TRIANGULAR PROJECTIVE PLANES OF ORDER q AND $(q+1)$-ARCS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

Abstract

We suitably define the triangular projective planes of order q and connect them with the $(q+1)$-arcs. In particular, a finite projective plane is either triangular, or contains a lot of $(q+1)$-arcs.

1. Introduction.

We define 4-triangle of an affine plane α_{q} the set $T=\left\{V, B_{1}, B_{2}, B_{3},\right\}$, where B_{1}, B_{2}, and B_{3} are three distinct points lying on a line b and V is a point outside b. Let d be a direction of α_{q}. A 4-triangular d-family of α_{q} is a family \mathcal{T} of 4 - triangles satysfying three suitable conditions involving the direction d of α_{q} which we call triangular direction. The plane α_{q} is triangular if any direction is triangular. A projective plane π_{q} is triangular if every affine plane obtained by deleting a line of π_{q} is triangular. The reason of defining the triangular planes is that either π_{q} is triangular, or it contains a point through which the number of $(q+1)$-arcs is at least $(q-1)$!. In desarguesian planes the triangularity is satisfied if q is odd and $q \geq 9$.

2. Finite Triangular Planes.

Let α_{q} be a finite affine plane of order $q \geq 3$. Let b be a line of α_{q} and B_{1}, B_{2}, B_{3} three distinct points of b. Let V be a point of $\alpha_{q}-b$. We call 4triangle of α_{q} the set $T=\left\{V, B_{1}, B_{2}, B_{3}\right\}$. The set $\mathscr{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$ is called base of T and the line b is called base-line of T. The point V is called vertex of T. The line $l_{j}=V B_{j}, j=1,2,3$, is called edge of T and the point B_{j} is called base-point of the edge l_{j} in $T, j=1,2,3$. Obviously the notion of 4 -triangle is invariant under the affinities of α_{q}. Let d be a direction of α_{q}. We call 4-triangular d-family of α_{q} a family \mathcal{T} of 4-triangles such that the following conditions hold:
(1) Every point of α_{q} is the vertex of a unique element of \mathcal{T} and therefore \mathcal{T} is a covering of α_{q}. Two distinct elements of \mathcal{T} meet in at most one point. The edges and the base-lines of any $T \in \mathcal{T}$ have directions distinct from d.
(2) Let V be a base-point of $T^{\prime} \in \mathcal{T}$. If V^{\prime} is the vertex of T^{\prime} and \mathscr{B} is the base of the element of \mathcal{T} whose vertex is V, then $\mathscr{B} \cap V V^{\prime}=\emptyset$.
(3) Let l be an edge of $T \in \mathcal{T}$ and let l^{\prime} be an edge of $T^{\prime} \in \mathcal{T}, T \neq T^{\prime}$. Let B, B^{\prime} be the base-points of l and l^{\prime} in T and T^{\prime} respectively. Then $B=B^{\prime}$ if and only if $l=l^{\prime}$. If $B \neq B^{\prime}$ (and then $l \neq l^{\prime}$), the edges l and l^{\prime} are parallel, if and only if the direction of the line $B B^{\prime}$ is d. If $B=B^{\prime}$ (and then $l=l^{\prime}$), let $V^{\prime \prime}$ and $V^{\prime \prime \prime}$ be two distinct points of l. Let $T^{\prime \prime}$ and $T^{\prime \prime \prime}$ be the elements of \mathcal{T} whose vertices are $V^{\prime \prime}$ and $V^{\prime \prime \prime}$. Then either $T^{\prime \prime} \cap T^{\prime \prime \prime}=\emptyset$ or $T^{\prime \prime} \cap T^{\prime \prime \prime}=\{B\}$.

The notion of 4-triangular d-family is invariant under the affinities of α_{q}. From (1), (2), (3) the following properties of the family \mathcal{T} hold.

Theorem 1. Let s be a line of α_{q} with direction d and let V^{\prime} and $V^{\prime \prime}$ be two distinct points of s. Let T^{\prime} and $T^{\prime \prime}$ be the 4-triangles of vertices V^{\prime} and $V^{\prime \prime}$. Then $T^{\prime} \cap T^{\prime \prime}=\emptyset$.

A direction d of α_{q} is called triangular if in α_{q} a 4-triangular d-family \mathcal{T} exists. We say that α_{q} is triangular if any direction of α_{q} is triangular. A projective plane π_{q} is called triangular if any affine plane α_{q} embedded in π_{q} is triangular. It is easy to check that

Theorem 2. The affine plane $A G(2, q)$ is triangular if and only if there is a triangular direction in $A G(2, q)$.

From Theorem 2 it follows that the notion of triangular affine plane is significant if the plane is non-desarguesian. Obviously we get

Theorem 3. The plane $P G(2, q)$ is triangular if and only if $A G(2, q)$ is triangular.

From Theorem 3 it follows that the notion of triangular projective plane is significant if the plane is non-desarguesian.

Theorem 4. In $A G(2,3)$ triangular directions do not exist. Therefore $A G(2,3)$ is not triangular.

Proof. Assume that d is a triangular direction in $A G(2,3)$ and let \mathcal{T} be a 4triangular d-family in $A G(2,3)$. From (1) the directions of the edges and of the base-line of $T \in \mathcal{T}$ are distinct and different from d. Then there are five distinct directions in $A G(2,3)$. A contradiction, since in $A G(2,3)$ there are exactly four directions. So the theorem is proved.

From theorem 3 and Theorem 4 it follows
Theorem 5. The plane $P G(2,3)$ is not triangular.
Theorem 6. The plane $A G(2,4)$ is triangular.
Proof. The points and the lines of $A G(2,4)$ are the following.
Points of $A G(2,4)$:

$$
\left\{V, V^{\prime}, V^{\prime \prime}, V^{\prime \prime \prime}, A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}, B, B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}, C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}\right\}
$$

Lines of $A G(2,4)$:

$$
\begin{array}{r}
\left\{V, V^{\prime}, V^{\prime \prime}, V^{\prime \prime \prime}\right\},\left\{A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}\right\},\left\{B, B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}\right\},\left\{C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}\right\} \\
\left\{V, A^{\prime}, B^{\prime}, C^{\prime}\right\} \\
\left\{V^{\prime}, A, B, C\right\},\left\{V^{\prime \prime}, A^{\prime \prime \prime}, B^{\prime \prime \prime}, C^{\prime \prime \prime}\right\},\left\{V^{\prime \prime \prime}, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}\right\},\left\{V, A, B^{\prime \prime \prime}, C^{\prime \prime}\right\} \\
\left\{V^{\prime \prime \prime}, A^{\prime \prime \prime}, B, C^{\prime}\right\} \\
\left\{V, B, C^{\prime \prime \prime}, A^{\prime \prime}\right\},\left\{V, C, B^{\prime \prime}, A^{\prime \prime \prime}\right\},\left\{A^{\prime}, V^{\prime}, C^{\prime \prime \prime}, B^{\prime \prime}\right\},\left\{A^{\prime}, C, B^{\prime \prime \prime}, V^{\prime \prime \prime}\right\}, \\
\left\{A^{\prime}, B, V^{\prime \prime}, C^{\prime \prime}\right\}, \\
\left\{B^{\prime} C, A^{\prime \prime}, V^{\prime \prime}\right\},\left\{A, B^{\prime}, C^{\prime \prime \prime}, V^{\prime \prime \prime}\right\},\left\{B^{\prime}, V^{\prime}, A^{\prime \prime \prime}, C^{\prime \prime}\right\},\left\{C^{\prime}, V^{\prime}, A^{\prime \prime}, B^{\prime \prime \prime}\right\}, \\
\left\{C^{\prime}, B^{\prime \prime}, V^{\prime \prime}, A\right\},
\end{array}
$$

Let d be the direction of the line $\left\{V, V^{\prime}, V^{\prime \prime}, V^{\prime \prime \prime}\right\}$ and let \mathcal{T} be the following
family of 4-triangles whose vertices are the first ones of every following quadruple of points:

$$
\begin{aligned}
& \{V, A, B, C\},\left\{V^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right\},\left\{V^{\prime \prime}, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}\right\},\left\{V^{\prime \prime \prime}, A^{\prime \prime \prime}, B^{\prime \prime \prime}, C^{\prime \prime \prime}\right\} \\
& \left\{A^{\prime}, V, B^{\prime \prime \prime}, C^{\prime \prime}\right\},\left\{B^{\prime}, V, A^{\prime \prime}, C^{\prime \prime \prime}\right\},\left\{C^{\prime}, V, B^{\prime \prime}, A^{\prime \prime \prime}\right\},\left\{A, V^{\prime}, B^{\prime \prime}, C^{\prime \prime \prime}\right\} \\
& \left\{B, V^{\prime}, A^{\prime \prime \prime}, C^{\prime \prime}\right\},\left\{C, V^{\prime}, A^{\prime \prime}, B^{\prime \prime \prime}\right\}\left\{A^{\prime \prime}, V^{\prime \prime \prime}, B, C^{\prime}\right\},\left\{B^{\prime \prime}, V^{\prime \prime \prime}, A^{\prime}, C\right\} \\
& \left\{C^{\prime \prime}, V^{\prime \prime \prime}, B^{\prime}, A\right\},\left\{A^{\prime \prime \prime}, V^{\prime \prime}, B^{\prime}, C\right\},\left\{B^{\prime \prime \prime}, V^{\prime \prime}, A, C^{\prime}\right\},\left\{C^{\prime \prime \prime}, V^{\prime \prime}, A^{\prime}, B\right\}
\end{aligned}
$$

It is easy to check that \mathcal{T} is a 4-triangular d-family of $A G(2,4)$. Since in $A G(2,4)$ the direction d is triangular and from Theorem 2 the proof follows.

From Theorem 3 and Theorem 6 it follows that
Theorem 7. The plane $P G(2,4)$ is triangular.

3. Triangular Planes and $(q+1)$-arcs.

A k-arc of α_{q} is a set of k points three by three non-collinear. In α_{q} a line l is called tangent to a set S, if $|l \cap S|=1$. Let d be a direction of α_{q}. We say that a q-arc \mathcal{C} is d-tangent if every line with direction d is tangent to \mathcal{C}.
The following main Theorem holds.
Theorem 8. Let d be a direction of α_{q}. If in $\alpha_{q} d$-tangent q-arcs do not exist, then the direction d is triangular. It follows that, if d is not triangular, there is a d-tangent q-arc in α_{q}
Proof. Assume that d-tangent q-arcs do not exist in α_{q}. Let $s_{1}, s_{2}, \ldots, s_{q}$ be the lines of α_{q} whose common direction is d and let $d_{1}, d_{2}, \ldots, d_{q}$ be the directions of α_{q} different from d. Let $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{q}\right\}$ and $\Delta=$ $\left\{d_{1}, d_{2}, \ldots, d_{q}\right\}$. Consider the following bijection

$$
\varphi: s_{j} \in S \rightarrow d_{j} \in \Delta
$$

Let P be a point of α_{q}. Then there is a unique index $j, 1 \leq j \leq q$, such that $P \in s_{j}$. Let $r(P)$ be the line of α_{q} through P whose direction is $d_{j}=\varphi\left(s_{j}\right)$. The direction of $r(P)$ is different from d. Let \mathcal{R} be the set of lines of α_{q}. Consider the following mapping:

$$
r: P \in \alpha_{q} \rightarrow r(P) \in \mathcal{R}-S
$$

It is easy to prove that r is a bijection. We call the line $r(P)$ the pseudopolar of P and P the pseudopole of $r(P)$. Let V be a point of α_{q} and s_{j} the line of \mathcal{S} through V. Let $l_{1}, l_{2}, \ldots, l_{q}$ be the lines of α_{q} through V different from s_{j} and let L_{i} be the pseudopole of $l_{i}, i=1,2, \ldots, q$. Let $L=$ $\left\{L_{1}, L_{2}, \ldots, L_{q}\right\}$. Since the lines $l_{1}, l_{2}, \ldots, l_{q}$ are distinct and r is a bijection, the points $L_{1}, L_{2}, \ldots, L_{q}$ are distinct. It follows that $|L|=q$. We remark that every line of δ contains a unique point of L. Moreover, every point $L_{i} \in L, L_{i} \neq V$, is the pseudopole of the line $L_{i} V$. The set L cannot be an arc, otherwise L is a d-tangent q-arc of α_{q}, a contradiction. Therefore there are distinct points $L_{i_{1}}, L_{i_{2}}, L_{i_{3}}$ of L belonging to a line b whose direction is obviously distinct from d. Let us prove that $V \notin b$. Assume $V \in b$. Then at least two points X, Y of the set $\left\{L_{i_{1}}, L_{i_{2}}, L_{i_{3}}\right\}$ are distinct from V. The points X and Y are two distinct pseudopoles of b : a contradiction, since r is a bijection. This proves that $V \notin b$. It follows that the set $\left\{V, L_{i_{1}}, L_{i_{2}}, L_{i_{3}}\right\}$ is a 4-triangle with vertex V and base $\left\{L_{i_{1}}, L_{i_{2}}, L_{i_{3}}\right\}$. The point $L_{i_{s}}$ is the pseudopole of the edge $L_{i_{s}} V, s=1,2,3$, and the base-line has not the direction d. For any $V \in \alpha_{q}$ we construct a 4-triangle as above. In such a way we obtain a family \mathcal{T} of 4-triangles.

Let us prove that \mathcal{T} is a 4 -triangular d-family of α_{q}. Every point of α_{q} is the vertex of a unique element of \mathcal{T} by construction. We remark that the pseudopolar of every point of $T \in \mathcal{T}$ contains the vertex of T. Now let $T, T^{\prime} \in \mathcal{T}, T \neq T^{\prime}$. Assume $\left|T \cap T^{\prime}\right| \geq 2$ and let X, Y be two distinct points of $T \cap T^{\prime}$. The line $X Y$ does not belong to \mathcal{S}, otherwise X and Y are two distinct points of T belonging to a line of \mathcal{S}, but the edges and the base of T have not the direction d. It follows that the lines $s_{X}, s_{Y} \in \mathcal{S}$ through X, Y respectively are distinct. Since $s_{X} \neq s_{Y}$, it follows that $\varphi\left(s_{X}\right) \neq \varphi\left(s_{Y}\right)$ and the lines $r(X), r(Y)$ are not parallel. Let $Z=r(X) \cap r(Y)$. Since $X \in T, Y \in T$, it follows that Z is the vertex of T, because we remarked that in any $T \in \mathcal{T}$ the pseudopolars of the points of T contain the vertex of T. Similarly, from $X \in T^{\prime}, Y \in T^{\prime}$, it follows that Z is the vertex of T^{\prime}. Since $T \neq T^{\prime}$ and their vertices are distinct, we have a contradiction which proves that $\left|T \cap T^{\prime}\right| \geq 2$ is impossible. So $\left|T \cap T^{\prime}\right| \leq 1$. The directions of the edges and of the base-line of any $T \in \mathcal{T}$ are distinct from d. So (1) is proved.

Let us prove the condition (2). Assume $\mathscr{B} \cap V V^{\prime} \neq \emptyset$. Then \mathscr{B} and $V V^{\prime}$ meet in a unique point X. Obviously $X \neq V$. The points X and V are two distinct points having the same pseudopolar $V V^{\prime}$, since V is the pseudopole of $V V^{\prime}$ and X is the pseudopole of $X V=V V^{\prime}$: a contradiction, because r is a bijection. So (2) is proved.

Now let us prove (3). The first statement of (3) follows easily since two points of α_{q} coincide, if and only if they have the same pseudopolar. The second
statement follows since two distinct lines of $\mathcal{R}-S$ are parallel, if and only if their pseudopoles belong to the same line of δ. In order to prove the third statement, assume $T^{\prime \prime} \cap T^{\prime \prime \prime} \neq \emptyset$. Then, either $T^{\prime \prime} \cap T^{\prime \prime \prime} \subset\left\{V^{\prime \prime}, V^{\prime \prime \prime}\right\}$, or $T^{\prime \prime} \cap T^{\prime \prime \prime} \not \subset\left\{V^{\prime \prime}, V^{\prime \prime \prime}\right\}$. If $T^{\prime \prime} \cap T^{\prime \prime \prime}=\left\{V^{\prime \prime}\right\}$, the point $V^{\prime \prime}$ belongs to the base of $T^{\prime \prime \prime}$ and then $V^{\prime \prime}$ is the pseudopole of l. Therefore $\{B\}=\left\{V^{\prime \prime}\right\}=T^{\prime \prime} \cap T^{\prime \prime \prime}$ (the point B is the pseudopole of l). Similary, if $T^{\prime \prime} \cap T^{\prime \prime \prime}=\left\{V^{\prime \prime \prime}\right\}$, we get $\{B\}=\left\{V^{\prime \prime \prime}\right\}=T^{\prime \prime} \cap T^{\prime \prime \prime}$. If $T^{\prime \prime} \cap T^{\prime \prime \prime} \not \subset\left\{V^{\prime \prime}, V^{\prime \prime \prime}\right\}$, the point $P=T^{\prime \prime} \cap T^{\prime \prime \prime}$ belongs to the bases of the above triangles. Then, from the first statement, $P \in V^{\prime \prime} V^{\prime \prime \prime}=l$. Moreover $P=B$, since B is the pseudopole of $l=l^{\prime}$. It follows that $T^{\prime \prime} \cap T^{\prime \prime \prime}=\{B\}$. So (3) is proved.

From Theorem 8 it follows
Theorem 9. If in $\alpha_{q} q$-arcs do not exist, then every direction of α_{q} is triangular and therefore α_{q} is triangular. It follows that, if α_{q} is not triangular, then q-arcs in α_{q} do exist.

For projective planes the following result holds.
Theorem 10. If in π_{q} there are not $(q+1)$-arcs, then π_{q} is triangular. It follows that, if π_{q} is not triangular, then π_{q} contains $(q+1)$-arcs.

Proof. Assume that π_{q} does not contain $(q+1)$-arcs. Let \bar{r} be a line of π_{q} and $\alpha_{q}=\pi_{q}-\bar{r}$. Let d be a direction of α_{q}. The plane α_{q} does not contain any d-tangent q-arc \mathcal{C}, otherwise the set $\mathcal{C} \cup\{P\}$, where P is the direction d, is a $(q+1)$-arc of π_{q} and this contradicts the hypothesis. From Theorem 8 it follows that the direction d is triangular and therefore α_{q} is triangular and also π_{q} is triangular. So the theorem is proved.

From Theorem 10 it follows
Theorem 11. Let π_{q} be a finite projective plane of order q. Then, either π_{q} is triangular, or π_{q} contains $(q+1)$-arcs.

4. Triangular planes and their automorphisms.

We recall that a semilinear space is a pair (S, L), where δ is a non-empty set whose elements are called points and L is a family of parts of S whose elements are called lines, such that
L is a covering of \mathcal{S},

$$
|l| \geq 2, \quad \forall l \in L
$$

there is at most one line through two distinct points.
Two points x, y are joinable (and we write $x \sim y$), if the line through them exists, otherwise they are unjoinable (and we write $x \nsucc y$). If $\forall x, y \in S, x \sim y$, the space (S, L) is called linear space, otherwise it is called proper semilinear space.

A subset $\delta^{\prime} \subset S$ is a subspace of (S, L), if and only if for any $x, y \in S^{\prime}$ we have $x \sim y, x y \subset S^{\prime}$. A subspace is maximal, if it is not properly contained in a subspace. A clique is a set of δ consisting of two by two joinable points. An anticlique is a set consisting of two by two unjoinable points. An ovoid is a subset of S meeting any maximal subspace in a unique point. If S is finite and the lines have the same size, (\mathcal{S}, L) is a partial Steiner system. A partial Steiner system is homogeneous, if the number of lines through every point is the same. In [3] M. Scafati and G. Tallini proved that, if (S, L) is a homogeneous partial Steiner system, with $|\mathcal{S}|=v$ and $k=|l|, \forall l \in L$, then for every anticlique A the following holds:

$$
|A| \leq v / k
$$

$$
\begin{equation*}
|A|=v / k \Longleftrightarrow A \text { is an ovoid and the maximal subspaces are the lines. } \tag{4}
\end{equation*}
$$

Let π_{q} be a finite projective plane of order q. A line t of π_{q} is triangular, if the affine plane $\alpha_{q}=\pi_{q}-t$ is triangular. Obviously every automorphism of π_{q} preserves the set of triangular lines, which we denote by \mathcal{R}_{t}. We prove the following theorem:

Theorem 12. Let \mathcal{R} be the set of the lines of π_{q}. If $\mathcal{R}_{t} \neq \emptyset, \mathcal{R}_{t} \neq \mathcal{R}$, then the automorphism group \mathcal{E} of π_{q} is not transitive on the points. It follows that, if \mathcal{E} is transitive on the points, then either $\mathcal{R}_{t}=\emptyset$, or $\mathcal{R}_{t}=\mathcal{R}$.
Proof. Assume $\mathcal{R}_{t} \neq \emptyset, \mathcal{R}_{t} \neq \mathcal{R}$ and $\mathscr{\mathcal { G }}$ transitive on the points. By the assumption, it follows that in π_{q} there are a triangular line r and a non-triangular line $s, r \neq s$. Let $\{P\}=r \cap s$. Since \mathscr{E} is transitive on the points, it follows that the number $n, 1 \leq n<q+1$, of triangular lines through every point of π_{q} is the same. So the pair $\left(S, R_{t}\right)$ is a homogeneous partial Steiner system. Moreover, in $\left(\mathcal{S}, R_{t}\right)$ the maximal spaces are the lines. Obviously the line s is an anticlique and also an ovoid of $\left(S, R_{t}\right)$, since every line of \mathscr{R}_{t} is tangent to s. From (4), it follows

$$
|s|=\left(q^{2}+q+1\right) /(q+1)=1 /(q+1)+q
$$

a contradiction, since the right hand side of the above equation is not an integer. The contradiction proves that \mathcal{E} is not transitive.

We say that π_{q} is totally non-triangular, if π_{q} does not contain triangular lines. From Theorem 12 it follows:

Theorem 13. Let π_{q} be non-triangular. If the automorphism group is transitive on the points, then π_{q} is totally non-triangular.
Proof. From the hypothesis, $\mathscr{R}_{t} \neq \mathcal{R}$ and \mathscr{E} is transitive on the points. Then, from Theorem 12, it follows $\mathcal{R}_{t}=\emptyset$.

For instance, in $P G(2,3)$, which is not triangular (see Theorem 5), the group \mathcal{E} is point transitive and therefore $P G(2,3)$ is totally non-triangular. Moreover, $P G(2,4)$ is triangular (see Theorem 7) and $\mathscr{\mathscr { L }}$ is point transitive.

5. The number of $(q+1)$-arcs in a non-triangular projective plane.

Assume π_{q} is not triangular. Then there is a non-triangular affine plane $\alpha_{q} \subset \pi_{q}$ and therefore in α_{q} there is a non-triangular direction d. If $d_{1}, d_{2}, \ldots, d_{q}$ are the directions of α_{q} different from d and $s_{1}, s_{2}, \ldots, s_{q}$ are the lines of α_{q} whose common direction is d, we choose an arbitrary bijection

$$
\phi:\left\{s_{1}, \ldots, s_{q}\right\} \rightarrow\left\{d_{1}, \ldots, d_{q}\right\}
$$

Since d is not triangular, in α_{q} no 4 -triangular d-families exist. So at least one of the sets L (see Theorem 8) is a d-tangent q-arc. To show this, assume that L is not a q-arc. Then L contains three collinear points L_{1}, L_{2}, L_{3} on a line not through V (since $L_{j} V, j=1,2,3$ is the pseudopolar of L_{j} and the pseudopolarity is a bijection). So L contains a 4 -triangle T whose vertex is V. If all the sets L (depending on V) are not d-tangent q-arcs, the 4 -triangles T are a 4-triangular d-family. A contradiction, since d is not triangular. In conclusion, every bijection ϕ gives rise to at least one d - tangent q-arc. For every ϕ we choose one of such d-tangent q-arcs. The number of the bijections is $q!$, so we get $q!d$-tangent q-arcs (not necessarily distinct).
Denote by $\mathcal{L}=\left\{L_{j}\right\}_{j=1, \ldots, M}$ the family of the distinct d-tangent q-arcs we have chosen ($M \leq q$!). We remark that if we choose the same L_{j} for m_{j} bijections ϕ, then $m_{j} \leq q$.

To show this, let $L_{j}=\left\{A_{1}, \ldots, A_{q}\right\}$ be an element of \mathcal{L}, where $A_{i} \in s_{i}$, $i=1, \ldots, q$. Consider a point $A_{h}, h=1, \ldots, q$ in L_{j}. Associate with each line $s_{i}, i \neq h$, the direction of the line $A_{i} A_{h}$ and with the line s_{h} the direction of the tangent line of L_{j} at the point A_{h}, different from s_{h}. In such a way we construct a bijection ϕ. If we repeat the previous construction for the point $A_{k} \in L_{j}-A_{h}$, we get a bijection $\phi^{\prime} \neq \phi\left(\phi^{\prime} \neq \phi\right.$, since ϕ and ϕ^{\prime} associate with the line s_{k} different directions). In such a way we obtain q different bijections $\phi_{1}, \ldots, \phi_{q}$ which are all the bijections giving rise to the same L_{j}, according to

Theorem 8. So $m_{j} \leq q$. Since $\sum_{j=1}^{M} m_{j}=q$! and $m_{j} \leq q, j=1, \ldots, M$, it follows $q!=\sum_{j=1}^{M} m_{j} \leq \sum_{j=1}^{M} q=q M$, hence $M \geq(q-1)!$.

In π_{q} the union of a q-arc L_{j} and the direction $d=\{P\}$ is a $(q+1)$-arc, so in π_{q} the number of $(q+1)$-arcs through $\{P\}$ is at least $(q-1)$!. So we get

Theorem 14. If π_{q} is not triangular, then there is a point $P \in \pi_{q}$ such that the number N of $(q+1)$-arcs through it is such that $N \geq(q-1)$!

In $P G(2, q)$ we easy compute that the number b of irreducible conics is

$$
b=q^{2}(q-1)\left(q^{2}+q+1\right)
$$

Let q be odd. Then b is also the number of $(q+1)$-arcs, since each $(q+1)$-arc is an irreducible conic and conversely. Denote by δ the point set of $P G(2, q)$ and by \mathcal{C} the family of the $(q+1)$-arcs of $P G(2, q)$. The pair (S, C) is a 2 $\left(q^{2}+q+1, q+1, \lambda_{2}\right)$ design (see [1]), where λ_{2} is the number of $(q+1)$-arcs through two distinct points. Denoting by λ_{1} the number of $(q+1)$-arcs through a point, we get

$$
\lambda_{1}=q^{2}\left(q^{2}-1\right)
$$

Since $q \geq 9$ implies $q^{2}\left(q^{2}-1\right)<(q-1)$!, from Theorem 14 we get
Theorem 15. The plane $P G(2, q), q$ odd and $q \geq 9$, is triangular.
From Theorem 15 we obtain:
Theorem 16. If π_{q}, q odd and $q \geq 9$, is not triangular, then π_{q} is nondesarguesian and, if $q \geq 11$, it contains a number of $(q+1)$-arcs which is greater than b.

REFERENCES

[1] T. Beth - D. Jungnickel - H. Lenz, Design Theory, B.I. Wisenschaftsverlag, Manheim, Wien, Zuerich, 1985.
[2] M. Scafati - G. Tallini, Geometria di Galois e Teoria dei Codici, Ed. CISU Roma 1995, pp. 161-167.
[3] M. Scafati - G. Tallini, Semilinear spaces and their remarkable subsets, J. of Geometry, 56 (1996), pp. 161-167.

> Dipartimento di Matematica,
> Università di Roma "La Sapienza", Piazzale Aldo Moro 2, 00185 Roma, (Italy)

