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A REMARK ON THE PLANAR NON LINEAR

ELLIPTIC OBLIQUE DERIVATIVE PROBLEM

ROSALBA DI VINCENZO

We prove that, if l is an unit vector �eld tangential to the boundary of
�, ∂�, at a �nite number of points, the planar non linear elliptic derivative
problem 





A(x, H (u))− λu = f a.e. in � ⊂ R2

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n,

admits a unique solution in the Sobolev space W 2,2(�).

1. Introduction.

In this paper we are concerned with the �strong� solvability, namely in the
Sobolev space W 2,2(�), of the oblique derivative problem

(1.1)






A(x , H (u))− λu = f (x ) a.e. in� ⊂ R2

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n,

where λ is a number greater than zero;A is a mapping satisfyingCarathèodory�s
condition and Campanato�s (A)-condition (see[1]); l is an unit vector �eld
tangential to the boundary of �, ∂�, at a �nite number of points.
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For λ = 0 the linear planar problem for operator

Lu =

2�

i, j=1

ai j (x )
∂2u

∂xi∂xj

has been well studied by G. Talenti [16], who established a W 2,2(�) solvability,
assuming ai j to be measurable functions and

dθ
dϕ

− χ > 0. Here ∅ denotes the
angle between the unit vector l and the normal n, ϕ the curvilinear parameter
relative to ∂� and χ the mean curvature of ∂�.

In the multidimensional case the strong solvability of linear oblique regular
derivative problem for complete operators

Lu =

n�

i, j=1

ai j (x )
∂2u

∂xi∂xj
+

n�

i=1

bi (x )
∂u

∂xi
+ c(x )u

has been studied by C. Miranda [12], M. Chicco [5] and G. Viola [17] if
ai j ∈ W 1,n(�) and by M. Chicco [4] and F. Nicolosi [14] if ai j are measurable
functions satisfying the Cordes�s condition and other additional assumptions.

G. Di Fazio-D.K. Palagachev [6] and A. Maugeri-D.K. Palagachev [11] have
studied the linear regular oblique derivative problem, assuming the coef�cients
of the principal part of the operator L to belong to the space V MO of
functions with vanishing mean oscillations. They generalize so the previous
results, because if ai j ∈ C0(�), or ai j ∈ W 1,n(�), then ai j ∈ V MO . The
previous results have been successfully applied to the study of oblique derivative
problems for quasi-linear elliptic operators with V MO principal coef�cients
(cfr. G. Di Fazio-D.K. Palagachev [7]).

Recently the regular planar oblique derivative problem has been studied for
discontinuous nonlinear operators by S. Giuffrè [9], who has studied also the
tangential oblique derivative problem for nonlinear discontinuous operators in
the plane (cfr. S. Giuffrè [10]).

In the present paper we shall prove, in Theorem 2.1, the solvability of problem
(1.1) in the Sobolev Space W 2,2(�); also we shall prove, in Theorem 2.2, that
there exists a number q0 > 2 such that for each q ∈ [2, q0), and for each
f ∈ Lq(�), problem (1.1) admits a unique solution u ∈ W 2,q(�). At last, in
Theorem 2.3, we give a result on the eigen-values of the operator A(x , H (u)).
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2. Notations and Hypothesis.

Let � ⊂ R
2 be an open bounded convex set with boundary ∂� of class

C2 ; let us assume that ∂� be a closed curve and let x1 = x1(ϕ), x2 = x2(ϕ) ∈
[0, L] be parametric equations of ∂�, with ϕ the curvilinear parameter. Let
l = (Y1(ϕ), Y2(ϕ)) be a unit vector �eld such that Yi (0) = Yi (L), i = 1, 2.
Setting n = (X1, X2) for the unit outward normal to ∂�, and denoting by θ the
angle between the unit vector l and the normal n, we assume that

(2.1) cos θ =

2�

i=1

Xi (ϕ)Yi (ϕ) ≥ 0 ∀ϕ ∈ [0, L]

with cos θ = 0 at a �nite number of points ϕj ∈ ]0, L[, j = 1, . . . , n, with
ϕ1 < ϕ2 < . . . < ϕn .

Assuming ϕ0 = 0, ϕn+1 = L , we suppose

(2.2)






θ ∈ C1([ϕ0, ϕ1)), θ ∈C1((ϕj , ϕj+1)),
j = 1, . . . , n − 1, θ ∈C1((ϕn, L]);

lim
ϕ→ϕ−

j

θ (ϕ) = −
π

2
− 2( j − 1)π;

lim
ϕ→ϕ+

j

θ (ϕ) = −
3

2
π − 2( j − 1)π; j = 1, . . . , n

Yi ∈C1([ϕ0, ϕ1)), Yi ∈C1((ϕj , ϕj+1)),
j = 1, . . . , n − 1, Yi ∈ C1((ϕn, L]),

lim
ϕ→ϕ−

j

Yi (ϕ) = − lim
ϕ→ϕ+

j

Yi (ϕ), i = 1, 2; j = 1, . . . , n.

Denoting by χ the mean curvature of ∂�, we also suppose

(2.3)






χ ≤
dθ

dϕ
≤ 0; ∀ϕ ∈ [ϕj−1, ϕj ], j = 1, . . . , n

dθ (ϕ−
j )

dϕ
< 0;

dθ (ϕ+
j )

dϕ
< 0, j = 1, . . . , n.

Futhermore we impose the following requirements:

i1) let A(x , ξ ) : � × R
2×2 be a mapping measurable in x ∈ � for each

ξ ∈ R
2×2 , continuous in ξ for almost all x ∈ �, such that A(x , 0) = 0 and

verifying the next condition (A) introduced by S. Campanato [1]:
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(A) there exist three positive constants α, γ, δ , with γ + δ < 1, such that,
∀ξ, τ ∈ R

2×2 and for almost all x ∈ �, it results:
�
�
�
�

2�

i=1

ξii − α[A(x , ξ, +τ )− A(x , τ )]
�
�
� ≤ γ �ξ�2×2 + δ

�
�
�

2�

i=1

ξii

�
�
�
�

where by � · �2×2 we denote the usual euclidean norm in R
2×2.

Let us note that Campanato�s (A)-condition is equivalent to a condition of

pseudomonotonicity and ensures that the derivatives
∂A

∂ξi j
(x , ξ ) exist almost

everywhere. Moreover they are essentially bounded.
The following theorems hold:

Theorem 2.1. Under assumptions (2.1), (2.2), (2.3), i1), ∀ f ∈ L2(�), ∀λ > 0,
the problem

(2.4)






A(x , H (u))− λu = f (x ) a.e. in �

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

is uniquely solvable in W 2,2(�) and it results

(2.5) �H (u)�L2(�) ≤
α

1− k
� f �L2(�), 0 < k < 1.

Theorem 2.2. Under assumptions (2.1), (2.2), (2.3), i1) there exists a number
q0 > 2, such that ∀q ∈ [2, q0), ∀ f ∈ Lq(�), ∀λ > 0, the problem

(2.6)






A(x , H (u))− λu = f (x ) a.e. in �

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

admits a unique solution u ∈W 2,q(�).

Theorem 2.3. Under assumptions (2.1), (2.2), (2.3), i1) for each λ > 0, the
problems






A(x , H (u)) = λu a.e. in �

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

and






�u = λu a.e. in �
∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

admit the same solutions and the possible eigen-values of the �rst problem are
all numbers less or equal to zero.
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Remark 2.1. Let us note that from the identities

∂u

∂l
(ϕj ) =

2�

i=1

uxi (ϕj )Yi (ϕj ) = 0 j = 1, . . . , n

cos θ (ϕj ) =

2�

i=1

Xi(ϕj )Yi (ϕj ) = 0 j = 1, . . . , n,

it follows

(2.7)
∂u

∂ϕ
(ϕj ) = 0 j = 1, . . . , n.

In fact, it must be

�
�
�
�
ux1 (ϕj ) ux2 (ϕj )

X1(ϕj ) X2(ϕj )

�
�
�
� = 0 j = 1, . . . , n

and then

ux1 (ϕj )X2(ϕj ) − ux2 (ϕj )X1(ϕj ) = −
∂u

∂ϕ
(ϕj ) = 0 j = 1, . . . , n.

3. Preliminary results.

We recall some auxiliary results. Let us start with the following estimate
due to G. Talenti [16].

Lemma 3.1. Under assumptions (2.2), (2.3), for every function u ∈ C2(�)∩

∩C3(�) such that
∂u

∂l
= 0 on ∂�, it results

(3.1) �H (u)�L2(�) ≤ ��u�L2(�)·

For the reader�s convenience, we give the proof of Lemma 3.1, previously
proved by G. Talenti, under the more general assumptions Yi ∈ C1([0, L]),
i = 1, 2 and dθ

dϕ
− χ ≥ 0, ∀ϕ ∈ [0, L]. We recall that in [16] are given some

examples from which the necessity of the condition dθ
dϕ

−χ ≥ 0 can be derived.
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Proof. We will suppose cos θ = 0 in the unique point ϕ = ϕ1 ∈ ]0, L[. Let us

set pi =
∂u

∂xi
, i = 1, 2, pi j =

∂2u

∂xi∂xj
, i, j = 1, 2.

In order to obtain estimate (3.1), taking into account the identity

2�

i,k=1

p2ik +

2�

i,k=1

(pii pkk − p2ik ) = (�u)2,

it is enough to prove that
�

�

(p11 p22 − p212) dx ≥ 0.

From the identity

p11 p22 − p212 =
1

2

∂

∂x1
(p1 p22 − p2 p12) −

1

2

∂

∂x2
(p1 p21 − p2 p11),

by the Gauss-Green Theorem, we obtain

�

�

(p11 p22 − p212) dx =
1

2

� L

0

[(p1 p22 − p2 p12)X1 − (p1 p21 − p2 p11)X2] dϕ.

We consider the system

(3.2)

�
p1Y1 + p2Y2 = 0

−p1Y2 + p2Y1 = c(ϕ),

it results

(3.3)

�
p1 = −c(ϕ)Y2(ϕ)

p2 = c(ϕ)Y1(ϕ)
∀ϕ ∈ [0, L]

and also c2(ϕ) = p21 + p22 ∀ϕ ∈ [0, L].
Deriving the �rst equation of system (3.2) in [0, ϕ1] and in [ϕ1, L], we obtain

p11X2Y1 − p12X1Y1 + p21X2Y2 − p22X1Y2 = p1Y
�
1 + p2Y

�
2.

Taking into account (3.3) and the last identity, we obtain in [0, ϕ1] and in [ϕ1, L]
�

�

(p11 p22 − p212) dx =

=
1

2

� ϕ1

0

c(ϕ)[p1Y
�
1 + p2Y

�
2] dϕ +

1

2

� L

ϕ1

c(ϕ)[p1Y
�
1 + p2Y

�
2] dϕ.



A REMARK ON THE PLANAR NON LINEAR. . . 367

From (3.3) and bearing in mind that Y �
2Y1 − Y �

1Y2 =
dθ

dϕ
− χ , ∀ϕ ∈ [0, ϕ1] and

∀ϕ ∈ [ϕ1, L], we have
�

�

(p11 p22 − p212) dx =

=
1

2

� ϕ1

0

(p21 + p22)

�
dθ

dϕ
− χ

�

dϕ +
1

2

� L

ϕ1

(p21 + p22)

�
dθ

dϕ
− χ

�

dϕ.

Then, by condition (2.3) we obtain estimate (3.1). �

We observe that estimate (3.1) holds true also for a more extended class
of functions Wl , where Wl is the closure in W 2,2(�) of the set of functions u

belonging to C2(�) ∩ C3(�) such that
∂u

∂l
= 0 on ∂�.

In the general case q ∈ [2, +∞) the following result holds (cfr. M. Chicco
[4]):

Lemma 3.2. For each function u ∈W 2,q(�) such that
∂u

∂l
= 0 on ∂�, we have

(3.4) �H (u)�Lq(�) ≤ c(q)��u�Lq(�),

where c(q) : [2, +∞) → [1, +∞) is a continuous function at q = 2 and
c(2) = 1.

We will need also the following result:

Lemma 3.3. For each function f ∈ Lq (�),q > 1, and for each α > 0, the
oblique derivative problem

(3.5)






�u − αλu = f (x ) a.e. in �

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

is uniquely solvable in the Sobolev space W 2,q(�).

Proof. We consider the case of a unique discontinuity point ϕ1 such that

lim
ϕ→ϕ−

1

θ (ϕ) = −
π

2
, lim

ϕ→ϕ+

1

θ (ϕ) = −
3

2
π.

Let us consider the vector �eld l∗ = (Y ∗
1 , Y ∗

2 ) such that

Y ∗
i (ϕ) =

�
Yi (ϕ) for ϕ ∈ [0, ϕ1],
−Yi (ϕ) for ϕ ∈ [ϕ1, L]

i = 1, 2.
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By denoting θ ∗(ϕ) the angle between l∗ and n, it results

cos θ ∗(ϕ) =

�
cos θ (ϕ) for ϕ ∈ [0, ϕ1],
− cos θ (ϕ) = cos(θ (ϕ)+ π ) for ϕ ∈ [ϕ1, L].

l∗(ϕ) turns to be a continuous �eld (recall also condition (2.7)
∂u

∂l∗
(ϕ1) =

∂u

∂l
(ϕ1) =

∂u

∂ϕ
(ϕ1) = 0).

The problem

(3.6)






�u − αλu = f (x ) a.e. in�

∂u

∂l∗
= 0 on ∂�

u(ϕ1) = 0

admits a unique solution in W 2,q(�). In fact the problem

(3.6)�






�u − αλu = f (x ) a.e. in�

∂u

∂l∗
= 0 on ∂�

is always a non-degenerate one. Then the problem has a �nite index, i.e. �nite
dimensional kernel and cokernel. The kernel is not trivial, because the �eld l∗

makes a turn around the normal n. Prescribing, then, the value of the solution u
at the point, u(ϕ1) = 0, we obtain that the operator

T : u ∈ W
q
l = {u ∈ C2(�) ∩ C3(�) :

∂u

∂l∗
= 0 on ∂�, u(ϕ1) = 0}

W 2,q (�)

→ Tu = �u − αλu ∈ Lq (�)

has a trivial kernel and cokernel, and closed range, namely Lq (�). Then (see
[13], Teorema 82. I), problem (3.6)� is uniquely solvable in W 2,q(�). Therefore
the assertion follows by observing that the solution u to the problem (3.6) is
also solution to the problem (3.5). �

We now recall some de�nitions and results, which will be useful for the
proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3.

De�nition 3.1. Let B be a set and B1 a real Banach space. We consider two
mappings A and B de�ned on B with values in B1 . The mapping A is said to
be near B if there exist two positive constants α and k, 0 < k < 1, such that
for all u, v ∈ B we have

�
�B(u)− B(v)− α[A(u) − A(v)]

�
�

B1
≤ k

�
�B(u) − B(v)

�
�

B1
.
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The next Theorem is proved by S. Campanato [3].

Theorem 3.1. The mapping A : B → B1 is injective or surjective or bijective
if and only if it is near to a mapping B : B → B1 which is injective or surjective
or bijective respectively. Moreover, there is the estimate:

�
�B(u)− B(0)

�
�

B1
≤

α

1− k

�
�A(u) − A(0)

�
�

B1
.

4. Proof of the theorems.

Let us recall that

Wl = {u ∈C2(�) ∩ C3(�) :
∂u

∂l
= 0 on ∂�, u(ϕj ) = 0, j = 1, . . . , n}

W 2,2(�)

and let us prove the following:

Lemma 4.1. Under assumptions (2.1), (2.2), (2.3), for every u ∈Wl it results

(4.1) (�u/u)L2(�) ≤ 0.

Proof. We shall prove Lemma 4.1 supposing cos θ = 0 in the unique point
ϕ = ϕ1 ∈ ]0, L[.

The inequality (4.1) is equivalent to

�

�

u�u dx ≤ 0 ∀u ∈Wl .

Taking into account the identity

u�u =

�
∂

∂x1
(up1)+

∂

∂x2
(up2)

�

− (p21 + p22)

and the Gauss-Green formula, we get

�

�

u�u dx =

� L

0

u[p1X1 + p2X2] dϕ −

�

�

(p21 + p22) dx .
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We observe that

� L

0

u[p1X1 + p2X2] dϕ =

= lim
ε→0+

�� ϕ1−ε

0

u[p1X1 + p2X2] dϕ +

� L

ϕ1+ε

u[p1X1 + p2X2] dϕ

�

.

In [0, ϕ1 − ε] and [ϕ1 + ε, L] it results cos θ > 0, then from the system






p1Y1 + p2Y2 = 0

p1x
�
1 + p2x

�
2 =

du

dϕ

we get

p1 = −
Y2

cos θ

du

dϕ
, p2 =

Y1

cos θ

du

dϕ
.

Then

� L

0

u[p1X1 + p2X2] dϕ =

= − lim
ε→0+

� � ϕ1−ε

0

u
du

dϕ
tan θ dϕ +

� L

ϕ1+ε

u
du

dϕ
tan θ dϕ

�

.

In virtue of (2.7), we obtain for all ϕ ∈ [0, ϕ1] and for a suitable point ϕ ∈

]ϕ, ϕ1[:
du(ϕ)

dϕ
=

du(ϕ)

dϕ
−

du(ϕ1)

dϕ
= (ϕ − ϕ1)

d2u(ϕ)

dϕ2
.

Bearing in mind condition (2.3)

lim
ϕ→ϕ−

1

�
�
�
�u(ϕ)

du

dϕ
tan θ

�
�
�
� = lim

ϕ→ϕ−

1

�
�
�
�u(ϕ)(ϕ − ϕ1)

d2u(ϕ)

dϕ2
tan θ

�
�
�
� ≤

≤ M lim
ϕ→ϕ−

1

�
�
�
�u(ϕ)

ϕ − ϕ1

cos θ

�
�
�
� = M

�
�
�
�

1
−dθ(ϕ−

1
)

dϕ

�
�
�
� lim

ϕ→ϕ−

1

|u(ϕ)| = 0

and then

lim
ε→0+

� ϕ1−ε

0

u
du

dϕ
tan θ dϕ =

� ϕ1

0

u
du

dϕ
tan θ dϕ.
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Similarly, we get

lim
ε→0+

� L

ϕ1+ε

u
du

dϕ
tan θ dϕ =

� L

ϕ1

u
du

dϕ
tan θ dϕ.

On the other hand

� ϕ1−ε

0

u
du

dϕ
tan θ dϕ =

1

2
[u2 tan θ ]

ϕ1−ε

0 −
1

2

� ϕ1−ε

0

u2(ϕ)

cos2 θ

dθ

dϕ
dϕ =

=
1

2

�

u2(ϕ1 − ε) tan θ (ϕ1 − ε)− u2(0) tan θ (0)−

� ϕ1−ε

0

u2(ϕ)

cos2 θ

dθ

dϕ
dϕ

�

.

As above, we have for all ϕ ∈ [0, ϕ1] and for a suitable ϕ̃ ∈ ]ϕ, ϕ1[:

u(ϕ) = u(ϕ)− u(ϕ1) = (ϕ − ϕ)
du(ϕ̃)

dϕ
;

so we obtain

lim
ε→0+

�
�u2(ϕ1 − ε) tan θ (ϕ1 − ε)

�
� ≤ K lim

ε→0+

�
�
�
�

ε2

cos θ (ϕ1 − ε)

�
�
�
� = 0;

and similarly
lim

ε→0+

�
�u2(ϕ1 + ε) tan θ (ϕ1 + ε)

�
� = 0.

In an analogous way we get that lim
ϕ→ϕ−

1

u2(ϕ)

cos2 θ
is �nite.

Taking into account that Yi (0) = Yi (L),Xi (0) = Xi (L), i = 1, 2 implies
tan θ (0) = tan θ (L), we get

�

�

u�u dx =
1

2

� � ϕ1

0

u2

cos2 θ

dθ

dϕ
dϕ +

� L

ϕ1

u2

cos2 θ

dθ

dϕ
dϕ

�

−

�

�

�
p21 + p22

�
dx

and by condition (2.3), we obtain estimate (4.1). �

Taking into account Lemma 4.1, we get (cfr. S. Campanato [2])

Lemma 4.2. Under the same assumptions of Lemma 4.1, if the mapping
A(x , H (u)) is near to �u with constants α and k, then for all λ ≥ 0 the map-
ping [A(x , H (u))− λu] is near to the mapping [�u− αλu] both considered as
mappings from Wl → L2(�).
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Now we are in position to prove Theorem 2.1.
The problem






�u − αλu = f (x )∈ L2(�) a. e. in �

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

admits only one solution u ∈ W 2,2(�) (cfr. Lemma 3.3), then the mapping
�u − αλu is bijective from Wl in L2(�). The Campanato�s (A)-condition and
Lemma 3.1 ensures us that the mapping A(x , H (u)) is near to the Laplacian
�u, both considered as mappings from Wl in L2(�) (cfr. [3]). Then, from
Lemma 4.1 and Lemma 4.2, we get that the mapping A(x , H (u))− λu is near
to mapping �u − αλu. By Theorem 3.2 the mapping A(x , H (u))− λu is also
bijective from Wl in L2(�), so we derive the existence and the uniqueness of
the solution u ∈ W 2,2(�) of problem (2.4).

To prove estimate (2.5) let u ∈ W 2,2(�) be the solution of problem (2.4);
taking into account Lemma 3.1, estimate (4.1) and the nearness of the mappings
�u − αλu and A(x , H (u))− λu, with constants α and k, 0 < k < 1, we get

�H (u)�L2(�) ≤ ��u�L2(�) ≤ ��u − αλu�L2(�) ≤

≤ ��u − αλu − α[A(x , H (u))− λu]�L2(�) + α� f �L2(�) ≤

≤ k��u − αλu�L2(�) + α� f �L2(�).

From this, we obtain estimate (2.5). �

Proof of Theorem 2.2. The proof of Theorem 2.2 is analogous to the proof of
Theorem 2.2 by S. Giuffrè [9]. �

Proof of Theorem 2.3. The mappings [A(x , H (u))−λu] and [�u−αλu] from
Wl in L2(�) are near. Then there exists k ∈ (0, 1) such that

��u − αλu − α[A(x , H (u))− λu]�L2(�) ≤ k��u − αλu�L2(�).

Hence, for all λ > 0, the function u ∈W 2,2(�) is solution of the problem






A(x , H (u)) = λu a. e. in �

∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n
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if and only if u is solution of the problem






�u = αλu a. e. in�
∂u

∂l
= 0 on ∂�

u(ϕj ) = 0 j = 1, . . . , n

that is u ≡ 0.

Then the mapping

A(x , H (·)) : Wl → L2(�)

have all possible eigenvalues less or equal to zero. �
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