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HOLOMORPHIC SELF-MAPS OF SINGULAR

PROJECTIVE CURVES

EDOARDO BALLICO

Here we classify all complex singular irreducibile projective curves.
X , such that there exists a holomorphic map f : X → X with f locally
biholomorphic at each point of Xreg and with deg( f ) ≥ 2 : X is rational and
either it has a unique singular point with two branches or it has exactly two
singular points, both unibranch.

Let f : X → X be a �locally invertible� moephism in a category. Must f
be invertible? The corresponding problem was studies in [1] for the categories
of compact differentiable manifolds and (but only if dim(X ) = 2) of compact
complex manifolds. The problem arised from [2] in wich it was studied the
corresponding problem for maps h : A → B in wich A and B may be different
differentiable manifolds. The motivation behind [3] was explained at the end of
the introduction of [3] and in [3], sections 4.2, 4.3 and 4.4; key words: Market
Equilibrium, Limited Arbitrage and Uniqueness with Short Sales. Here we will
never met such words. Both from the classi�cation point of view and for the
applications it seems important to assume X compact. However, if X is compact
and smooth the existence of such f with deg( f ) ≥ 2 is very restrictive. If X
is a singular compact complex space, we cannot hope to have such non-trivial
pairs (X, f ) with f locally biholomorphic at each point of X (see Remark 1.2

Entrato in Redazione il 13 febbraio 2000.

The author was partially supported by MURST (Italy).



354 EDOARDO BALLICO

and 1.3). The best we can hope is that f is locally invertible at each smooth
point of X . Our main result is the following theorem.

Theorem 0.1. Let X be an integral projective curve with Sing(X ) �= φ and
such there exists a �nite morphism f : X → X of degree d ≥ 2 which is locally
biholomorphic at each point of Rreg. Let π : Y → X be the normalization. We
have Y ∼= P1 and card(π1(Sing(X )) = 2. There is a morphism f � : P1 → P1

with f �◦π = π◦ f and in particular deg( f �) = d . The map f � is locally
biholomorphic at each point of π1(X reg) and for every Q ∈ π1(Sing(X )) we
have card( f −1(Q)) = 1, i.e. f is totally rami�ed at Q. Two cases may occur:

Case A) card(Sing(X )) = 2 and each singular point of X is unibranch.

Case B) card(Sing(X )) = 1 and the singular point of X has exactly two
branches.

Viceversa, given any such curve X there is an integer d ≥ 2 and a degree
d holomorphic map f : X → X such that X is locally biholomorphic at each
point of X reg.

We are even able to classify all such map f or, equivalently, all such maps
f �.

Remark 0.2. Up to an element of Aut(P1) and a non-zero multiplicative
constant the map f � in the statement of 0.1 is uniquely determined by the
integer d and, possibly,the interchange of the two points of π−1(Sing(X )).
Taking π−1(Sing(X )) = {0, ∞}, we will see in 1.5 that f �(z) = czd (resp.
f �(z) = cz−d ) for some c ∈ C\{0} if f �(0) = 0 and f �(∞) = ∞ (resp if
f �(0) = ∞ and f �(∞) = 0).
For more details on the solutions in Cases A) and B) and in particular on the
possible integers d := deg( f ), see Propositions 1.8, 1.9 and 1.10.

1.� Here we will prove Theorem 0.1 and Remark 0.2. Then we will show how
to solve two related problems on self-maps of pointed projective curves (see
1.11 and 1.12).

Lemma 1.1. Let X be a complex compact irreducibile variety with Sing(X )
�nite and f : X → X a �nite morphism of degree d > 1 such that f |X reg

is locally biholomorphic. Let π : Y → X be the normalization map. Then
there exists a �nite morphism of degree d > 1 f � : Y → Y such that
f ◦π = π◦ f � and f �|π1(X reg) is locally biholomorphic. If dim(X ) ≥ 2, f �

is locally biholomorphic at each point of Yreg.
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Proof. The holomorphic map f ◦π : Y → X is �nite and surjective . By
the universal property of the normalization there is a unique holomorphic map
f � : Y → Y such that f ◦π = π◦ f �. The holomorphic map f � is locally
biholomorphic at each point of Y\π−1(Sing(X ). Assume dim(X ) ≥ 2, i.e.
dim(Y ) ≥ 2. Since the discriminant locus of a �nite holomorphic map between
complex manifolds of the same dimension is either empty or a pure one-
codimensional hypersurface and dim(π−1(Sing(X )) = 0 ≤ dim(Y ) − 2, f �

is locally biholomorphic at each point of Yreg.

Remark 1.2. Let X be a complex compact irreducible variety with Sing(X )
�nite and f : X → X a �nite morphism of degree d > 1 such that f |X reg is
locally biholomorphic. Hence for every P ∈ X reg, f (P) /∈ Sing(X ). since X
is compact, f is surjective. Since Sing(X ) is �nite, Sing(X ) = f −1(Sing(X ))
and f induces a permutation of the �nite set Sing(X ). Hence there is an integer
k ≥ 1 such that the iteration f k := f ◦ · · · ◦ f (k times) of f �xes every point
of Sing(X ).

Remark 1.3. Remark 1.2 explains why we do not assume that f is locally
biholomorphic for every P ∈ X : since Sing(X ) is �nite and deg( f ) > 1, this
would force Sing(X ) = φ . The case Sing(X ) = φ is obvious by the next well-
known remark.

Remark 1.4. Let C be a smooth projective curve of genus q and u : C → C
a �nite morphism of degree d > 1. By the Riemann-Hurwitz formula ([4], IV.
2.4) we have 2q − 2 = d(2q − 2)+ b, with b = 0 if u is locally biholomorphic
and b > 0, otherwise. Hence if u is locally biholomorphic, then q = 1, i.e.
C is an elliptic curve, while if u is not locally biholomorphic, then q = 0, i.e.
C ∼= P1. Viceversa, for every elliptic curve C and all integers t, n with t ≥ 2
and n ≥ 2 there are holomorphic maps u : C → C and ν : P1 → P1 with
deg(u) = t2 and deg(ν) = n. By Riemann-Hurwitz formula every such u is
locally biholomorphic and no such ν is locally biholomorphic.

Lemma 1.5. Let X be an integral projective curve with Sing(X ) �= φ and such
that there exists a �nite morphism u : X → X of degree d > 1 which is locally
biholomorphic at each point of X reg. We have f

−1(Sing(X )) = Sing(X ) and f
induces a bijection of Sing(X ) onto itself. Let π : Y → X be the normalization.
We have Y ∼= P1. There is a morphism f � : P1 → P1 with f � ◦ π = π ◦ f and
in particular deg( f ) = d > 1. The map f � is locally biholomorphic at each
point of π1(X reg) and for every Q ∈ π−1(Sing(X )) we have card( f �−1(Q)) = 1,
i.e. f � is totally rami�ed at Q. We have card(π−1(Sing(X )) = 2. Up to an
element of Aut(P1) the map f � is uniquel determined, up to a non-zero constant,
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by the integer d and f �|π1(Sing(X )): taking π1(Sing(X )) = {0, ∞}, we have
f �(z) = czd (resp. f �(z) = czd ) with c ∈C\{0} if f �(0) = 0 and f �(∞) = ∞

(resp. if f �(0) = ∞ and f �(∞) = 0).

Proof. Since Y is the normalization of X , the degree d morphism π ◦ f :
Y → X factors through the normalization map, π , of the target, proving the
existence of f �. By Remark 1.4 either Y ∼= P1 or Y is an elliptic curve. Since
f is locally biholomorphic at each point of X reg, f (X reg) ⊆ X reg. Since X is
irreducibile and compact, u is surjective. Hence Sing(X ) ⊆ f (Sing(X )). Since
Sing(X ) is �nite, we have f −1(Sing(X )) = Sing(X ) and u induces a bijection
of Sing(X ) onto itself (Remark 1.2). From the �niteness of π−1(Sing(X )) and
the relation π ◦ f � = f ◦ π , we obtain f �−1(π

−1(Sing(X )) = π−1(Sing(X ))
and f � induces a bijection of π−1(Sing(X )) onto itself. Hence f � is totally
rami�ed at every point of π−1(Sing(X )), i.e. the rami�cation order of f at X
is at least d − 1. Thus the degree, z, of the rami�cation divisor of is at least
(d − 1) · card(π−1(Sing(X )). Since Y ∼= P1, the Rieman-Hurwitz formula gives
the relation −2 = −2d + z. Hence card(π−1(Sing(X )) ≤ 2. Since for every
P ∈ P1, P1\{P} ∼= C is simply connected, we have card(π−1(Sing(X )) = 2
and hence 1 ≤ card(Sing(X )) ≤ 2. Now the last assertion is elementary.
We assume that Y is an elliptic curve. By the Riemann-Hurwitz formula (see
Remark 1.3) every non-constant holomorphicmap between two elliptic curves is
locally biholomorphic. As in the previous case f induces a degree d morphism
f � : Y → Y wich induces a permutation of π−1(Sing(X )). Since Sing(X ) �= φ

and deg( f �) = d > 1, f � cannot be locally biholomorphic, contradiction.

De�nition 1.6. Fix an integer d ≥ 2. Let (X, P) the germ of a unibranch
singularity of curves and R the completion of the associated local ring. Since
(X, P) is unibranch, R may embedded as a unitary C-local ring in the power
series ring C[[t]] in one variable. We will say that (X, P) has Property ($ ; d)
if there is an embedding j : R → C[[t]] such that j (R) has generators
1, p1(t), . . . , pe(t) (e := dim(TpX )) and j (R) contains pi (t

d ) for every i with
1 ≤ i ≤ e. Property ($ ; d) depends only on the one-dimensional domain R and
hence we are allowed to say that R has Property ($ ; d) or not.

Remark 1.7. See C[[t]] as the completion of the local ring of the af�ne line
A1 = Spec(C[t]) at 0 and call u : A1 → A1 the morphism with u(z) := zd .
Let R be the local ring of a unibranch curve singularity and �x an embedding
j of R in C[[t]]. This embedding may be used to prove that R has Property
($ ; d) if and only if u∗( j (R)) ⊆ R. Iterating the morphism u we see that if R
has Property ($ ; d), then it has Property ($ ; dk).
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Proposition 1.8. Fix an integer d ≥ 2. Let X be an integral projective curve
with card(Sing(X )) ≥ 2 such that there exists a degree d holomorphic map
f : X → X wich is locally biholomorphic at each point of X reg. Then
card(Sing(X )) = 2. The normalization of X is P1 , each singular point of X
is unibranch and f induces a bijection of Sing(X ) onto itself. Each singular
point of X has Property ($ ; d). If this bijection is not the identity, then
f 2 : X → X has degree d2 , it is locally biholomorphicat each point of X reg and
f 2(P) = P for every P ∈ Sing(X ). Viceversa, for every integral curve X with
card(Sing(X )) = 2, only unibranch singularities, with P1 as normalization and
such that every singular point of X has Property ($ ; d) there is a holomorphic
map f : X → X with deg( f ) = d , f locally biholomorphic at each point
of X reg and such that f |Sing(X ) is the identity; such map is unique up to a
non-zero constant. Furthermore, there is a unique, up to a non-zero constant,
holomorphic map f � : X → X with deg( f ) = d , f � locally biholomorphic at
each point of X reg and such that f

� interchange the two points of Sing(X );

Proof. The proof of Lemma 1.5 gives the �rst part except Property ($ ; d).
The second part, i.e. the viceversa part, is very easy using Remark 1.7; for the
last assertion, just use any morphism P1 → P1 which interchanges 0 and ∞.
Notice that, for any �xed X and u : P1 → P1 with deg(u) = d , there is at most
one morphism f : X → X inducing u. Hence from the viceversa part and the
explicit description of u and Remark 1.7 we obtain that all singular points of X
have Property ($ ; d) or Property ($ , d2).

Proposition 1.9. Let R be the analytic or formal local ring of a unibranch curve
singularity. Let k be its multiplicity. Then R has Property ($ ; k).

Proof. Letm be the maximal ideal of R and e := dimC(m/m2) the embedding
dimension of R. The normalization of R is C[[t]] (or take convergent power
series in the analytic case) and, up to a change of coordinates, there are e power
series f1(t), . . . , fe(t) such that R is the completion of the C-subalgebra of
C[[4]] generated by 1, f1(t), . . . , fe(t) and such that f1(t) = t k and all other
powers of t appearing with non-zero coef�cient in some fi (t), i ≥ 2, have
order at leask k+1 ([3], Remark 2.1.1). Every element of C[[t k]] is of the form
g( f1(t)) with g ∈C[[t]].

Proposition 1.10. Fix an integer d ≥ 2. Let X be an integral projective curve
with card(Sing(X )) = 1, say Sing(X ) = {P}, such that there exists a degree
d holomorphic map f : X → X which is locally biholomorphic at each
point of X reg. Then the normalization of X is P

1, X has two branches, say
B � and B ��, and f induces a permutations of these two branches. Then each
branch of X has Property ($ ; d). If this permutation is not the identity, then
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f 2 : X → X has degree d2, it is locally biholomorphic at each point of X reg

and f 2 �xes the two branches B � and B ��. Viceversa, for every integral curve
X with card(Sing(X )) = 1, say Sing(X ) = {P}, with exactly two branches
at P , with P1 as normalization and such that every branch of X has Property
($ ; d) there is a holomorphic map f : X → X with deg( f ) = d , f locally
biholomorphic at each point of X reg and such that f �xes the branches; such
map is unique up to a non-zero constant. Furthermore, there is a unique, up
to a non-zero constant, holomorphic map f : X → X with deg( f �) = d , f �

locally biholomorphic at each point of X reg and such that f
� interchanges the

two branches of X at P .

Proof. By Lemma 1.5 to prove the �rst part it is suf�cient to show that the two
branches of X at P have Property ($ ; d). Let R be formal (or analytic) local
ring of the germ (X, P). Since X has two branches and it is reduced, R has
two minimal prime ideals p1 and p2 with p1 ∩ p2 = {0}. Set Ri := R/pi .
Let X � be the partial normalization of X in which we have just separated the
two branches, i.e. card(Sing(X �)) = 2, say Sing(X �) = {P1, P2}, and X

� has
formal local ring Ri at Pi . since f (P) = P , the map f induces an injective
K-homorphism �(pi ), i = 1, 2, is contained in a minimal prime of R, the
map f induces a degree d map f �� : X � → X � which coincides with f on
X �

reg
∼= X reg. Hence we may apply Proposition 1.8 to X � and conclude the

proof of the �rst part. Take (X, P) as in the second part. Let R be formal (or
analytic) local ring of the germ (X, P). Let X � be the partial normalization of
X in which we have just separated the two branches, i.e. card(Sing(X �)) = 2,
say Sing(X �) = {P1, P2}, and X � has formal local ring Ri at Ri . There is
a degree d morphism f1 : X � → X � which is locally biholomorphic over
X �

reg
∼= X reg = X\{P}; furthermore there is such morphism, f2 , which �xes the

two points of Sing(X �) and another one, f3 , which interchanges the two points;
up to a non-zero multiplicative constant f2 and f3 are uniquely determined. It
is suf�cient to prove that every such f1 induces a morphim f : X → X with
f |X reg = f1|X

�
reg. This is obvious set-theoretically and even topologically,

but we need to check that the set-theoretic map is holomorphic at P . We
have an inclusion j : R → R1 ⊕ R2 ⊂ C[[t1]] ⊕ C[[t2]], where the latter
ring is the semilocal ring of the normalization of R. The conductor, J , of R
in C[[t1]] ⊕ C[[t2]] is of the form ((t a11 ), (t a22 )) for somr integer a1 ≥ 0 and

a2 ≥ 0. The homomorphism f �∗ sends J into ((t da11 , (t da22 )). Since da1 ≥ a1 and

da2 ≥ a2, ((t
da1
1 ), (t da22 )) is contained in the conductor J . Hence f �∗ descends

to a homomorphism f ∗ : R → R, showing that R is holomorphic at P . The
structure of the set of all possible maps f follows from the structure of all
possible maps f � : X � → X � considered in 1.8.
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Motivated by the theories of orbifolds, of algebraic pairs (Y, S) and of
algebraic stacks, we show why our work gives a solution of the following two
related problems.

Proposition 1.11. Let Y be a smooth projective curve over C and S ⊂ Y with S
�nite and S �= φ . Assume the existence of a holomorphic map f : Y → Y with
deg( f ) = d ≥ 2 such that S = f −1( f (S)) and that f is locally biholomorphic
at each point of Y\S. Then Y ∼= P1, card(S) = 2. Up to an element of Aut(P1)
and a non-zero multiplicative constant the map f is uniquely determined by the
integer d and by the condition � f exchanges the two points of S or not�: taking
S = {0, ∞}, we have f (z) = czd with c ∈ C\{0} for every z ∈ C if f (0) = 0
and f (∞) = ∞ and f (z) = czd with c ∈C\{0} if f (0) = ∞ and f (∞) = 0.

Proof. By Remark 1.4 we have Y ∼= P1. The second part follows from
Riemann-Hurwitz formula exactly as in the proof of Proposition 1.8.

Proposition 1.12. Let X be an integral projective curve over C with Sing(X ) �=

φ and S ⊂ X reg with S �nite and S �= φ . Assume the existence of a holomorphic
map f : X → X with deg( f ) = d ≥ 2 such that S = f −1( f (S)) and that f
is locally biholomorphic at each point of X\(S ∪ Sing(X )); Let π : Y → X
be the normalization. Then Y ∼= P1, card(S) = card(Sing(X )) = 1 and X is
unibranch at unique point, P, of Sing(X ). Furthermore, X satis�es condition
($ ; d) at P . Viceversa, given any such pair (X, S), up to a normalization by
Aut(P1), i.e. taking S = {0} and Sing(X ) = {∞}, there exists exactly one such
holomorphic map f , up to a non-zero multiplicative constant.

Proof. By Remark 1.4 we have Y ∼= P1. By Remark 1.2 we have Sing(X ) =

f −1( f (Sing(X )). The morphism f induces a degree d morphism f � : Y → Y
with f � locally biholomorphic at each point of π−1(S ∪ Sing(X )). Since
S ⊂ Yreg, S �= φ and Sing(X ) �= φ , we obtain card(S) = card(Sing(X )) =

card(π−1(Sing(X ))) = 1. Up to a normalization we assume S = {0} and
Sing(X ) = {∞}. We have f �(z) = czd with c ∈ C\{0} for every z ∈ C. Now
everything follows from the discussion of Property ($; d) made in the proof of
Proposition 1.8.



360 EDOARDO BALLICO

REFERENCES

[1] E. Ballico, Globally invertible differentiable or holomorphic maps, Rend. Sem.
Mat. Univ. Padova (to appear).

[2] A. Campillo, Algebroid Curves in Positive Characteristic, Lect. Notes in Math.
813, Springer-Verlag, Berlin, 1980.

[3] G. Chichilnisky, Topology and invertible maps, Advance Appl. Math. 21, (1998)
pp. 113�123.

[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.

Dipartimento di Matematica,
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