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TRIANGULAR PROJECTIVE PLANES

OF ORDER q AND (q + 1)-ARCS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

We suitably de�ne the triangular projective planes of order q and
connect them with the (q + 1)-arcs. In particular, a �nite projective plane
is either triangular, or contains a lot of (q + 1)-arcs.

1. Introduction.

We de�ne 4-triangle of an af�ne plane αq the set T = {V , B1, B2, B3, },
where B1, B2, and B3 are three distinct points lying on a line b and V is a
point outside b. Let d be a direction of αq . A 4-triangular d-family of αq
is a family T of 4- triangles satysfying three suitable conditions involving the
direction d of αq which we call triangular direction. The plane αq is triangular
if any direction is triangular. A projective plane πq is triangular if every af�ne
plane obtained by deleting a line of πq is triangular. The reason of de�ning the
triangular planes is that either πq is triangular, or it contains a point through
which the number of (q+1)-arcs is at least (q −1)!. In desarguesian planes the
triangularity is satis�ed if q is odd and q ≥ 9.
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2. Finite Triangular Planes.

Let αq be a �nite af�ne plane of order q ≥ 3. Let b be a line of αq and
B1, B2, B3 three distinct points of b. Let V be a point of αq − b. We call 4-
triangle of αq the set T = {V , B1, B2, B3}. The set B = {B1, B2, B3} is called
base of T and the line b is called base-line of T . The point V is called vertex
of T . The line lj = V Bj , j = 1, 2, 3, is called edge of T and the point Bj
is called base-point of the edge lj in T , j = 1, 2, 3. Obviously the notion of
4-triangle is invariant under the af�nities of αq . Let d be a direction of αq . We
call 4-triangular d-family of αq a family T of 4-triangles such that the following
conditions hold:

(1) Every point of αq is the vertex of a unique element of T and therefore T

is a covering of αq . Two distinct elements of T meet in at most one point.
The edges and the base-lines of any T ∈ T have directions distinct from d .

(2) Let V be a base-point of T � ∈ T . If V � is the vertex of T � and B is the base
of the element of T whose vertex is V , then B ∩ VV � = ∅.

(3) Let l be an edge of T ∈ T and let l� be an edge of T � ∈ T , T �= T �. Let
B, B � be the base-points of l and l� in T and T � respectively. Then B = B �

if and only if l = l� . If B �= B � (and then l �= l�), the edges l and l� are
parallel, if and only if the direction of the line BB � is d . If B = B � (and
then l = l�), let V �� and V ��� be two distinct points of l . Let T �� and T ��� be
the elements of T whose vertices are V �� and V ���. Then either T ��∩T ��� = ∅

or T �� ∩ T ��� = {B}.

The notion of 4-triangular d -family is invariant under the af�nities of αq . From
(1), (2), (3) the following properties of the family T hold.

Theorem 1. Let s be a line of αq with direction d and let V
� and V �� be two

distinct points of s . Let T � and T �� be the 4-triangles of vertices V � and V ��.
Then T � ∩ T �� = ∅.

A direction d of αq is called triangular if in αq a 4-triangular d -family
T exists. We say that αq is triangular if any direction of αq is triangular. A
projective plane πq is called triangular if any af�ne plane αq embedded in πq
is triangular. It is easy to check that

Theorem 2. The af�ne plane AG(2, q) is triangular if and only if there is a
triangular direction in AG(2, q).

From Theorem 2 it follows that the notion of triangular af�ne plane is
signi�cant if the plane is non-desarguesian. Obviously we get
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Theorem 3. The plane PG(2, q) is triangular if and only if AG(2, q) is
triangular.

From Theorem 3 it follows that the notion of triangular projective plane is
signi�cant if the plane is non-desarguesian.

Theorem 4. In AG(2, 3) triangular directions do not exist. Therefore AG(2, 3)
is not triangular.

Proof. Assume that d is a triangular direction in AG(2, 3) and let T be a 4-
triangular d -family in AG(2, 3). From (1) the directions of the edges and of the
base-line of T ∈ T are distinct and different from d . Then there are �ve distinct
directions in AG(2, 3). A contradiction, since in AG(2, 3) there are exactly four
directions. So the theorem is proved.

From theorem 3 and Theorem 4 it follows

Theorem 5. The plane PG(2, 3) is not triangular.

Theorem 6. The plane AG(2, 4) is triangular.

Proof. The points and the lines of AG(2, 4) are the following.

Points of AG(2, 4):

{V , V �, V ��, V ���, A, A�, A��, A���, B, B �, B ��, B ���,C,C �,C ��,C ���}.

Lines of AG(2, 4):

{V , V �, V ��, V ���}, {A, A�, A��, A���}, {B, B �, B ��, B ���}, {C,C �,C ��,C ���},

{V , A�, B �,C �},

{V �, A, B,C}, {V ��, A���, B ���,C ���}, {V ���, A��, B ��,C ��}, {V , A, B ���,C ��},

{V ���, A���, B,C �},

{V , B,C ���, A��}, {V ,C, B ��, A���}, {A�, V �,C ���, B ��}, {A�,C, B ���, V ���},

{A�, B, V ��,C ��},

{B �C, A��, V ��}, {A, B �,C ���, V ���}, {B �, V �, A���,C ��}, {C �, V �, A��, B ���},

{C �, B ��, V ��, A},
Let d be the direction of the line {V , V �, V ��, V ���} and let T be the following
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family of 4-triangles whose vertices are the �rst ones of every following quadru-
ple of points:

{V , A, B,C}, {V �, A�, B �,C �}, {V ��, A��, B ��,C ��}, {V ���, A���, B ���,C ���},

{A�, V , B ���,C ��}, {B �, V , A��,C ���}, {C �, V , B ��, A���}, {A, V �, B ��,C ���},

{B, V �, A���,C ��}, {C, V �, A��, B ���}{A��, V ���, B,C �}, {B ��, V ���, A�,C},

{C ��, V ���, B �, A}, {A���, V ��, B �,C}, {B ���, V ��, A,C � }, {C ���, V ��, A�, B}.

It is easy to check that T is a 4-triangular d -family of AG(2, 4). Since in
AG(2, 4) the direction d is triangular and from Theorem 2 the proof follows.

From Theorem 3 and Theorem 6 it follows that

Theorem 7. The plane PG(2, 4) is triangular.

3. Triangular Planes and (q + 1)-arcs.

A k-arc of αq is a set of k points three by three non-collinear. In αq a line
l is called tangent to a set S , if |l ∩ S| = 1. Let d be a direction of αq . We say
that a q -arc C is d-tangent if every line with direction d is tangent to C.

The following main Theorem holds.

Theorem 8. Let d be a direction of αq . If in αq d-tangent q-arcs do not exist,
then the direction d is triangular. It follows that, if d is not triangular, there is a
d-tangent q-arc in αq

Proof. Assume that d -tangent q -arcs do not exist in αq . Let s1, s2, . . . , sq
be the lines of αq whose common direction is d and let d1, d2, . . . , dq be
the directions of αq different from d . Let S = {s1, s2, . . . , sq} and � =

{d1, d2, . . . , dq}. Consider the following bijection

ϕ : sj ∈ S → dj ∈ �.

Let P be a point of αq . Then there is a unique index j , 1 ≤ j ≤ q , such that
P ∈ sj . Let r(P) be the line of αq through P whose direction is dj = ϕ(sj ). The
direction of r(P) is different from d . Let R be the set of lines of αq . Consider
the following mapping:

r : P ∈ αq → r(P)∈ R − S.
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It is easy to prove that r is a bijection. We call the line r(P) the pseudopolar
of P and P the pseudopole of r(P). Let V be a point of αq and sj the
line of S through V . Let l1, l2, . . . , lq be the lines of αq through V different
from sj and let Li be the pseudopole of li , i = 1, 2, . . . , q . Let L =

{L1, L2, . . . , Lq }. Since the lines l1, l2, . . . , lq are distinct and r is a bijection,
the points L1, L2, . . . , Lq are distinct. It follows that |L| = q . We remark
that every line of S contains a unique point of L . Moreover, every point
Li ∈ L , Li �= V , is the pseudopole of the line LiV . The set L cannot be an
arc, otherwise L is a d -tangent q -arc of αq , a contradiction. Therefore there
are distinct points Li1 , Li2 , Li3 of L belonging to a line b whose direction is
obviously distinct from d . Let us prove that V /∈ b. Assume V ∈ b. Then at
least two points X, Y of the set {Li1 , Li2 , Li3 } are distinct from V . The points X
and Y are two distinct pseudopoles of b: a contradiction, since r is a bijection.
This proves that V /∈ b. It follows that the set {V , Li1, Li2 , Li3 } is a 4-triangle
with vertex V and base {Li1 , Li2 , Li3 }. The point Lis is the pseudopole of the
edge Lis V , s = 1, 2, 3, and the base-line has not the direction d . For any
V ∈ αq we construct a 4-triangle as above. In such a way we obtain a family T

of 4-triangles.

Let us prove that T is a 4-triangular d -family of αq . Every point of
αq is the vertex of a unique element of T by construction. We remark that
the pseudopolar of every point of T ∈ T contains the vertex of T . Now let
T , T � ∈ T , T �= T �. Assume |T ∩ T �| ≥ 2 and let X, Y be two distinct points of
T ∩ T � . The line XY does not belong to S, otherwise X and Y are two distinct
points of T belonging to a line of S, but the edges and the base of T have not
the direction d . It follows that the lines sX , sY ∈ S through X, Y respectively are
distinct. Since sX �= sY , it follows that ϕ(sX ) �= ϕ(sY ) and the lines r(X ), r(Y )
are not parallel. Let Z = r(X ) ∩ r(Y ). Since X ∈ T , Y ∈ T , it follows that Z is
the vertex of T , because we remarked that in any T ∈ T the pseudopolars of the
points of T contain the vertex of T . Similarly, from X ∈ T �, Y ∈ T �, it follows
that Z is the vertex of T �. Since T �= T � and their vertices are distinct, we have
a contradiction which proves that |T ∩ T �| ≥ 2 is impossible. So |T ∩ T �| ≤ 1.
The directions of the edges and of the base-line of any T ∈ T are distinct from
d . So (1) is proved.

Let us prove the condition (2). Assume B ∩ VV � �= ∅. Then B and VV �

meet in a unique point X . Obviously X �= V . The points X and V are two
distinct points having the same pseudopolar VV � , since V is the pseudopole of
VV � and X is the pseudopole of XV = VV �: a contradiction, because r is a
bijection. So (2) is proved.

Now let us prove (3). The �rst statement of (3) follows easily since two
points of αq coincide, if and only if they have the same pseudopolar. The second



348 SANDRO RAJOLA - MARIA SCAFATI TALLINI

statement follows since two distinct lines of R − S are parallel, if and only if
their pseudopoles belong to the same line of S. In order to prove the third
statement, assume T �� ∩ T ��� �= ∅. Then, either T �� ∩ T ��� ⊂ {V ��, V ���}, or
T �� ∩ T ��� �⊂ {V ��, V ���}. If T �� ∩ T ��� = {V ��}, the point V �� belongs to the base
of T ��� and then V �� is the pseudopole of l . Therefore {B} = {V ��} = T �� ∩ T ���

(the point B is the pseudopole of l). Similary, if T �� ∩ T ��� = {V ���}, we get
{B} = {V ���} = T �� ∩ T ���. If T �� ∩ T ��� �⊂ {V ��, V ���}, the point P = T �� ∩ T ���

belongs to the bases of the above triangles. Then, from the �rst statement,
P ∈ V ��V ��� = l . Moreover P = B , since B is the pseudopole of l = l� . It
follows that T �� ∩ T ��� = {B}. So (3) is proved.

From Theorem 8 it follows

Theorem 9. If in αq q-arcs do not exist, then every direction of αq is triangular
and therefore αq is triangular. It follows that, if αq is not triangular, then q-arcs
in αq do exist.

For projective planes the following result holds.

Theorem 10. If in πq there are not (q+1)-arcs, then πq is triangular. It follows
that, if πq is not triangular, then πq contains (q + 1)-arcs.

Proof. Assume that πq does not contain (q + 1)-arcs. Let r be a line of πq
and αq = πq − r . Let d be a direction of αq . The plane αq does not contain
any d -tangent q -arc C, otherwise the set C ∪ {P}, where P is the direction d ,
is a (q + 1)-arc of πq and this contradicts the hypothesis. From Theorem 8 it
follows that the direction d is triangular and therefore αq is triangular and also
πq is triangular. So the theorem is proved.

From Theorem 10 it follows

Theorem 11. Let πq be a �nite projective plane of order q. Then, either πq is
triangular, or πq contains (q + 1)-arcs.

4. Triangular planes and their automorphisms.

We recall that a semilinear space is a pair (S, L ), where S is a non-empty
set whose elements are called points and L is a family of parts of S whose
elements are called lines, such that

L is a covering of S,

|l| ≥ 2, ∀ l ∈ L,
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there is at most one line through two distinct points.

Two points x , y are joinable (and we write x ∼ y), if the line through them
exists, otherwise they are unjoinable (and we write x �∼ y). If ∀x , y ∈ S, x ∼ y ,
the space (S, L) is called linear space, otherwise it is called proper semilinear
space.

A subset S� ⊂ S is a subspace of (S, L ), if and only if for any x , y ∈ S
� we

have x ∼ y , xy ⊂ S
�. A subspace is maximal, if it is not properly contained

in a subspace. A clique is a set of S consisting of two by two joinable points.
An anticlique is a set consisting of two by two unjoinable points. An ovoid is a
subset of S meeting any maximal subspace in a unique point. If S is �nite and
the lines have the same size, (S, L ) is a partial Steiner system. A partial Steiner
system is homogeneous, if the number of lines through every point is the same.
In [3] M. Scafati and G. Tallini proved that, if (S, L ) is a homogeneous partial
Steiner system, with |S| = v and k = |l|, ∀l ∈ L , then for every anticlique A
the following holds:

(4)
|A| ≤ v/k,

|A| = v/k ⇐⇒ A is an ovoid and the maximal subspaces are the lines.

Let πq be a �nite projective plane of order q . A line t of πq is triangular, if
the af�ne plane αq = πq − t is triangular. Obviously every automorphism of
πq preserves the set of triangular lines, which we denote by Rt . We prove the
following theorem:

Theorem 12. Let R be the set of the lines of πq . If Rt �= ∅, Rt �= R, then the
automorphism group G of πq is not transitive on the points. It follows that, if G
is transitive on the points, then either Rt = ∅, or Rt = R.

Proof. Assume Rt �= ∅, Rt �= R and G transitive on the points. By the
assumption, it follows that in πq there are a triangular line r and a non-triangular
line s, r �= s . Let {P} = r ∩ s . Since G is transitive on the points, it follows that
the number n, 1 ≤ n < q+1, of triangular lines through every point of πq is the
same. So the pair (S, Rt ) is a homogeneous partial Steiner system. Moreover,
in (S, Rt ) the maximal spaces are the lines. Obviously the line s is an anticlique
and also an ovoid of (S, Rt ), since every line of Rt is tangent to s . From (4), it
follows

|s| = (q2 + q + 1)/(q + 1) = 1/(q + 1)+ q,

a contradiction, since the right hand side of the above equation is not an integer.
The contradiction proves that G is not transitive.

We say that πq is totally non-triangular, if πq does not contain triangular
lines. From Theorem 12 it follows:
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Theorem 13. Let πq be non-triangular. If the automorphism group is transitive
on the points, then πq is totally non-triangular.

Proof. From the hypothesis,Rt �= R and G is transitive on the points. Then,
from Theorem 12, it followsRt = ∅.

For instance, in PG(2,3), which is not triangular (see Theorem 5), the
group G is point transitive and therefore PG(2,3) is totally non-triangular.
Moreover, PG(2,4) is triangular (see Theorem 7) and G is point transitive.

5. The number of (q + 1)-arcs in a non-triangular projective plane.

Assume πq is not triangular. Then there is a non-triangular af�ne plane
αq ⊂ πq and therefore in αq there is a non-triangular direction d . If
d1, d2, . . . , dq are the directions of αq different from d and s1, s2, . . . , sq are
the lines of αq whose common direction is d , we choose an arbitrary bijection

φ : {s1, . . . , sq} → {d1, . . . , dq}.

Since d is not triangular, in αq no 4-triangular d -families exist. So at least
one of the sets L (see Theorem 8) is a d -tangent q -arc. To show this, assume
that L is not a q -arc. Then L contains three collinear points L1, L2, L3 on a
line not through V (since Lj V , j = 1, 2, 3 is the pseudopolar of Lj and the
pseudopolarity is a bijection). So L contains a 4-triangle T whose vertex is
V . If all the sets L (depending on V ) are not d -tangent q -arcs, the 4-triangles
T are a 4-triangular d -family. A contradiction, since d is not triangular. In
conclusion, every bijection φ gives rise to at least one d - tangent q -arc. For
every φ we choose one of such d -tangent q -arcs. The number of the bijections
is q!, so we get q! d -tangent q -arcs (not necessarily distinct).

Denote by L = {Lj }j=1,...,M the family of the distinct d -tangent q -arcs we have
chosen (M ≤ q!). We remark that if we choose the same Lj for mj bijections
φ , then mj ≤ q .

To show this, let Lj = {A1, . . . , Aq } be an element of L, where Ai ∈ si ,
i = 1, . . . , q . Consider a point Ah , h = 1, . . . , q in Lj . Associate with each
line si , i �= h, the direction of the line Ai Ah and with the line sh the direction
of the tangent line of Lj at the point Ah , different from sh . In such a way we
construct a bijection φ . If we repeat the previous construction for the point
Ak ∈ Lj − Ah , we get a bijection φ� �= φ (φ� �= φ , since φ and φ� associate with
the line sk different directions). In such a way we obtain q different bijections
φ1, . . . , φq which are all the bijections giving rise to the same Lj , according to
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Theorem 8. So mj ≤ q . Since
M�

j=1

mj = q! and mj ≤ q , j = 1, . . . ,M , it

follows q! =
M�

j=1

mj ≤
M�

j=1

q = qM , hence M ≥ (q − 1)!.

In πq the union of a q -arc Lj and the direction d = {P} is a (q + 1)-arc,
so in πq the number of (q + 1)-arcs through {P} is at least (q − 1)!. So we get

Theorem 14. If πq is not triangular, then there is a point P ∈ πq such that the
number N of (q + 1)-arcs through it is such that N ≥ (q − 1)!

In PG(2, q) we easy compute that the number b of irreducible conics is

b = q2(q − 1)(q2 + q + 1).

Let q be odd. Then b is also the number of (q + 1)-arcs, since each (q + 1)-arc
is an irreducible conic and conversely. Denote by S the point set of PG(2, q)
and by C the family of the (q + 1)-arcs of PG(2, q). The pair (S,C ) is a 2 -
(q2 + q + 1, q + 1, λ2) design (see [1]), where λ2 is the number of (q + 1)-arcs
through two distinct points. Denoting by λ1 the number of (q+ 1)-arcs through
a point, we get

λ1 = q2(q2 − 1).

Since q ≥ 9 implies q2(q2 − 1) < (q − 1)!, from Theorem 14 we get

Theorem 15. The plane PG(2, q), q odd and q ≥ 9, is triangular.

From Theorem 15 we obtain:

Theorem 16. If πq , q odd and q ≥ 9, is not triangular, then πq is non-
desarguesian and, if q ≥ 11, it contains a number of (q + 1)-arcs which is
greater than b.
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