LE MATEMATICHE
Vol. LIV (1999) — Fasc. II, pp. 343-352

TRIANGULAR PROJECTIVE PLANES
OF ORDER ¢ AND (g + 1)-ARCS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

We suitably define the triangular projective planes of order g and
connect them with the (¢ 4 1)-arcs. In particular, a finite projective plane
is either triangular, or contains a lot of (¢ + 1)-arcs.

1. Introduction.

We define 4-triangle of an affine plane «, the set T = {V, By, B,, B3, },
where Bj, By, and Bj are three distinct points lying on a line b and V is a
point outside b. Let d be a direction of «,. A 4-triangular d-family of a,
is a family 7 of 4- triangles satysfying three suitable conditions involving the
direction d of «; which we call triangular direction. The plane o, is triangular
if any direction is triangular. A projective plane 7, is triangular if every affine
plane obtained by deleting a line of 7, is triangular. The reason of defining the
triangular planes is that either 7, is triangular, or it contains a point through
which the number of (g + 1)-arcs is at least (g — 1)!. In desarguesian planes the
triangularity is satisfied if g is odd and ¢ > 9.
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2. Finite Triangular Planes.

Let «, be a finite affine plane of order ¢ > 3. Let b be a line of «, and
B\, B,, B3 three distinct points of b. Let V be a point of o, — b. We call 4-
triangle of o, the set T = {V, By, By, B3}. The set 8 = {By, B,, B3} is called
base of T and the line b is called base-line of T. The point V is called vertex
of T. The line [; = VB;, j = 1,2, 3, is called edge of T and the point B;
is called base-point of the edge [; in T, j = 1,2, 3. Obviously the notion of
4-triangle is invariant under the affinities of o,. Let d be a direction of «,. We
call 4-triangular d-family of o, a family 7~ of 4-triangles such that the following
conditions hold:

(1) Every point of «, is the vertex of a unique element of 7 and therefore T
is a covering of o, . Two distinct elements of 7" meet in at most one point.
The edges and the base-lines of any T € J have directions distinct from d.

(2) Let V be a base-pointof T’ € 7. If V' is the vertex of T’ and B is the base
of the element of 7~ whose vertex is V,then BN VV’' = @.

(3) Let/ beanedgeof T € T andlet !’ beanedgeof T' € 7, T # T’. Let
B, B’ be the base-points of / and I’ in T and T’ respectively. Then B = B’
if and only if / = I'. If B # B’ (and then [ # [’), the edges [ and [’ are
parallel, if and only if the direction of the line BB’ is d. If B = B’ (and
then/ = ["),let V" and V" be two distinct points of /. Let 7" and T"" be
the elements of 7~ whose vertices are V" and V. Then either T"NT"" = @
orT"NT" ={B}.

The notion of 4-triangular d-family is invariant under the affinities of «,. From
(1), (2), (3) the following properties of the family 7 hold.

Theorem 1. Let s be a line of a, with direction d and let V' and V" be two
distinct points of s. Let T' and T" be the 4-triangles of vertices V' and V.
Then T'NT" = @.

A direction d of o, is called triangular if in «, a 4-triangular d-family
T exists. We say that «, is triangular if any direction of «, is triangular. A
projective plane 7, is called triangular if any affine plane o, embedded in 7,
is triangular. It is easy to check that

Theorem 2. The affine plane AG(2, q) is triangular if and only if there is a
triangular direction in AG(2, q).

From Theorem 2 it follows that the notion of triangular affine plane is
significant if the plane is non-desarguesian. Obviously we get
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Theorem 3. The plane PG(2, q) is triangular if and only if AG(2, q) is
triangular.

From Theorem 3 it follows that the notion of triangular projective plane is
significant if the plane is non-desarguesian.

Theorem 4. In AG(2, 3) triangular directions do not exist. Therefore AG(2, 3)
is not triangular.

Proof. Assume that d is a triangular direction in AG(2, 3) and let  be a 4-
triangular d-family in AG(2, 3). From (1) the directions of the edges and of the
base-line of T € T are distinct and different from d. Then there are five distinct
directions in AG(2, 3). A contradiction, since in AG(2, 3) there are exactly four
directions. So the theorem is proved.

From theorem 3 and Theorem 4 it follows

Theorem 5. The plane PG (2, 3) is not triangular.

Theorem 6. The plane AG(2, 4) is triangular.
Proof. The points and the lines of AG(2, 4) are the following.

Points of AG(2, 4):
{(v,v, v v" A A, A", A", B,B',B",B",C,C',C",C"}.
Lines of AG(2, 4):
{(v,v, v, vy {A, A, A", A"}, {B, B', B", B"}, {C,C', C",C"},
{V,A, B, C'},
{(V',A,B,C},{V", A", B",C"},{V" A", B",C"},{V, A, B”, C"},
(v, A", B, C'},
{(Vv,B,C" A"}, {vV,C,B", A"},{A",V',C",B"},{A",C,B",V"},
{A", B, V", C"},
{B'C, A", V"},{A, B, C", V"}{B', V', A", C"},{C", V', A", B""},

{C/’ B//’ V//’ A}’
Let d be the direction of the line {V, V', V" V’'} and let 7 be the following
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family of 4-triangles whose vertices are the first ones of every following quadru-
ple of points:

{V, A, B, C}, {vl’ A/, Bl, C/}, {v//’ AN, BN, CN}, {v///’ A/N, B/N, C/N},

{A/, V. BW, CN}, {Bl, V. AN, CW}, {C/, V. BN, AW}, {A, V/, BN, CW},
{B, V/, AW, CN}, {C, V/, AN, BW}{AN, VW, B, Cl}, {BN, VW, A/, C},
{CN, VW, Bl, A}, {AW, VN, Bl, C}, {BW, VN, A, Cl}, {CW, VN, A/, B}.

It is easy to check that 7 is a 4-triangular d-family of AG(2,4). Since in
AG (2, 4) the direction d is triangular and from Theorem 2 the proof follows.

From Theorem 3 and Theorem 6 it follows that

Theorem 7. The plane PG(2, 4) is triangular.

3. Triangular Planes and (¢ + 1)-arcs.

A k-arc of «, is a set of k points three by three non-collinear. In ¢, a line
[ is called tangentto a set S, if [I N §| = 1. Let d be a direction of «,,. We say
that a g-arc C is d-tangent if every line with direction d is tangent to C.

The following main Theorem holds.

Theorem 8. Let d be a direction of a,. If in o d-tangent g-arcs do not exist,
then the direction d is triangular. It follows that, if d is not triangular, there is a
d-tangent g-arc in o

Proof. Assume that d-tangent g-arcs do not exist in o,. Let s1,55,...,5,
be the lines of «a, whose common direction is d and let dy,d>, ..., d, be
the directions of «, different from d. Let § = {s1,s57,...,5,} and A =

{di,d>, ..., d,}. Consider the following bijection

p:5,€8§— dieA.
Let P be a point of «,. Then there is a unique index j, 1 < j < g, such that
P €s;. Let r(P) be the line of «,; through P whose direction is d; = ¢(s;). The
direction of r(P) is different from d. Let R be the set of lines of «,. Consider

the following mapping:

r:Pea;, —>r(P)eR—S.



TRIANGULAR PROJECTIVE PLANES. .. 347

It is easy to prove that r is a bijection. We call the line r(P) the pseudopolar
of P and P the pseudopole of r(P). Let V be a point of «, and s; the
line of § through V. Let [y, 1, ..., [, be the lines of «, through V different
from s; and let L; be the pseudopole of /;, i = 1,2,...,q. Let L =
{Ly, Ly, ..., Ly}. Since the lines [, [, ..., [, are distinct and r is a bijection,
the points Ly, L,, ..., L, are distinct. It follows that [L| = g. We remark
that every line of § contains a unique point of L. Moreover, every point
L; e L, L; # V, is the pseudopole of the line L;V. The set L cannot be an
arc, otherwise L is a d-tangent g-arc of «,, a contradiction. Therefore there
are distinct points L; , L;,, L;; of L belonging to a line b whose direction is
obviously distinct from d. Let us prove that V ¢ b. Assume V € b. Then at
least two points X, Y of the set {L;,, L;,, L;,} are distinct from V. The points X
and Y are two distinct pseudopoles of b: a contradiction, since r is a bijection.
This proves that V ¢ b. It follows that the set {V, L;, L;,, L;,} is a 4-triangle
with vertex V and base {L;, L;,, L;;}. The point L; is the pseudopole of the
edge L;V, s = 1,2,3, and the base-line has not the direction d. For any
V € a, we construct a 4-triangle as above. In such a way we obtain a family 7
of 4-triangles.

Let us prove that 7 is a 4-triangular d-family of «,. Every point of
ag is the vertex of a unique element of 7 by construction. We remark that
the pseudopolar of every point of T € T contains the vertex of 7. Now let
T, T"eT,T #T'. Assume [T NT'| > 2 and let X, Y be two distinct points of
T NT'. The line XY does not belong to S, otherwise X and Y are two distinct
points of T belonging to a line of §, but the edges and the base of T have not
the direction d. It follows that the lines sy, sy € § through X, Y respectively are
distinct. Since sy # sy, it follows that ¢(sy) # ¢(sy) and the lines r(X), r(Y)
are not parallel. Let Z =r(X) Nr(Y). Since X € T, Y € T, it follows that Z is
the vertex of T, because we remarked that in any 7' € 7 the pseudopolars of the
points of T contain the vertex of 7. Similarly, from X e T’, Y € T’, it follows
that Z is the vertex of 7’. Since T # T’ and their vertices are distinct, we have
a contradiction which proves that |7 N 7’| > 2 is impossible. So [T N T'| < 1.
The directions of the edges and of the base-line of any 7 € 7 are distinct from
d. So (1) is proved.

Let us prove the condition (2). Assume BN VV’' #£ @. Then 8 and VV’
meet in a unique point X. Obviously X # V. The points X and V are two
distinct points having the same pseudopolar V V', since V is the pseudopole of
VV’ and X is the pseudopole of XV = VV’: a contradiction, because r is a
bijection. So (2) is proved.

Now let us prove (3). The first statement of (3) follows easily since two
points of o, coincide, if and only if they have the same pseudopolar. The second
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statement follows since two distinct lines of R — § are parallel, if and only if
their pseudopoles belong to the same line of §. In order to prove the third
statement, assume 7" N T # (. Then, either T" NT" C {V",V"}, or
T"NT" ¢ V', VY. If T"NT" = {V"}, the point V" belongs to the base
of T"”" and then V" is the pseudopole of [. Therefore {B} = {V"} =T"NnT"
(the point B is the pseudopole of /). Similary, if 77 N T" = {V'"}, we get
(BYy={(V"}=T'NT". IfT'NT" ¢ {V",V"}, thepoint P = T"NT"
belongs to the bases of the above triangles. Then, from the first statement,
P e V"V" = 1. Moreover P = B, since B is the pseudopole of [ = I'. Tt
follows that T”" N T"”" = {B}. So (3) is proved.

From Theorem 8 it follows

Theorem 9. If in a, g-arcs do not exist, then every direction of o is triangular
and therefore a is triangular. It follows that, if o, is not triangular, then g-arcs
in oy do exist.

For projective planes the following result holds.

Theorem 10. Ifin mr, there are not (q+1)-arcs, then m, is triangular. It follows
that, if m, is not triangular, then 7, contains (q + 1)-arcs.

Proof. Assume that 7, does not contain (¢ + 1)-arcs. Let 7 be a line of 7,
and o, = m, — 7. Let d be a direction of «,. The plane «, does not contain
any d-tangent g-arc C, otherwise the set C U { P}, where P is the direction d,
is a (¢ + 1)-arc of 7, and this contradicts the hypothesis. From Theorem 8 it
follows that the direction d is triangular and therefore «, is triangular and also
4 is triangular. So the theorem is proved.

From Theorem 10 it follows

Theorem 11. Let 7, be a finite projective plane of order q. Then, either 1, is
triangular, or 7, contains (q + 1)-arcs.

4. Triangular planes and their automorphisms.

We recall that a semilinear space is a pair (S, L), where § is a non-empty
set whose elements are called points and L is a family of parts of § whose
elements are called lines, such that

L is a covering of S,

Il =2, Viel,
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there is at most one line through two distinct points.

Two points x, y are joinable (and we write x ~ y), if the line through them
exists, otherwise they are unjoinable (and we write x 2 y). If Vx, ye S, x ~ y,
the space (S, L) is called linear space, otherwise it is called proper semilinear
space.

A subset 8’ C §is a subspace of (8, L), if and only if for any x, y € §' we
have x ~ y, xy C 8. A subspace is maximal, if it is not properly contained
in a subspace. A cligue is a set of § consisting of two by two joinable points.
An anticligue is a set consisting of two by two unjoinable points. An ovoid is a
subset of § meeting any maximal subspace in a unique point. If § is finite and
the lines have the same size, (S, L) is a partial Steiner system. A partial Steiner
system is homogeneous, if the number of lines through every point is the same.
In [3] M. Scafati and G. Tallini proved that, if (S, L) is a homogeneous partial
Steiner system, with |S| = v and k = |l|, VI € L, then for every anticlique A
the following holds:

@ |Al < v/k,
|A| = v/k <= A is an ovoid and the maximal subspaces are the lines.

Let 7, be a finite projective plane of order g. A line ¢ of 7, is triangular, if
the affine plane o, = m, — ¢ is triangular. Obviously every automorphism of
m, preserves the set of triangular lines, which we denote by R;. We prove the
following theorem:

Theorem 12. Let R be the set of the lines of wy. If R, # ¥, R; # R, then the
automorphism group '§ of w, is not transitive on the points. It follows that, if §
is transitive on the points, then either R, = (), or R; = R.

Proof. Assume R, # @, R; # R and ¢ transitive on the points. By the
assumption, it follows that in 77, there are a triangular line r and a non-triangular
line s, r # s. Let { P} = r Ns. Since § is transitive on the points, it follows that
the number n, 1 < n < g+1, of triangular lines through every point of 7, is the
same. So the pair (8, R;) is a homogeneous partial Steiner system. Moreover,
in (8, R,) the maximal spaces are the lines. Obviously the line s is an anticlique
and also an ovoid of (8, R;), since every line of R, is tangent to s. From (4), it
follows
s1=(*+q+D/@+D=1/q+1+q.

a contradiction, since the right hand side of the above equation is not an integer.
The contradiction proves that ¢ is not transitive.

We say that 7, is totally non-triangular, if 7, does not contain triangular
lines. From Theorem 12 it follows:
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Theorem 13. Let 7, be non-triangular. If the automorphism group is transitive
on the points, then , is totally non-triangular.

Proof. From the hypothesis, R, # R and § is transitive on the points. Then,
from Theorem 12, it follows R, = @.

For instance, in PG(2,3), which is not triangular (see Theorem 5), the
group § is point transitive and therefore PG(2,3) is totally non-triangular.
Moreover, PG(2,4) is triangular (see Theorem 7) and § is point transitive.

5. The number of (¢ + 1)-arcs in a non-triangular projective plane.

Assume 1, is not triangular. Then there is a non-triangular affine plane
a; C m,; and therefore in o, there is a non-triangular direction d. If
dy,d, ...,d, are the directions of «, different from d and sy, s, ..., s, are
the lines of o, whose common direction is d, we choose an arbitrary bijection

¢ {s1,....8q) = {dy, ..., dy}.

Since d is not triangular, in o, no 4-triangular d-families exist. So at least
one of the sets L (see Theorem 8) is a d-tangent g-arc. To show this, assume
that L is not a g-arc. Then L contains three collinear points L, L,, L3 on a
line not through V (since L;V, j = 1,2, 3 is the pseudopolar of L; and the
pseudopolarity is a bijection). So L contains a 4-triangle T whose vertex is
V. If all the sets L (depending on V') are not d-tangent g-arcs, the 4-triangles
T are a 4-triangular d-family. A contradiction, since d is not triangular. In
conclusion, every bijection ¢ gives rise to at least one d- tangent g-arc. For
every ¢ we choose one of such d-tangent g-arcs. The number of the bijections
is g!, so we get gq! d-tangent g-arcs (not necessarily distinct).

Denote by £ = {L;};—1,.. v the family of the distinct d-tangent g-arcs we have
chosen (M < q!). We remark that if we choose the same L; for m; bijections
¢,thenm; < gq.

To show this, let L; = {Ay, ..., A;} be an element of £, where A; € s;,
i =1,...,q. Consider a point Ay, h = 1,...,¢q in L;. Associate with each
line s;, i # h, the direction of the line A; A;, and with the line s, the direction
of the tangent line of L; at the point Ay, different from s;,. In such a way we
construct a bijection ¢. If we repeat the previous construction for the point
Ar € Lj — Ay, we get a bijection ¢’ # ¢ (¢ # ¢, since ¢ and ¢’ associate with
the line s; different directions). In such a way we obtain g different bijections
®1, ..., ¢4 which are all the bijections giving rise to the same L;, according to
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M
Theorem 8. So m; < q. Since ) _m; = qlandm; < ¢q,j=1,...,M, it
j=1
M M
followsg! =) m; <) g =qM,hence M > (g — 1)!.
j=1 j=1
In 7, the union of a g-arc L; and the direction d = {P} is a (¢ + 1)-arc,
so in 7, the number of (g + 1)-arcs through { P} is at least (¢ — 1)!. So we get

Theorem 14. If 7, is not triangular, then there is a point P € i, such that the
number N of (q + 1)-arcs through it is such that N > (g — 1)!

In PG(2, g) we easy compute that the number b of irreducible conics is

b=q*q—1)g"+q+1).

Let g be odd. Then b is also the number of (¢ + 1)-arcs, since each (¢ + 1)-arc
is an irreducible conic and conversely. Denote by § the point set of PG(2, g)
and by C the family of the (¢ 4+ 1)-arcs of PG(2, g). The pair (S, C)isa?2 -
(g>+q+1,q+ 1, Ay) design (see [1]), where A, is the number of (g + 1)-arcs
through two distinct points. Denoting by A; the number of (¢ + 1)-arcs through
a point, we get

rM=q%q> = D).

Since ¢ > 9 implies g*(g> — 1) < (g — 1)!, from Theorem 14 we get
Theorem 15. The plane PG(2, q), q odd and q > 9, is triangular.
From Theorem 15 we obtain:

Theorem 16. If m,, g odd and q > 9, is not triangular, then m, is non-
desarguesian and, if ¢ > 11, it contains a number of (q + 1)-arcs which is
greater than b.
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