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HOLOMORPHIC SELF-MAPS OF SINGULAR
PROJECTIVE CURVES

EDOARDO BALLICO

Here we classify all complex singular irreducibile projective curves.
X, such that there exists a holomorphic map f : X — X with f locally
biholomorphic at each point of X, and with deg(f) > 2 : X is rational and
either it has a unique singular point with two branches or it has exactly two
singular points, both unibranch.

Let f : X — X be a “locally invertible” moephism in a category. Must f
be invertible? The corresponding problem was studies in [1] for the categories
of compact differentiable manifolds and (but only if dim(X) = 2) of compact
complex manifolds. The problem arised from [2] in wich it was studied the
corresponding problem for maps 2 : A — B in wich A and B may be different
differentiable manifolds. The motivation behind [3] was explained at the end of
the introduction of [3] and in [3], sections 4.2, 4.3 and 4.4; key words: Market
Equilibrium, Limited Arbitrage and Uniqueness with Short Sales. Here we will
never met such words. Both from the classification point of view and for the
applications it seems important to assume X compact. However, if X is compact
and smooth the existence of such f with deg(f) > 2 is very restrictive. If X
is a singular compact complex space, we cannot hope to have such non-trivial
pairs (X, f) with f locally biholomorphic at each point of X (see Remark 1.2
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and 1.3). The best we can hope is that f is locally invertible at each smooth
point of X. Our main result is the following theorem.

Theorem 0.1. Let X be an integral projective curve with Sing(X) # ¢ and
such there exists a finite morphism f : X — X of degree d > 2 which is locally
biholomorphic at each point of Ry,. Let w : Y — X be the normalization. We
have Y = P! and card( '(Sing(X)) = 2. There is a morphism f' : P' - P!
with f'om = mof and in particular deg(f') = d. The map f’ is locally
biholomorphic at each point ofnl(Xreg) and for every Q € m'(Sing(X)) we
have card(f~'(Q)) = 1, i.e. f is totally ramified at Q. Two cases may occur:

Case A) card(Sing(X)) = 2 and each singular point of X is unibranch.

Case B) card(Sing(X)) = 1 and the singular point of X has exactly two
branches.

Viceversa, given any such curve X there is an integer d > 2 and a degree
d holomorphic map f : X — X such that X is locally biholomorphic at each
point of Xeg.

We are even able to classify all such map f or, equivalently, all such maps
I
Remark 0.2. Up to an element of Aut(P') and a non-zero multiplicative
constant the map f’ in the statement of 0.1 is uniquely determined by the
integer d and, possibly,the interchange of the two points of 7 ~!(Sing(X)).
Taking 7 ~!(Sing(X)) = {0, oo}, we will see in 1.5 that f'(z) = cz? (resp.
f(2) = cz7?) for some ¢ € C\{0} if f(0) = 0 and f'(oc0) = oo (resp if
f'(0) = oo and f'(c0) = 0).
For more details on the solutions in Cases A) and B) and in particular on the
possible integers d := deg( f), see Propositions 1.8, 1.9 and 1.10.

1.~ Here we will prove Theorem 0.1 and Remark 0.2. Then we will show how
to solve two related problems on self-maps of pointed projective curves (see
1.11 and 1.12).

Lemma 1.1. Let X be a complex compact irreducibile variety with Sing(X)
finite and f : X — X a finite morphism of degree d > 1 such that f|X g
is locally biholomorphic. Let m : Y — X be the normalization map. Then
there exists a finite morphism of degree d > 1 f' . Y — Y such that
for = mof’ and f'|n'(X;ep) is locally biholomorphic. If dim(X) > 2, f’
is locally biholomorphic at each point of Y.
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Proof. The holomorphic map for : ¥ — X is finite and surjective . By
the universal property of the normalization there is a unique holomorphic map
f' 1Y — Y such that for = mof’. The holomorphic map f’ is locally
biholomorphic at each point of ¥\7~!(Sing(X). Assume dim(X) > 2, i..
dim(Y) > 2. Since the discriminant locus of a finite holomorphic map between
complex manifolds of the same dimension is either empty or a pure one-
codimensional hypersurface and dim(z ~!(Sing(X)) = 0 < dim(Y) — 2, f’
is locally biholomorphic at each point of Yy,.

Remark 1.2. Let X be a complex compact irreducible variety with Sing(X)
finite and f : X — X a finite morphism of degree d > 1 such that f]X, is
locally biholomorphic. Hence for every P € X, f(P) ¢ Sing(X). since X
is compact, f is surjective. Since Sing(X) is finite, Sing(X) = f~'(Sing(X))
and f induces a permutation of the finite set Sing(X). Hence there is an integer
k > 1 such that the iteration f* := fo---o f (k times) of f fixes every point
of Sing(X).

Remark 1.3. Remark 1.2 explains why we do not assume that f is locally
biholomorphic for every P € X: since Sing(X) is finite and deg(f) > 1, this
would force Sing(X) = ¢. The case Sing(X) = ¢ is obvious by the next well-
known remark.

Remark 1.4. Let C be a smooth projective curve of genus g and u : C — C
a finite morphism of degree d > 1. By the Riemann-Hurwitz formula ([4], I'V.
2.4) we have 2qg — 2 = d(2q —2) + b, with b = 0 if u is locally biholomorphic
and b > 0, otherwise. Hence if u is locally biholomorphic, then ¢ = 1, i.e.
C is an elliptic curve, while if # is not locally biholomorphic, then g = 0, i.e.
C = P'. Viceversa, for every elliptic curve C and all integers ¢, n with ¢ > 2
and n > 2 there are holomorphic maps u : C — C and v : P' — P! with
deg(u) = t?> and deg(v) = n. By Riemann-Hurwitz formula every such u is
locally biholomorphic and no such v is locally biholomorphic.

Lemma 1.5. Let X be an integral projective curve with Sing(X) # ¢ and such
that there exists a finite morphism u : X — X of degree d > 1 which is locally
biholomorphic at each point of X ... We have £~ (Sing(X)) = Sing(X) and f
induces a bijection of Sing(X) onto itself. Let w : Y — X be the normalization.
We have Y = P'. There is a morphism f': P' — P! with f' omr =m o f and
in particular deg(f) = d > 1. The map [’ is locally biholomorphic at each
point Of]Tl(Xreg) and for every Q € w~1(Sing(X)) we have card(f'~'(Q)) = 1,
i.e. f'is totally ramified at Q. We have card(w ~'(Sing(X)) = 2. Up to an
element of Aut(P') the map f' is uniquel determined, up to a non-zero constant,
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by the integer d and f'|m'(Sing(X)): taking m'(Sing(X)) = {0, oo}, we have
f'(z) = cz? (resp. f'(2) = cz?) with c € C\{0} if f'(0) =0 and f'(c0) = o0
(resp. if f'(0) = oo and f'(c0) =0).

Proof. Since Y is the normalization of X, the degree d morphism 7 o f :
Y — X factors through the normalization map, , of the target, proving the
existence of f’. By Remark 1.4 either Y = P! or Y is an elliptic curve. Since
f is locally biholomorphic at each point of X ee, f(Xreg) © Xpeg. Since X is
irreducibile and compact, u is surjective. Hence Sing(X) € f(Sing(X)). Since
Sing(X) is finite, we have f~!(Sing(X)) = Sing(X) and u induces a bijection
of Sing(X) onto itself (Remark 1.2). From the finiteness of 7 ~!(Sing(X)) and
the relation 7 o f' = f om, we obtain f'~!(n !(Sing(X)) = 7~ '(Sing(X))
and f’ induces a bijection of 7 ~!(Sing(X)) onto itself. Hence f’ is totally
ramified at every point of 7 ~!(Sing(X)), i.e. the ramification order of f at X
is at least d — 1. Thus the degree, z, of the ramification divisor of is at least
(d — 1) - card(r ~'(Sing(X)). Since ¥ = P!, the Rieman-Hurwitz formula gives
the relation —2 = —2d + z. Hence card(z ~!(Sing(X)) < 2. Since for every
P e P!, P'\{P} = C is simply connected, we have card(z ~'(Sing(X)) = 2
and hence 1 < card(Sing(X)) < 2. Now the last assertion is elementary.
We assume that Y is an elliptic curve. By the Riemann-Hurwitz formula (see
Remark 1.3) every non-constant holomorphic map between two elliptic curves is
locally biholomorphic. As in the previous case f induces a degree d morphism
f' 1Y — Y wich induces a permutation of 7 ~!(Sing(X)). Since Sing(X) # ¢
and deg(f’) = d > 1, f’ cannot be locally biholomorphic, contradiction.

Definition 1.6. Fix an integer d > 2. Let (X, P) the germ of a unibranch
singularity of curves and R the completion of the associated local ring. Since
(X, P) is unibranch, R may embedded as a unitary C-local ring in the power
series ring C[[¢]] in one variable. We will say that (X, P) has Property ($; d)
if there is an embedding j : R — CJ[[¢]] such that j(R) has generators
L pi(@), ..., p(t) (e := dim(T,X)) and j(R) contains pi(t?) for every i with
1 <i < e. Property ($; d) depends only on the one-dimensional domain R and
hence we are allowed to say that R has Property ($; d) or not.

Remark 1.7. See C[[¢]] as the completion of the local ring of the affine line
A' = Spec(C[t]) at O and call u : Al > Al the morphism with u(z) := z¢.
Let R be the local ring of a unibranch curve singularity and fix an embedding
j of R in C[[¢]]. This embedding may be used to prove that R has Property
($; d) if and only if u*(j(R)) C R. Tterating the morphism u we see that if R
has Property ($ ; d), then it has Property ($ ; d¥).
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Proposition 1.8. Fix an integer d > 2. Let X be an integral projective curve
with card(Sing(X)) > 2 such that there exists a degree d holomorphic map
f X — X wich is locally biholomorphic at each point of X. Then
card(Sing(X)) = 2. The normalization of X is P!, each singular point of X
is unibranch and f induces a bijection of Sing(X) onto itself. Each singular
point of X has Property ($;d). If this bijection is not the identity, then
f?: X — X hasdegree d?, itis locally biholomorphic at each point of X g and
f2(P) = P for every P €Sing(X). Viceversa, for every integral curve X with
card(Sing(X)) = 2, only unibranch singularities, with P! as normalization and
such that every singular point of X has Property ($; d) there is a holomorphic
map f 1 X — X with deg(f) = d, f locally biholomorphic at each point
of Xreg and such that f|Sing(X) is the identity; such map is unique up to a
non-zero constant. Furthermore, there is a unique, up to a non-zero constant,
holomorphic map ' : X — X with deg(f) = d, f' locally biholomorphic at
each point of X, and such that f' interchange the two points of Sing(X);

Proof. The proof of Lemma 1.5 gives the first part except Property ($; d).
The second part, i.e. the viceversa part, is very easy using Remark 1.7; for the
last assertion, just use any morphism P! — P! which interchanges 0 and oo.
Notice that, for any fixed X and u : P! — P! with deg(u) = d, there is at most
one morphism f : X — X inducing u. Hence from the viceversa part and the
explicit description of ¥ and Remark 1.7 we obtain that all singular points of X
have Property ($; d) or Property ($, d?).

Proposition 1.9. Let R be the analytic or formal local ring of a unibranch curve
singularity. Let k be its multiplicity. Then R has Property ($; k).

Proof. Let m be the maximal ideal of R and e := dimc(m/m?) the embedding
dimension of R. The normalization of R is C[[t]] (or take convergent power
series in the analytic case) and, up to a change of coordinates, there are e power
series fi(t), ..., fe(t) such that R is the completion of the C-subalgebra of
C[[4]] generated by 1, fi(¢), ..., f.(t) and such that fi(r) = t* and all other
powers of ¢t appearing with non-zero coefficient in some f;(¢), i > 2, have
order at leask k + 1 ([3], Remark 2.1.1). Every element of C[[#*]] is of the form

g(fi() with g € C[[r]].

Proposition 1.10. Fix an integer d > 2. Let X be an integral projective curve
with card(Sing(X)) = 1, say Sing(X) = {P}, such that there exists a degree
d holomorphic map f : X — X which is locally biholomorphic at each
point of Xiee. Then the normalization of X is P!, X has two branches, say
B’ and B”, and f induces a permutations of these two branches. Then each
branch of X has Property ($; d). If this permutation is not the identity, then
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f*: X — X has degree d?, it is locally biholomorphic at each point of X e
and f? fixes the two branches B’ and B". Viceversa, for every integral curve
X with card(Sing(X)) = 1, say Sing(X) = {P}, with exactly two branches
at P, with P! as normalization and such that every branch of X has Property
($; d) there is a holomorphic map [ : X — X with deg(f) = d, f locally
biholomorphic at each point of X; and such that f fixes the branches; such
map is unique up to a non-zero constant. Furthermore, there is a unique, up
to a non-zero constant, holomorphic map f : X — X with deg(f’) = d, [’
locally biholomorphic at each point of X.e, and such that f' interchanges the
two branches of X at P.

Proof. By Lemma 1.5 to prove the first part it is sufficient to show that the two
branches of X at P have Property ($; d). Let R be formal (or analytic) local
ring of the germ (X, P). Since X has two branches and it is reduced, R has
two minimal prime ideals p; and p, with p; N p, = {0}. Set R; := R/p;.
Let X’ be the partial normalization of X in which we have just separated the
two branches, i.e. card(Sing(X')) = 2, say Sing(X’) = {Py, P}, and X’ has
formal local ring R; at P;. since f(P) = P, the map f induces an injective
K-homorphism W(p;), i = 1,2, is contained in a minimal prime of R, the
map f induces a degree d map f” : X’ — X’ which coincides with f on
X;eg = X,;. Hence we may apply Proposition 1.8 to X’ and conclude the
proof of the first part. Take (X, P) as in the second part. Let R be formal (or
analytic) local ring of the germ (X, P). Let X’ be the partial normalization of
X in which we have just separated the two branches, i.e. card(Sing(X’)) = 2,
say Sing(X’) = {P;, P»}, and X’ has formal local ring R; at R;. There is
a degree d morphism f; : X’ — X’ which is locally biholomorphic over
X;eg = Xieg = X\{P}; furthermore there is such morphism, f, which fixes the
two points of Sing(X’) and another one, f;, which interchanges the two points;
up to a non-zero multiplicative constant f, and f; are uniquely determined. It
is sufficient to prove that every such f; induces a morphim f : X — X with
flXwee = fi |X;eg. This is obvious set-theoretically and even topologically,
but we need to check that the set-theoretic map is holomorphic at P. We
have an inclusion j : R — R; ® R, C C[[#]] & C[[2]], where the latter
ring is the semilocal ring of the normalization of R. The conductor, J, of R
in C[[t;]] ® Cl[t,]] is of the form (("), (#3?)) for somr integer a; > 0 and
a, > 0. The homomorphism f* sends J into ((tf“‘, (tj”z)). Since da, > a; and
da, > ay, ((tflal), (tf‘”)) is contained in the conductor J. Hence f’* descends
to a homomorphism f* : R — R, showing that R is holomorphic at P. The
structure of the set of all possible maps f follows from the structure of all
possible maps f’ : X’ — X’ considered in 1.8.
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Motivated by the theories of orbifolds, of algebraic pairs (Y, S) and of
algebraic stacks, we show why our work gives a solution of the following two
related problems.

Proposition 1.11. Let Y be a smooth projective curve over C and S C Y with §
finite and S # ¢. Assume the existence of a holomorphicmap f : Y — Y with
deg(f) =d > 2 such that S = f~'(f(S)) and that f is locally biholomorphic
at each point of Y\S. Then Y = P!, card(S) = 2. Up to an element of Aut(P')
and a non-zero multiplicative constant the map f is uniquely determined by the
integer d and by the condition “ f exchanges the two points of S or not”: taking
S = {0, oo}, we have f(z) = cz? with ¢ € C\{0} for every z € C if f(0) =0
and f(00) = oo and f(z) = cz¢ with ¢ € C\{0} if £(0) = oo and f(o0) = 0.

Proof. By Remark 1.4 we have Y = P!. The second part follows from
Riemann-Hurwitz formula exactly as in the proof of Proposition 1.8.

Proposition 1.12. Let X be anintegral projective curve over C with Sing(X) #
¢ and S C Xeg with S finite and S # ¢. Assume the existence of a holomorphic
map f : X — X withdeg(f) =d > 2 suchthat S = f~'(f(S)) and that f
is locally biholomorphic at each point of X\(S U Sing(X)); Letmw : ¥ — X
be the normalization. Then Y = P!, card(S) = card(Sing(X)) = 1 and X is
unibranch at unique point, P, of Sing(X). Furthermore, X satisfies condition
($;d) at P. Viceversa, given any such pair (X, S), up to a normalization by
Aut(Ph), i.e. taking S = {0} and Sing(X) = {oo}, there exists exactly one such
holomorphic map f, up to a non-zero multiplicative constant.

Proof. By Remark 1.4 we have Y = P'. By Remark 1.2 we have Sing(X) =
f~Y(f(Sing(X)). The morphism f induces a degree d morphism f' : ¥ — Y
with f’ locally biholomorphic at each point of 7~!'(S U Sing(X)). Since
S C Yiee, S # ¢ and Sing(X) # ¢, we obtain card(S) = card(Sing(X)) =
card(r ~!(Sing(X))) = 1. Up to a normalization we assume S = {0} and
Sing(X) = {oo}. We have f'(z) = cz? with ¢ € C\{0} for every z € C. Now
everything follows from the discussion of Property ($; d) made in the proof of
Proposition 1.8.
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