_k(z;\rho) = \varphi_k(z;\rho) \int_0^{+\infty} \varphi_k(s;\rho) f(s) \, ds \qquad k \in N_0.$$

It is easy to prove that from (3.8) and (3.12) follows that if $f \in C_0^{\infty}(\overline{R}_z^+)$ the function $\omega_{\lambda}(z; \rho, f)$ belongs to $\mathcal{S}(\overline{R}_z^+)$ for every $\lambda \in C$ such that λ is not an eigenvalue for (3.1).

Now fixed $\rho \in R$ and put

(3.14)
$$m_{\rho} = \begin{cases} 0 & \text{if } \rho \ge 0\\ 16\rho^2 & \text{if } \rho < 0 \end{cases}$$

we prove the following

Theorem 3.2. - Let
$$f \in C_0^{\infty}(R_z^+)$$
. If

$$(3.15) Re\,\lambda > m_{\rho}$$

we have

(3.16)
$$\|\omega_{\lambda}(z;\rho,f)\| \leq 2\sqrt{2} \frac{\|f\|}{|\lambda|}.$$

Proof. If $\lambda \in C$ verifies (3.15), the function $\omega_{\lambda}(z; \rho, f)$ is well defined because by Proposition 1.2 we have $\lambda_0(\rho) < 0$ if $\rho \ge 0$ and $\lambda_0(\rho) < 12\rho^2$ if $\rho < 0$. That being said, because $\omega_{\lambda}(z; \rho, f) \in \mathcal{S}(\overline{R}_z^+)$ is solution of the problem (3.1), we obtain

(3.17)
$$\lambda \|\omega_{\lambda}\|^{2} + 2\rho |\omega_{\lambda}(0)|^{2} + \|\omega_{\lambda}'\|^{2} + \|z\omega_{\lambda}\|^{2} = \int_{0}^{+\infty} f(z)\overline{\omega}_{\lambda}(z) dz$$

If $|\operatorname{Arg} \lambda| \ge \pi/4$, equalizing the imaginary parts in (3.17) we have (3.16). Now we suppose $0 \le |\operatorname{Arg} \lambda| \le \pi/4$. If $\rho \ge 0$, we obtain (3.16) equalizing the real parts in (3.17). If $\rho < 0$, being

(3.18)
$$|\omega_{\lambda}(0)|^{2} \leq 2 ||\omega_{\lambda}|| ||\omega_{\lambda}'|| \leq 4|\rho| ||\omega_{\lambda}||^{2} + \frac{1}{4|\rho|} ||\omega_{\lambda}'||^{2}$$

from (3.17) we have

(3.19)
$$(Re\,\lambda - 8\rho^2) \|\omega_{\lambda}\|^2 + \frac{1}{2} \|\omega_{\lambda}'\|^2 + \|z\omega_{\lambda}\|^2 \le \|f\| \|\omega_{\lambda}\|.$$

By (3.14) and (3.15) we have

$$Re \,\lambda - 8
ho^2 \ge Re \,\lambda - rac{m_
ho}{2} \ge rac{1}{2}Re \,\lambda \ge rac{1}{2\sqrt{2}}|\lambda|$$

and so (3.16).

Now we put

(3.20)
$$|||w||| = ||w|| + ||zw|| + ||w'|| \quad \forall w \in \mathcal{S}(\overline{R}_z^+)$$

and prove the following

Theorem 3.3. If $\lambda \in C-] - \infty$, m_{ρ}] there is a constant $c = c(\lambda, \rho)$ such that

(3.21)
$$\||\omega_{\lambda}(z;\rho,f)\|| \le c \|f\| \qquad \forall f \in C_0^{\infty}(\overline{R}_z^+).$$

Proof. If $\lambda \in C -] - \infty$, m_{ρ}] with $Im \lambda \neq 0$ there is $\theta_0 \in]0, \pi/2[$ such that $\theta_0 \leq |\operatorname{Arg} \lambda| \leq \pi - \theta_0$.

Equalizing the imaginary parts in (3.17) we have

(3.22)
$$\|\omega_{\lambda}\| \leq \frac{\|f\|}{|\lambda|\sin\theta_0} \qquad f \in C_0^{\infty}(\overline{R}_z^+),$$

and by (3.18) one obtains

$$|\omega_{\lambda}(0)|^{2} \leq \frac{4|\rho|}{|\lambda|^{2} \sin^{2} \theta_{0}} ||f||^{2} + \frac{1}{4|\rho|} ||\omega_{\lambda}'||^{2}$$

so (3.21) follows from (3.17) in the case $Im \ \lambda \neq 0$. If $\lambda = Re \lambda$, being $\lambda > m_{\rho}$, (3.21) follows directly from (3.19).

From (3.17) by similar calculations we deduce

Proposition 3.4. *For every* $\delta > 0$ *, if* $|Im \lambda| > \delta$ *, then*

$$\left|\omega_{\lambda}(z;\rho,f)\right| \leq c(|\lambda|+m_{\rho})^{1/2} \|f\| \qquad \forall z \in \overline{R}_{z}^{+}, \quad \forall f \in C_{0}^{\infty}(\overline{R}_{z}^{+}),$$

where *c* is a constant depending only of δ .

4. A holomorphic semigroup.

We have recourse to Semigroups Theory to solve the problem (I). In order to make more simple the reading of this section, we report a theorem which descends from the mutually equivalent of three conditions proved by Yosida (see [7]).

Theorem 4.1. - Let $\{T_{\tau}; \tau \ge 0\}$ be an equi-continuous semigroup of class (C_0) and let A be its infinitesimal generator. If

i) a positive constant C_1 exists such that the family of operators

$$\left\{ \left(C_1 \lambda R(\lambda; A) \right)^n \right\}$$

is equi-continuous with respect to $n \ge 0$ and to λ with $Re \lambda \ge 1 + \varepsilon$, $\varepsilon > 0$, then we have also:

1) there exists an angle $\theta_0 \in [0, \pi/2[$ such that the resolvent set of A, $\rho(A)$, includes the set

$$\sum_{m,\theta_0} = \left\{ \lambda \in C : |\lambda| \ge m \text{ and } |\operatorname{Arg} \lambda| \le \pi - \theta_0 \right\}$$

with m suitably large;

2) for every $x \in X$ and $\tau > 0$ we have

$$T_{\tau}x = \frac{1}{2\pi i} \int_{C_2} e^{\lambda \tau} R(\lambda; A) x d \lambda$$

where the path of integration $C_2 = \lambda(\sigma), -\infty < \sigma < +\infty$, is such that $\lim_{|\sigma| \to +\infty} |\lambda(\sigma)| = +\infty$ and for some $\varepsilon > 0$,

$$\pi/2 + \varepsilon \le \operatorname{Arg} \lambda(\sigma) \le \pi - \theta_0 \quad and \quad -(\pi - \theta_0) \le \operatorname{Arg} \lambda(\sigma) \le -(\pi/2 + \varepsilon)$$

when $\sigma \to +\infty$ and $\sigma \to -\infty$ respectively;

3) exists $\theta_1 \in [0, \pi/2[$ such that T_{τ} admits a weakly holomorphic extension $T_{\lambda} f \text{ or } |\text{Arg } \lambda| \leq \theta_1$, that is T_{τ} is a holomorphic semigroup.

Now we introduce the following operator

$$A: \omega \in \mathscr{S}(\overline{R}_z^+) \to A\omega = \left(\frac{d^2}{dz^2} - z^2\right)\omega.$$

By Theorems of section 3 we can be able to extend A to more general spaces. Let $H(R_z^+)$ be the subspace of $H^1(R_z^+)$ formed by functions ω with $|||\omega||| < +\infty$ for which there is a sequence $\{\omega_n\} \subset \mathcal{S}(\overline{R}_z^+)$ such that:

(4.1)
$$\lim_{n} |||\omega_n - \omega||| = 0,$$

(4.2)
$$\{A\omega_n\}_{n\in N_0}$$
 is convergent to an element of $L^2(R_z^+)$.

If $\omega \in H(R_z^+)$ then $\lim_{n \to \infty} A\omega_n$ is independent of $\{\omega_n\}$, so it is right to put

$$A\omega = \lim_{n} A\omega_n$$
 in $L^2(R_z^+)$.

We equip $H(R_z^+)$ by the norm:

(4.3)
$$\|\omega\|_{H} = \|\|\omega\|\| + \|A\omega\|,$$

so $H(R_z^+)$ is a complete Banach space.

For every $\rho \in R$, let $D(A, \rho)$ be a subspace of $H(R_z^+)$. We say that the function ω belongs to $D(A, \rho)$ if

(4.4)
$$\int_{0}^{+\infty} (A\omega)\nu \, dz = \int_{0}^{+\infty} \omega(A\nu) \, dz \qquad \forall \nu \in C_0^{\infty}(\overline{R}_z^+): \quad \nu'(0) = 2\rho\nu(0).$$

It is clear that $D(A, \rho)$ is a close subspace of $H(R_z^+)$, dense in $L^2(R_z^+)$, moreover if $\omega \in H^2(R_z^+) \cap D(A, \rho)$, we have $\omega'(0) = 2\rho\omega(0)$. It is easy to prove that the operator A, with domain $D(A, \rho)$ and range in $L^2(R_z^+)$, is a close operator.

Let $\omega_{\lambda}(z) = \omega_{\lambda}(z; \rho, f)$ the function defined by (3.12) and (3.8). We prove:

Proposition 4.2. For every $\rho \in R$, let $\lambda \in C-] - \infty$, m_{ρ}]. Then, for every $f \in L^2(R_z^+)$, the function ω_{λ} belongs to $D(A, \rho)$.

Proof. Let $f \in L^2(\mathbb{R}^+_z)$ and $f_n \in C_0^{\infty}(\overline{\mathbb{R}}^+_z)$, $n \in \mathbb{N}$, such that

(4.5)
$$f_n \to f$$
 in $L^2(R_z^+)$.

If $(\omega_{\lambda})_n = \omega_{\lambda}(z; \rho, f_n), \forall n \in N$, we have that $(\omega_{\lambda})_n$ is classical solution of problem (3.1), therefore

(4.6)
$$(\omega_{\lambda})_n \in D(A, \rho) \cap \mathcal{S}(\overline{R}_{\tau}^+)$$

By Theorem 3.3 and by (4.5) we have that the sequence $(\omega_{\lambda})_n$ is foundamental so it is convergent in $H(R_z^+)$. By (3.8) and (3.12) we have

$$(\omega_{\lambda})_n(z) \to \omega_{\lambda}(z) \qquad \forall z \in \overline{R}_z^+.$$

So $\omega_{\lambda} \in H(R_z^+)$ and

$$\|(\omega_{\lambda})_n - \omega_{\lambda}\|_H \to 0.$$

Since $D(A, \rho)$ is a closed subset of $H(R_z^+)$ we have the assert. \Box

We consider the operator

$$A_{m_{\rho}}: \omega \in \mathcal{S}(\overline{R}_{z}^{+}) \to (A - m_{\rho}I)\omega$$

where I is the identity in $S(\overline{R}_{z}^{+})$.

By Proposition 4.2 we obtain that $C-] - \infty$, 0] is included in the resolvent set of $A_{m_{\rho}}$ in $D(A, \rho)$ and results

(4.7)
$$R(\lambda; A_{m_{\rho}})f = \omega_{\lambda+m_{\rho}}(f) \quad \forall f \in L^{2}(R_{z}^{+}).$$

Now we prove the following

Theorem 4.3. For every $\rho \in R$ the operator $A_{m_{\rho}}$, with domain $D(A, \rho)$, is the infinitesimal generator of a contraction semigroup of class (C_0) in $L^2(R_z^+)$. This semigroup is also holomorphic.

Proof. We prove that for every $\rho \in R$, $A_{m_{\rho}}$ and $D(A, \rho)$ satisfy hypotheses of Philips and Lumer Theorem (see [7]).

It is obvious that the range of $A_{m_{\rho}}$ and $D(A, \rho)$ are subspaces of $L^{2}(R_{z}^{+})$. The density of $D(A, \rho)$ in $L^{2}(R_{z}^{+})$ has been observed. By Proposition 4.2 and by (4.7) we have that the range of $I - A_{m_{\rho}}$ is $L^{2}(R_{z}^{+})$. We must only verify that $A_{m_{\rho}}$ is dissipative. In order to do this, let $\omega \in D(A, \rho)$ and let $\{\omega_{n}\}$ be a sequence of $S(\overline{R}_{z}^{+})$ corvenging to ω in $H(R_{z}^{+})$. Since

(4.8)
$$\int_{0}^{+\infty} A_{m_{\rho}}(\omega_{n})\overline{\omega}_{n} dz = -m_{\rho} \|\omega_{n}\|^{2} - 2\rho |\omega_{n}(0)|^{2} - \|\omega_{n}'\|^{2} - \|z\omega_{n}\|^{2}$$

we have

$$Re\int_{0}^{+\infty}A_{m_{\rho}}(\omega_{n})\overline{\omega}_{n}\,dz\leq0,$$

 $\|^{2}$

(this is obvious if $\rho \ge 0$, if $\rho < 0$ it follows from (3.18) and (3.16)). Passing to limit in (4.8), we have that the operator $A_{m_{\rho}}$ is dissipative.

We denote by $\{\overline{T}_{\tau,\rho}, \tau \geq 0\}$ the contraction semigroup of class (C_0) generated by $A_{m_{\rho}}$.

By Theorem 3.2 we have that the condition i) of Theorem 4.1 is verified, so $\{\overline{T}_{\tau,\rho}, \tau \ge 0\}$ is a holomorphic semigroup. The theorem is proved. \Box

Now we are able to prove

Theorem 4.4. For every $\rho \in R$ the operator A, with domain $D(A, \rho)$, is the infinitesimal generator of a holomorphic semigroup $\{T_{\tau,\rho}, \tau \ge 0\}$ and results

(4.9)
$$T_{\tau,\rho} = e^{m_{\rho}\tau}\overline{T}_{\tau,\rho}.$$

Proof. Since the operator $m_{\rho}I$ is bounded by Theorem 4.3 we have that $A = A_{m_{\rho}} + m_{\rho}I$ is the infinitesimal generator of a holomorphic semigroup $\{T_{\tau,\rho}, \tau \ge 0\}$ (see [5], chapter 3, section 3.2, Corollary 2.2), and its expression is given by (4.9).

Theorem 4.5. For every $f \in L^2(\mathbb{R}^+_z)$ and for every $\rho \in \mathbb{R}$, results

(4.10)
$$T_{\tau,\rho}f(z) = \sum_{k=0}^{+\infty} e^{\lambda_k(\rho)\tau} \varphi_k(z;\rho) \int_0^{+\infty} f(z') \varphi_k(z';\rho) dz'$$

$$\forall \tau > 0, \ \forall z \in \overline{R}_z^+.$$

Proof. By 2) of Theorem 4.1 and by (4.7) we have

(4.11)
$$\overline{T}_{\tau,\rho}f(z) = \frac{1}{2\pi i} \int_{C_2} e^{\lambda \tau} \omega_{\lambda+m_\rho}(z) \, d\lambda.$$

By sostitution $\lambda + m_{\rho} \rightarrow \lambda$, from (4.9) we have

(4.12)
$$T_{\tau,\rho}f(z) = \frac{1}{2\pi i} \int_{C_2} e^{\lambda \tau} \omega_{\lambda}(z) \, d\lambda$$

here C_2 is the path included in \sum_{m,θ_0} of the type showed in Picture 1

We fix now $z \in \overline{R}_z^+$. If τ is large enough and $f \in C_0^{\infty}(\overline{R}_z^+)$, it is possible to evaluate integral (4.12) by residues method. Fixed $n \in N$, let γ_n be the path in Picture 2.

By (3.13) we have

(4.13)
$$\frac{1}{2\pi i} \lim_{n \to +\infty} \oint_{\gamma_n} e^{\lambda \tau} \omega_{\lambda}(z) d\lambda = \sum_{k=0}^{+\infty} e^{\lambda_k(\rho)\tau} R_k[z;\rho] =$$

$$=\sum_{k=0}^{+\infty}e^{\lambda_k(\rho)\tau}\varphi_k(z;\rho)\int_0^{+\infty}f(z')\varphi_k(z';\rho)\,dz'.$$

Let s_n be the segment of γ_n belonging to the straight line of equation $Re \lambda = -(4n + 3)$; let δ be a positive number for which the Proposition 3.1 holds. We have:

$$\left| (s_n) \int_{|Im\lambda| < \delta} e^{\lambda \tau} \omega_{\lambda}(z) \, d\lambda \right| \le \delta \mu^n e^{-(4n+3)\tau} \max |f|$$

so if τ such that

 $(4.14) e^{4\tau} > \mu$

results

$$\lim_{n\to+\infty} (s_n) \int_{|Im\lambda|<\delta} e^{\lambda\tau} \omega_{\lambda}(z) \, d\lambda = 0.$$

Then by Proposition 3.4 we have

$$\left| (s_n) \int_{|Im\lambda| > \delta} e^{\lambda \tau} \omega_{\lambda}(z) \, d\lambda \right| \le e^{-(4n+3)\tau} O(n^{\frac{3}{2}}) \|f\|$$

.

and so

$$\lim_{n\to+\infty} (s_n) \int_{|Im\,\lambda|>\delta} e^{\lambda\tau} \omega_{\lambda}(z) \, d\lambda = 0.$$

Then (4.10) follows from (4.13) for $f \in C_0^{\infty}(\overline{R}_z^+)$ and τ satisfying (4.14). Moreover the series

$$\sum_{k=0}^{+\infty} e^{\lambda_k(\rho)\lambda} \varphi_k(z;\rho) \int_0^{+\infty} f(z') \varphi_k(z';\rho) dz' \quad \lambda \in C$$

for $Re \ \lambda \ge a > 0$ is increased in absolute value by series $M \| f \| \sum_{k=0}^{+\infty} e^{-(4k-3)a} k^{\frac{1}{4}}$, for (2.8) and (2.10), so it is a holomorphic function with respect to λ in the halfplane $Re \ \lambda > 0$. By 3) of Theorem 4.1 and by Principle of identity for holomorphic functions, we have (4.10) $\forall \tau > 0$. Since $C_0^{\infty}(\overline{R}_z^+)$ is dense in $L^2(R_z^+)$ we have the thesis. \Box

From this theorem we get

338

Theorem 4.6. For every $\rho \in R$, the system $\{\varphi_k(z; \rho)\}_{k \in N_0}$ is complete in $L^2(R_z^+)$.

We conclude this section with a theorem of representation

Theorem 4.7. Let $\rho \in R$ and $\lambda \in C$. If $\lambda \neq \lambda_k(\rho)$, $\forall k \in N_0$, and $f \in L^2(\mathbb{R}^+_z)$, the function $\omega_{\lambda}(z; \rho, f)$ belongs to $D(A, \rho)$ and it has the following representation:

(4.15)
$$\omega_{\lambda}(z;\rho,f) = \sum_{k=0}^{+\infty} \frac{\varphi_k(z;\rho)}{\lambda - \lambda_k(\rho)} \int_0^{+\infty} f(z')\varphi_k(z';\rho) dz'.$$

Proof. We fix $\lambda \neq \lambda_k(\rho)$, $\forall k \in N_0$, and $f \in C_0^{\infty}(R_z^+)$. In this case $\omega_{\lambda}(z; \rho, f) \in S(\overline{R}_z^+)$ and we find that its Fourier expansion in terms of the system $\{\varphi_k(z; \rho)\}$ is the series in (4.15).

If $\lambda \notin [-\infty, m_{\rho}]$ results $\omega_{\lambda}(z; \rho, f) \in D(A, \rho)$ for every $f \in L^{2}(R_{z}^{+})$ (see Prop. 4.2), and by an approximation argument we arrive at (4.15) $\forall f \in L^{2}(R_{z}^{+})$. Finally, being $\omega_{\lambda}(z; \rho, f)$ weakly holomorphic in $C - \bigcup_{k \in N_{0}} \{\lambda_{k}(\rho)\}$, we have the

thesis. \Box

5. Proof of Theorem I.

Let $g \in L^2(\mathbb{R}^+_z)$ be, put

$$u(\tau, z) = T_{\tau,\rho}g(z);$$

by results of previous section we deduce that

$$u(\tau, z) \in C^{0}(\overline{R}_{\tau}^{+}, L^{2}(R_{z}^{+})) \cap C^{\infty}(R_{\tau}^{+} \times \overline{R}_{z}^{+})$$

and $u(\tau, z)$ is solution of problem (I). If now $\Phi(\tau, z, z'; \rho)$ is the distribution defined in (II) and (III), by Theorem 4.5 we obtain

$$u(\tau,z) = \int_0^{+\infty} \Phi(\tau,z,z';\rho)g(z')\,dz' \quad \tau > 0.$$

Now we are able to prove Theorem I.

Since $\lambda_k(\rho) = -(2\nu_k(\rho) + 1) \to -\infty, \forall \rho \in R$, from Proposition 2.1 follows that series in (III) converges in $C^{\infty}(R_{\tau}^+ \times \overline{R}_{z}^+ \times \overline{R}_{z'}^+)$. Moreover, denoting by <, > the duality pairing between $C_0^{\infty}(R_z^+)$ and $\mathcal{D}'(R_z^+)$, if $g \in C_0^{\infty}(R_z^+)$ we have

$$<\Phi(au,z,z';
ho), g(z')>=\sum_{k=0}^{+\infty}e^{\lambda_k(
ho) au}arphi_k(z;
ho)g_k \qquad au\geq 0, \ z\geq 0,$$

where

$$g_k = \int_0^{+\infty} g(z)\varphi_k(z;\rho)\,dz.$$

Being $g \in C_0^{\infty}(R_z^+)$,

$$g_k = \int_0^{+\infty} g(z) \frac{A^m \varphi_k(z;\rho)}{\lambda_k^m(\rho)} dz = \int_0^{+\infty} A^m g(z) \frac{\varphi_k(z;\rho)}{\lambda_k^m(\rho)} dz \quad \forall m \in N_0 \ \forall k \in N,$$

follows $\forall k \in N$

$$|g_k| \leq c \|A^m g\|k^{-m} \quad \forall m \in N_0,$$

so

$$< \Phi(\tau, z, z'; \rho), g(z') > | \le c ||A^m g|| \quad \forall \tau \ge 0$$

and

$$< \Phi(\tau, z, z'; \rho), g(z') > \in C^0(\overline{R}^+_\tau \times \overline{R}^+_z) \qquad \forall g \in C^\infty_0(R^+_z).$$

In this way we have proved that $\Phi(\tau, z, z'; \rho) \in C^0(\overline{R}_{\tau}^+ \times \overline{R}_{z}^+, \mathcal{D}'(R_{z'}^+))$. Straight through one proves $(IV)_1$ and $(IV)_2$; moreover being

$$<\Phi(\tau,z,z';\rho), g(z')>=T_{\tau,\rho}g(z) \qquad (\tau,z)\in R_{\tau}^+\times\overline{R}_z^+ \quad \forall g\in C_0^\infty(R_{z'}^+)$$

we have

$$\lim_{\tau \to 0} \langle \Phi(\tau, z, z'; \rho), g(z') \rangle = T_{0,\rho}g = g(z),$$

and so $(IV)_3$. This concludes the proof of Theorem. \Box

REFERENCES

- [1] A. Avantaggiati, *Sviluppi in serie di Hermite-Fourier e condizione di analiticità e quasi analiticità*, Methods of Functional Analysis and Theory of Elliptic Equations, Proceeding of the International Meeting, 1982.
- [2] N. D'Auria O. Fiodo, *Su un problema parabolico degenere*, Rend. Acc. Sc. Fis. e Mat. della Società Naz. Sci. Lettere ed Arti in Napoli, serie IV, vol. LIX, 1992.
- [3] E. Magnus Oberhettinger Tricomi, *Higher transcendental function*, "Bateman Project" vol. II McGraw-Hill, New York, 1953.
- [4] L. Gatteschi, *Funzioni speciali*, Collezione di Matematica Applicata, 5 UTET, Torino, 1973.
- [5] A. Pazy, Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
- [6] F. G. Tricomi, Funzioni ipergeometriche confluenti, Cremonese, Roma, 1954.
- [7] K. Yosida, *Functional Analysis*, Fourth Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Via Cintia, Compl. Monte S. Angelo 80126 Napoli (Italy)