TRIANGULAR PROJECTIVE PLANES OF ORDER q AND (q + 1)-ARCS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

We suitably define the triangular projective planes of order q and connect them with the (q + 1)-arcs. In particular, a finite projective plane is either triangular, or contains a lot of (q + 1)-arcs.

1. Introduction.

We define 4-*triangle* of an affine plane α_q the set $T = \{V, B_1, B_2, B_3, \}$, where B_1, B_2 , and B_3 are three distinct points lying on a line b and V is a point outside b. Let d be a direction of α_q . A 4-*triangular d-family* of α_q is a family \mathcal{T} of 4- triangles satysfying three suitable conditions involving the direction d of α_q which we call *triangular direction*. The plane α_q is *triangular* if any direction is triangular. A projective plane π_q is *triangular* if every affine plane obtained by deleting a line of π_q is triangular. The reason of defining the triangular planes is that either π_q is triangular, or it contains a point through which the number of (q + 1)-arcs is at least (q - 1)!. In desarguesian planes the triangularity is satisfied if q is odd and $q \ge 9$.

Entrato in Redazione il 31 gennaio 2000.

2. Finite Triangular Planes.

Let α_q be a finite affine plane of order $q \ge 3$. Let *b* be a line of α_q and B_1, B_2, B_3 three distinct points of *b*. Let *V* be a point of $\alpha_q - b$. We call 4triangle of α_q the set $T = \{V, B_1, B_2, B_3\}$. The set $\mathcal{B} = \{B_1, B_2, B_3\}$ is called base of *T* and the line *b* is called base-line of *T*. The point *V* is called vertex of *T*. The line $l_j = VB_j, j = 1, 2, 3$, is called edge of *T* and the point B_j is called base-point of the edge l_j in *T*, j = 1, 2, 3. Obviously the notion of 4-triangle is invariant under the affinities of α_q . Let *d* be a direction of α_q . We call 4-triangular *d*-family of α_q a family \mathcal{T} of 4-triangles such that the following conditions hold:

- (1) Every point of α_q is the vertex of a unique element of \mathcal{T} and therefore \mathcal{T} is a covering of α_q . Two distinct elements of \mathcal{T} meet in at most one point. The edges and the base-lines of any $T \in \mathcal{T}$ have directions distinct from *d*.
- (2) Let V be a base-point of $T' \in \mathcal{T}$. If V' is the vertex of T' and \mathcal{B} is the base of the element of \mathcal{T} whose vertex is V, then $\mathcal{B} \cap VV' = \emptyset$.
- (3) Let *l* be an edge of T ∈ T and let *l'* be an edge of T' ∈ T, T ≠ T'. Let B, B' be the base-points of *l* and *l'* in T and T' respectively. Then B = B' if and only if *l* = *l'*. If B ≠ B' (and then *l* ≠ *l'*), the edges *l* and *l'* are parallel, if and only if the direction of the line BB' is d. If B = B' (and then *l* = *l'*), let V" and V"' be two distinct points of *l*. Let T" and T"' be the elements of T whose vertices are V" and V"'. Then either T"∩T"' = Ø or T" ∩ T"' = {B}.

The notion of 4-triangular *d*-family is invariant under the affinities of α_q . From (1), (2), (3) the following properties of the family \mathcal{T} hold.

Theorem 1. Let *s* be a line of α_q with direction *d* and let *V*' and *V*" be two distinct points of *s*. Let *T*' and *T*" be the 4-triangles of vertices *V*' and *V*". Then $T' \cap T'' = \emptyset$.

A direction d of α_q is called *triangular* if in α_q a 4-triangular d-family \mathcal{T} exists. We say that α_q is *triangular* if any direction of α_q is triangular. A projective plane π_q is called *triangular* if any affine plane α_q embedded in π_q is triangular. It is easy to check that

Theorem 2. The affine plane AG(2, q) is triangular if and only if there is a triangular direction in AG(2, q).

From Theorem 2 it follows that the notion of triangular affine plane is significant if the plane is non-desarguesian. Obviously we get

Theorem 3. The plane PG(2, q) is triangular if and only if AG(2, q) is triangular.

From Theorem 3 it follows that the notion of triangular projective plane is significant if the plane is non-desarguesian.

Theorem 4. In AG(2, 3) triangular directions do not exist. Therefore AG(2, 3) is not triangular.

Proof. Assume that *d* is a triangular direction in AG(2, 3) and let \mathcal{T} be a 4-triangular *d*-family in AG(2, 3). From (1) the directions of the edges and of the base-line of $T \in \mathcal{T}$ are distinct and different from *d*. Then there are five distinct directions in AG(2, 3). A contradiction, since in AG(2, 3) there are exactly four directions. So the theorem is proved.

From theorem 3 and Theorem 4 it follows

Theorem 5. *The plane* PG(2, 3) *is not triangular.*

Theorem 6. The plane AG(2, 4) is triangular.

Proof. The points and the lines of AG(2, 4) are the following.

Points of AG(2, 4):

$$\{V, V', V'', V''', A, A', A'', A''', B, B', B'', B''', C, C', C'', C'''\}$$

Lines of AG(2, 4):

$$\{V, V', V'', V'''\}, \{A, A', A'', A'''\}, \{B, B', B'', B'''\}, \{C, C', C'', C'''\}, \\\{V, A', B', C'\}, \\\{V, A, B, C\}, \{V'', A''', B''', C'''\}, \{V''', A'', B'', C''\}, \{V, A, B''', C''\}, \\\{V, B, C''', A'''\}, \{V, C, B'', A'''\}, \{A', V', C''', B''\}, \{A', C, B''', V'''\}, \\\{B'C, A'', V''\}, \{A, B', C''', V'''\}, \{B', V', A''', C'''\}, \{C', V', A'', B'''\}, \\$$

 $\{C', B'', V'', A\},$ Let d be the direction of the line $\{V, V', V'', V'''\}$ and let \mathcal{T} be the following

family of 4-triangles whose vertices are the first ones of every following quadruple of points:

$$\{V, A, B, C\}, \{V', A', B', C'\}, \{V'', A'', B'', C''\}, \{V''', A''', B''', C'''\}, \\ \{A', V, B''', C''\}, \{B', V, A'', C'''\}, \{C', V, B'', A'''\}, \{A, V', B'', C'''\}, \\ \{B, V', A''', C''\}, \{C, V', A'', B'''\}\{A'', V''', B, C'\}, \{B'', V''', A', C\}, \\ \{C'', V''', B', A\}, \{A''', V'', B', C\}, \{B''', V'', A, C'\}, \{C''', V'', A', B\}.$$

It is easy to check that \mathcal{T} is a 4-triangular *d*-family of AG(2, 4). Since in AG(2, 4) the direction *d* is triangular and from Theorem 2 the proof follows.

From Theorem 3 and Theorem 6 it follows that

Theorem 7. The plane PG(2, 4) is triangular.

3. Triangular Planes and (q + 1)-arcs.

A *k*-arc of α_q is a set of *k* points three by three non-collinear. In α_q a line *l* is called *tangent* to a set *S*, if $|l \cap S| = 1$. Let *d* be a direction of α_q . We say that a *q*-arc *C* is *d*-tangent if every line with direction *d* is tangent to *C*.

The following main Theorem holds.

Theorem 8. Let d be a direction of α_q . If in α_q d-tangent q-arcs do not exist, then the direction d is triangular. It follows that, if d is not triangular, there is a d-tangent q-arc in α_q

Proof. Assume that *d*-tangent *q*-arcs do not exist in α_q . Let s_1, s_2, \ldots, s_q be the lines of α_q whose common direction is *d* and let d_1, d_2, \ldots, d_q be the directions of α_q different from *d*. Let $\mathcal{S} = \{s_1, s_2, \ldots, s_q\}$ and $\Delta = \{d_1, d_2, \ldots, d_q\}$. Consider the following bijection

$$\varphi: s_j \in \mathcal{S} \to d_j \in \Delta.$$

Let *P* be a point of α_q . Then there is a unique index j, $1 \le j \le q$, such that $P \in s_j$. Let r(P) be the line of α_q through *P* whose direction is $d_j = \varphi(s_j)$. The direction of r(P) is different from *d*. Let \mathcal{R} be the set of lines of α_q . Consider the following mapping:

$$r: P \in \alpha_q \to r(P) \in \mathcal{R} - S.$$

It is easy to prove that r is a bijection. We call the line r(P) the pseudopolar of P and P the pseudopole of r(P). Let V be a point of α_a and s_i the line of S through V. Let l_1, l_2, \ldots, l_q be the lines of α_q through V different from s_i and let L_i be the pseudopole of l_i , i = 1, 2, ..., q. Let L = $\{L_1, L_2, \ldots, L_q\}$. Since the lines l_1, l_2, \ldots, l_q are distinct and r is a bijection, the points L_1, L_2, \ldots, L_q are distinct. It follows that |L| = q. We remark that every line of S contains a unique point of L. Moreover, every point $L_i \in L, L_i \neq V$, is the pseudopole of the line $L_i V$. The set L cannot be an arc, otherwise L is a d-tangent q-arc of α_q , a contradiction. Therefore there are distinct points $L_{i_1}, L_{i_2}, L_{i_3}$ of L belonging to a line b whose direction is obviously distinct from d. Let us prove that $V \notin b$. Assume $V \in b$. Then at least two points X, Y of the set $\{L_{i_1}, L_{i_2}, L_{i_3}\}$ are distinct from V. The points X and Y are two distinct pseudopoles of b: a contradiction, since r is a bijection. This proves that $V \notin b$. It follows that the set $\{V, L_{i_1}, L_{i_2}, L_{i_3}\}$ is a 4-triangle with vertex V and base $\{L_{i_1}, L_{i_2}, L_{i_3}\}$. The point L_{i_s} is the pseudopole of the edge $L_{i_s}V$, s = 1, 2, 3, and the base-line has not the direction d. For any $V \in \alpha_q$ we construct a 4-triangle as above. In such a way we obtain a family \mathcal{T} of 4-triangles.

Let us prove that \mathcal{T} is a 4-triangular *d*-family of α_q . Every point of α_q is the vertex of a unique element of \mathcal{T} by construction. We remark that the pseudopolar of every point of $T \in \mathcal{T}$ contains the vertex of *T*. Now let $T, T' \in \mathcal{T}, T \neq T'$. Assume $|T \cap T'| \geq 2$ and let *X*, *Y* be two distinct points of $T \cap T'$. The line *XY* does not belong to *S*, otherwise *X* and *Y* are two distinct points of *T* belonging to a line of *S*, but the edges and the base of *T* have not the direction *d*. It follows that the lines $s_X, s_Y \in S$ through *X*, *Y* respectively are distinct. Since $s_X \neq s_Y$, it follows that $\varphi(s_X) \neq \varphi(s_Y)$ and the lines r(X), r(Y) are not parallel. Let $Z = r(X) \cap r(Y)$. Since $X \in T, Y \in T$, it follows that *Z* is the vertex of *T*. Since $T \neq T'$ and their vertices are distinct, we have a contradiction which proves that $|T \cap T'| \geq 2$ is impossible. So $|T \cap T'| \leq 1$. The directions of the edges and of the base-line of any $T \in \mathcal{T}$ are distinct from *d*. So (1) is proved.

Let us prove the condition (2). Assume $\mathcal{B} \cap VV' \neq \emptyset$. Then \mathcal{B} and VV' meet in a unique point X. Obviously $X \neq V$. The points X and V are two distinct points having the same pseudopolar VV', since V is the pseudopole of VV' and X is the pseudopole of XV = VV': a contradiction, because r is a bijection. So (2) is proved.

Now let us prove (3). The first statement of (3) follows easily since two points of α_q coincide, if and only if they have the same pseudopolar. The second

statement follows since two distinct lines of $\mathcal{R} - S$ are parallel, if and only if their pseudopoles belong to the same line of \mathcal{S} . In order to prove the third statement, assume $T'' \cap T''' \neq \emptyset$. Then, either $T'' \cap T''' \subset \{V'', V'''\}$, or $T'' \cap T''' \not\subset \{V'', V'''\}$. If $T'' \cap T''' = \{V''\}$, the point V'' belongs to the base of T''' and then V'' is the pseudopole of l. Therefore $\{B\} = \{V''\} = T'' \cap T'''$ (the point B is the pseudopole of l). Similary, if $T'' \cap T''' = \{V'''\}$, we get $\{B\} = \{V'''\} = T'' \cap T'''$. If $T'' \cap T''' \not\subset \{V'', V'''\}$, the point $P = T'' \cap T'''$ belongs to the bases of the above triangles. Then, from the first statement, $P \in V''V''' = l$. Moreover P = B, since B is the pseudopole of l = l'. It follows that $T'' \cap T''' = \{B\}$. So (3) is proved.

From Theorem 8 it follows

Theorem 9. If in α_q q-arcs do not exist, then every direction of α_q is triangular and therefore α_q is triangular. It follows that, if α_q is not triangular, then q-arcs in α_q do exist.

For projective planes the following result holds.

Theorem 10. If in π_q there are not (q+1)-arcs, then π_q is triangular. It follows that, if π_q is not triangular, then π_q contains (q + 1)-arcs.

Proof. Assume that π_q does not contain (q + 1)-arcs. Let \overline{r} be a line of π_q and $\alpha_q = \pi_q - \overline{r}$. Let d be a direction of α_q . The plane α_q does not contain any d-tangent q-arc C, otherwise the set $C \cup \{P\}$, where P is the direction d, is a (q + 1)-arc of π_q and this contradicts the hypothesis. From Theorem 8 it follows that the direction d is triangular and therefore α_q is triangular and also π_q is triangular. So the theorem is proved.

From Theorem 10 it follows

Theorem 11. Let π_q be a finite projective plane of order q. Then, either π_q is triangular, or π_q contains (q + 1)-arcs.

4. Triangular planes and their automorphisms.

We recall that a *semilinear space* is a pair (S, L), where S is a non-empty set whose elements are called points and L is a family of parts of S whose elements are called lines, such that

L is a covering of S,

 $|l| \geq 2, \qquad \forall \ l \in L,$

there is at most one line through two distinct points.

Two points x, y are *joinable* (and we write $x \sim y$), if the line through them exists, otherwise they are *unjoinable* (and we write $x \nsim y$). If $\forall x, y \in S, x \sim y$, the space (S, L) is called *linear space*, otherwise it is called *proper semilinear space*.

A subset $S' \subset S$ is a *subspace* of (S, L), if and only if for any $x, y \in S'$ we have $x \sim y, xy \subset S'$. A subspace is *maximal*, if it is not properly contained in a subspace. A *clique* is a set of S consisting of two by two joinable points. An *anticlique* is a set consisting of two by two unjoinable points. An *ovoid* is a subset of S meeting any maximal subspace in a unique point. If S is finite and the lines have the same size, (S, L) is a *partial Steiner system*. A partial Steiner system is *homogeneous*, if the number of lines through every point is the same. In [3] M. Scafati and G. Tallini proved that, if (S, L) is a homogeneous partial Steiner system, with |S| = v and $k = |l|, \forall l \in L$, then for every anticlique A the following holds:

(4) $|A| \le v/k$, $|A| = v/k \iff A$ is an ovoid and the maximal subspaces are the lines.

Let π_q be a finite projective plane of order q. A line t of π_q is *triangular*, if the affine plane $\alpha_q = \pi_q - t$ is triangular. Obviously every automorphism of π_q preserves the set of triangular lines, which we denote by \mathcal{R}_t . We prove the following theorem:

Theorem 12. Let \mathcal{R} be the set of the lines of π_q . If $\mathcal{R}_t \neq \emptyset$, $\mathcal{R}_t \neq \mathcal{R}$, then the automorphism group \mathcal{G} of π_q is not transitive on the points. It follows that, if \mathcal{G} is transitive on the points, then either $\mathcal{R}_t = \emptyset$, or $\mathcal{R}_t = \mathcal{R}$.

Proof. Assume $\mathcal{R}_t \neq \emptyset$, $\mathcal{R}_t \neq \mathcal{R}$ and \mathcal{G} transitive on the points. By the assumption, it follows that in π_q there are a triangular line *r* and a non-triangular line *s*, $r \neq s$. Let $\{P\} = r \cap s$. Since \mathcal{G} is transitive on the points, it follows that the number *n*, $1 \leq n < q+1$, of triangular lines through every point of π_q is the same. So the pair $(\mathcal{S}, \mathcal{R}_t)$ is a homogeneous partial Steiner system. Moreover, in $(\mathcal{S}, \mathcal{R}_t)$ the maximal spaces are the lines. Obviously the line *s* is an anticlique and also an ovoid of $(\mathcal{S}, \mathcal{R}_t)$, since every line of \mathcal{R}_t is tangent to *s*. From (4), it follows

$$|s| = (q^{2} + q + 1)/(q + 1) = 1/(q + 1) + q,$$

a contradiction, since the right hand side of the above equation is not an integer. The contradiction proves that \mathcal{G} is not transitive.

We say that π_q is *totally non-triangular*, if π_q does not contain triangular lines. From Theorem 12 it follows:

Theorem 13. Let π_q be non-triangular. If the automorphism group is transitive on the points, then π_q is totally non-triangular.

Proof. From the hypothesis, $\mathcal{R}_t \neq \mathcal{R}$ and \mathcal{G} is transitive on the points. Then, from Theorem 12, it follows $\mathcal{R}_t = \emptyset$.

For instance, in PG(2,3), which is not triangular (see Theorem 5), the group \mathscr{G} is point transitive and therefore PG(2,3) is totally non-triangular. Moreover, PG(2,4) is triangular (see Theorem 7) and \mathscr{G} is point transitive.

5. The number of (q + 1)-arcs in a non-triangular projective plane.

Assume π_q is not triangular. Then there is a non-triangular affine plane $\alpha_q \subset \pi_q$ and therefore in α_q there is a non-triangular direction d. If d_1, d_2, \ldots, d_q are the directions of α_q different from d and s_1, s_2, \ldots, s_q are the lines of α_q whose common direction is d, we choose an arbitrary bijection

$$\phi: \{s_1,\ldots,s_q\} \to \{d_1,\ldots,d_q\}.$$

Since d is not triangular, in α_q no 4-triangular d-families exist. So at least one of the sets L (see Theorem 8) is a d-tangent q-arc. To show this, assume that L is not a q-arc. Then L contains three collinear points L_1, L_2, L_3 on a line not through V (since L_jV , j = 1, 2, 3 is the pseudopolar of L_j and the pseudopolarity is a bijection). So L contains a 4-triangle T whose vertex is V. If all the sets L (depending on V) are not d-tangent q-arcs, the 4-triangles T are a 4-triangular d-family. A contradiction, since d is not triangular. In conclusion, every bijection ϕ gives rise to at least one d- tangent q-arc. For every ϕ we choose one of such d-tangent q-arcs. The number of the bijections is q!, so we get q! d-tangent q-arcs (not necessarily distinct).

Denote by $\mathcal{L} = \{L_j\}_{j=1,...,M}$ the family of the distinct *d*-tangent *q*-arcs we have chosen $(M \leq q!)$. We remark that if we choose the same L_j for m_j bijections ϕ , then $m_j \leq q$.

To show this, let $L_j = \{A_1, \ldots, A_q\}$ be an element of \mathcal{L} , where $A_i \in s_i$, $i = 1, \ldots, q$. Consider a point A_h , $h = 1, \ldots, q$ in L_j . Associate with each line s_i , $i \neq h$, the direction of the line $A_i A_h$ and with the line s_h the direction of the tangent line of L_j at the point A_h , different from s_h . In such a way we construct a bijection ϕ . If we repeat the previous construction for the point $A_k \in L_j - A_h$, we get a bijection $\phi' \neq \phi$ ($\phi' \neq \phi$, since ϕ and ϕ' associate with the line s_k different directions). In such a way we obtain q different bijections ϕ_1, \ldots, ϕ_q which are all the bijections giving rise to the same L_j , according to

Theorem 8. So
$$m_j \leq q$$
. Since $\sum_{j=1}^M m_j = q!$ and $m_j \leq q$, $j = 1, \dots, M$, it follows $q! = \sum_{j=1}^M m_j \leq \sum_{j=1}^M q = qM$, hence $M \geq (q-1)!$.

In π_q the union of a q-arc L_j and the direction $d = \{P\}$ is a (q + 1)-arc, so in π_q the number of (q + 1)-arcs through $\{P\}$ is at least (q - 1)!. So we get

Theorem 14. If π_q is not triangular, then there is a point $P \in \pi_q$ such that the number N of (q + 1)-arcs through it is such that $N \ge (q - 1)!$

In PG(2, q) we easy compute that the number b of irreducible conics is

$$b = q^2(q-1)(q^2+q+1).$$

Let q be odd. Then b is also the number of (q + 1)-arcs, since each (q + 1)-arc is an irreducible conic and conversely. Denote by S the point set of PG(2, q)and by C the family of the (q + 1)-arcs of PG(2, q). The pair (S, C) is a 2 - $(q^2 + q + 1, q + 1, \lambda_2)$ design (see [1]), where λ_2 is the number of (q + 1)-arcs through two distinct points. Denoting by λ_1 the number of (q + 1)-arcs through a point, we get

$$\lambda_1 = q^2(q^2 - 1).$$

Since $q \ge 9$ implies $q^2(q^2 - 1) < (q - 1)!$, from Theorem 14 we get

Theorem 15. The plane PG(2, q), q odd and $q \ge 9$, is triangular.

From Theorem 15 we obtain:

Theorem 16. If π_q , q odd and $q \ge 9$, is not triangular, then π_q is nondesarguesian and, if $q \ge 11$, it contains a number of (q + 1)-arcs which is greater than b.

REFERENCES

- [1] T. Beth D. Jungnickel H. Lenz, *Design Theory*, B.I. Wisenschaftsverlag, Manheim, Wien, Zuerich, 1985.
- [2] M. Scafati G. Tallini, *Geometria di Galois e Teoria dei Codici*, Ed. CISU Roma 1995, pp. 161–167.
- [3] M. Scafati G. Tallini, *Semilinear spaces and their remarkable subsets*, J. of Geometry, 56 (1996), pp. 161–167.

Dipartimento di Matematica, Università di Roma "La Sapienza", Piazzale Aldo Moro 2, 00185 Roma, (Italy)