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GENERIC UNIQUENESS AND SIZE ESTIMATES IN THE

INVERSE CONDUCTIVITY PROBLEM

WITH ONE MEASUREMENT

GIOVANNI ALESSANDRINI

1. The inverse conductivity problem.

Inverse boundary value problems are those in which one wants to deter-
mine physical parameters associated to the interior of a certain body, or region,
from measurements taken from the exterior. We shall deal with the so called
problem of electrical impedance tomography or inverse conductivity problem.
Suppose � is an electrical conducting isotropic body, and let σ = σ (x ) > 0 be
its (scalar) conductivity. The associated direct boundary value problem is:

Given σ and suitable boundary data, for instance the current density
η, �nd the electrical potential u inside �.

This corresponds to the solution of the Neumann problem

(1)

�
div(σ∇u) = 0 in �,
∇u · ν = η on ∂�.

To each current pro�le η
� �

∂�
η = 0

�
, one can associate the boundary values of

the potential u|∂� (the Dirichlet data). That is, given σ , the linear map

Nσ : η = σ∇u · ν → u|∂�
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called the Neumann-to-Dirichlet map, is known. The inverse boundary value
problem is then:

Given Nσ (or equivalently, the Dirichlet-to-Neumann map �σ =

N−1
σ ) �nd σ .

Essentially under this setting, this problem was �rst raised by A. P. Cal-
derón [13] in 1980. The uniqueness issue, that is, whether Nσ uniquely
determines σ , was �rst attacked by Kohn and Vogelius [23], [24] and solved, in
the case when the space dimension n is greater than or equal 3, by Sylvester and
Uhlmann [29].
The uniqueness for the case n = 2 was �nally resolved by Nachman [26] in �95.

Allied to uniqueness, stands the stability issue, which is especially impor-
tant for the practical purpose of reconstruction. Namely:

If Nσ is incompletely known and if its measurement is affected by
errors, what kind of information about σ can be extracted from such
incomplete and noisy data?

There are indeed several pieces of evidence that the dependence of σ on
Nσ is not stable. One argument suggesting instability goes as follow.

Let σ1, σ2 be two conductivity coef�cient and let N1 , N2 be the corre-
sponding Neumann-to-Dirichlet maps. We have the following identity

(2)

�

�

(σ1 − σ2)∇u1 · ∇u2 = −

�

∂�

η1(N1 − N2)η2

here ui , i = 1, 2 is the solution to (1),when σ = σi and η = ηi , and η1, η2 are
any two current pro�les

� �
∂�

ηi = 0
�
.

From the weak formulation of (1), it can be seen that the above identity (2)
carries all the information about the connection between σ and Nσ .

By formally differentiating the mapping σ → Nσ , let us linearize the
identity (2) around the conductivity σ1 ≡ 1. Namely set

σ1 ≡ 1 , σ2 = 1+ tδσ

and

δN =
d

dt
N2 |t=0.

We obtain

(3)

�

�

δσ∇h1 · ∇h2 = −

�

∂�

η1δNη2
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where hi , i = 1, 2, is the harmonic function in � having Neumann data ηi on
∂�.

Let us specialize the geometry to the case of the unit disk � = B1 ⊂ R
2.

Since the class of harmonic functions in the disk is spanned by the polynomials
r |n|e�nθ , u = 0, ±1, ±2, . . ., it suf�ces to consider in (3)

h1 = r |n|e�nθ , h2 = r |m|e−�mθ , n, m = 0, ±1, ±2, . . .

Let us represent δσ by the Fourier series

δσ =

∞�

n=0

�
cn(r)e

�nθ + cn(r)e
−�nθ

�

and let us pose:

Nn,m =

� 2π

0

e�nθ δN
�
e−�mθ

�
dθ

in such a way that {Nn,m } is the in�nitematrix representing the operator δN with
respect to the Fourier basis

�
e�nθ

�
. Taking now n ≥ m ≥ 0 and k = n − m, we

obtain from (3)

(4) 2

� 1

0

rk+2m−1ck (r)dr = −Nk+m,m for every k, m ≥ 0.

That is, for each Fourier coef�cient ck of δσ , an in�nite sequence of its
Hausdorff moments is given. It is well-known that the determination of a
function from its moments is a severely ill-posed problem, see for instance
Talenti [30].

The evident limitation of the above argument is that it shows the instability
of a linearization of the inverse conductivity problem and not of the original
nonlinear problem, which, in principle, could be better conditioned than any of
its linearizations. At the same time, this argument poses a warning to an easy
use of standard inversion procedures, which typically involve, in one way or
another, some form of linearization.

On the positive side, let us mention that stability results of conditional type
(that is, under prior assumptions on the regularity of the unknown conductivity
σ ) have been obtained, [1], [2], [3]. The essence of these results is as follows:

suppose we a priori know ||σ ||C2 ≤ E for some E > 0, then the mapping

(5) Nσ → σ
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is continuous (in the natural topologies), with an estimated modulus of
continuity of logarithmic type.

An interesting, still unanswered, question is whether such logarithmic rate
is the best possible.

2. The inverse conductivity problem with one measurement.

In the experimental practice only an incomplete knowledge of Nσ will
be available, since it will be sampled on �nitely many pro�les of the current
density η.Therefore it is reasonable to incorporate among the data additional
prior information on the unknown conductivity σ which concerns its structure,
rather than its smoothness, so to reduce the dimension of the undetermined
parameter. One basic case of this sort is the so called transmission problem.

Assume that σ has the following structure

(6) σ = 1+ (k − 1)XD

where D is a set compactly contained in� and k > 0, k �= 1 is a given constant.
The inverse transmission problem (also known as the inverse conductivity

problem with one measurement) consists in �nding D given one (or �nitely
many) pair of nontrivial boundary measurements

�

u|∂�,
∂u

∂ν
|∂�

�

where u is a solution of the equation in (1).
There have been numerous attempts in proving uniqueness, but still it

remains an open problem. Partial results are of the following kinds.

(i) (Local uniqueness) Assume D, D� are suf�ciently smooth (C1,α) sim-
ply connected domains, which give rise to the same boundary measurement�
u|∂�, ∂u

∂ν
|∂�

�
, if D, D� are suf�ciently close, then they coincide.

Results of this type have been obtained when the space dimension n = 2.
Cherednichenko [14], Bellout, Friedman and Isakov [11] proved such kind of
result under analyticity assumptions on ∂D, ∂D�. The regularity assumption
was reduced to C1,α by Alessandrini, Isakov and Powell [6].
A typical assumption in the above papers is that the prescribed boundary data on
u (for instance the Neumann data η in (1)) must be such that, in a generalized
sense, ∇u never vanishes in the interior. A constructive procedure, which
exhibits such boundary data, was presented in [7], and consequently applied
in [6].
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(ii) (Uniqueness for special geometries). If D is a priori known to be a convex
polygon or polyhedron then it is uniquely determined by one pair

�
u|∂�, ∂u

∂ν
|∂�

�
.

Results of this kind have been obtained by Friedman and Isakov [17], Barcelò,
Fabes and Seo [10] and by Alessandrini and Isakov [5].
A remarkable result is also due to Seo which says that if D is a priori known to
be a polygon, then it is uniquely determined by two suitable pairs of boundary
measurements [28]. Also other special geometries (disks, balls cylinders) have
been investigated, see for instance [20], [15].

3. Uniqueness results of generic type.

In [5] another approach to the inverse conductivity problem with one
measurement was taken, aimed at showing that, should non uniqueness ever
occur, it would be an exceptional event. The result in this directions is as
follows. We suppose n ≥ 2, and ∂D suf�ciently smooth (C1,α).

If D is not uniquely determined by one boundary measurement�
u|∂�, ∂u

∂ν
|∂�

�
then there exists some portion of its boundary which

is made of an (n − 2)-parameter family of analytic curves.

As noted above, this result can be viewed in a broad sense, as a result of
generic uniqueness, but also it shows that there exists indeed domains D ⊂⊂ �

which are uniquely determined by one boundary measurements.
Let us sketch the main ideas of the proof.

If we set ue = u|
�\D , u

i = u|D , then it is well known that u
e , ui are separately

harmonic and satisfy the transmission conditions:

(7)






ui = ue on ∂D

k
∂ui

∂ν
=

∂ue

∂ν
on ∂D

Suppose D� �= D is another subdomain of � that gives rise to the same
boundary measurement. It is known that we must have D\D� �= ∅, D�\D �= ∅,
see [2].
Let us pick xo ∈ ∂D\D� such that ∇ue(xo) �= 0 (this is possible, because
otherwise ue ≡ const, that is the boundary data should be trivial). Let B be
a ball centered at xo, small enough so that B ∩ D� = ∅. Let u� be the potential
corresponding to D� such that u� = u, ∂u �

∂ν
= ∂u

∂ν
on ∂�.

By the uniqueness for the Cauchy problem, we have ue = u� in B\D . That
is, ue harmonically continues to u� throughout B . Set v = ui −u� in D ∩ B , we
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have

(8)






�v = 0 in D ∩ B,

v = 0 on ∂D ∩ B,

k
∂v

∂ν
= (1− k)

∂u�

∂ν
on ∂D ∩ B.

This is an overdetermined problem for which the existence of a solution v poses
constraints on the boundary ∂D ∩ B . In other words it is a free boundary
problem. In particular we have that, if at some point y ∈ ∂D ∩ B , ∂u �

∂ν
(y) �= 0,

by a slight adaptation of a result by Kinderlehrer and Nirenberg [?], then ∂D is
analytic near y .

Viceversa, if ∂u �

∂ν
(y) = 0 for every y ∈ ∂D ∩ B , then ∂D ∩ B is made of

stream lines of u�. That is, locally, ∂D ∩ B is an (n − 2)-parameter family of
analytic curves.

Let us also notice that when n = 2, the a-priori assumption ∂D ∈ C1,α

can be relaxed by merely assuming that ∂D is a Jordan arc. An interesting
open problem is the study of the regularity of the free boundary in (8) under
reduced a priori assumption. (After this lecture was presented, we have learned
that Athanasopulos, Caffarelli and Salsa [27] have proven regularity under the a
priori assumption that ∂D is Lipschitz.)

4. Size estimates.

Finally let us discuss another direction of research: instead of determining
the exact shape and location of D, can we at least evaluate its size in terms of
the data?

Attempts of this sort are due to Friedman [16], Bryan [12], Lusin [25],
Alessandrini, Rosset [8], Kang, Sheen and Seo [21] and Ikehata [19]. Let
us outline the most recent results by Alessandrini, Rosset and Seo [9]. For
simplicity, let us assume k = 2, but let us stress that the method in [28] enables
to treat also anisotropic equations of the form

div
��

Aχ�\D + BχD

�
∇u

�
= 0

with A, B uniformly elliptic matrices, with A Lipschitz continuous and either
A − B > 0 or B − A < 0.

Suppose that for a given F > 0 the Neumann data η in (1) satis�es

||η||L2(∂�)

||η||
H

− 1
2 (∂�)

≤ F
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and let u0 be the solution of the problem

(9)






�u0 = 0 in �,
∂u0

∂ν
= η on ∂�

that is u0 is the electrostatic potential in case the inclusion D is absent.
Let us set

W =

�

∂�

ηu , W0 =

�

∂�

ηu0

These numbers correspond to the electrical power needed to mantain the current
η when the inclusion D is present or absent, respectively. Such powers can
be easily evaluated (either measured or computed) in terms of the boundary
measurement.

The �rst result is as follows.

There exist constants C1, C2 > 0 and an exponent p > 1 such that

(10) C1
W0 − W1

W0

≤ |D| ≤ C2

�
W0 − W1

W0

� 1
p

Here |D| denotes the measure of D. These estimates apply whenever D is
a measurable (possibly disconnected) subset of �. Such estimates can be
improved if we are willing to assume that D is open and satis�es the following
fatness condition (11).
Namely, given h1 > 0, and denoting Dh =

�
x ∈ D|dist(x , ∂D) > h

�
,

If we assume

(11) |Dh1 | ≥
1

2
|D|

then we have

(12) C1
W0 − W1

W0
≤ |D| ≤ C2

W0 − W1

W0
.

Let us illustrate the main tools which are required in order to obtain the
above estimates.

(I) From the weak formulations of the boundary value problems (9) and (1)
under (6) it is possible to obtain

(13)
1

2

�

D

|∇u0|
2 ≤ W0 − W ≤

�

D

|∇u0|
2
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and thus we are reduced to estimate
�

D
|∇u0|

2 in terms of |D| from above and
below. While the upper estimate follows easily from a standard interior gradient
estimate, the lower estimate requires a deeper analysis since, in general, ∇u0
may vanish at interior points.

(II) If we �x ρ > 0, we can �nd a constant C > 0 depending on ρ and on F ,
such that, for any x ∈ � such that dist (x , ∂�) > 4ρ we have

(14)

�

Bρ (x)

|∇u0|
2 ≥ C

�

�

|∇u0|
2.

This is, in a disguised form, a stability estimate for for the harmonic
continuation from Bρ (x ) in �. Its proof comes from the iterated use of three
spheres inequalities and regularity estimates near the boundary (see [9], Lemma
2.2).
From such an estimate, inequalities (12), those for �fat domains�, easily follow
by covering Dh1 by nonoverlapping cubes of side ε = O(h1).

(III) The case of a general measurable set D requires a further deeper argument.
Garofalo and Lin [18] in their proof of the unique continuation property for
elliptic operators, obtained that solutions satisfy very powerful local properties
of homogeneity in the average. Namely we have |∇u0|

2 ∈ Ap for some p,
where Ap is the class of Muckenhoupt weights. More precisely, by combining
the results in [18] and the arguments leading to (11) we obtain the following.

Given ρ > 0, there exist constants C > 0, p > 1 depending on ρ

and F, such that, for any x satisfying dist(x , ∂�) > 4ρ , and for any
r < ρ

�
1

|Br |

�

Br (x)

|∇u0|
2

��
1

|Br |

�

Br (x)

|∇u0|
− 2

p−1

�p−1

≤ C.

Thus |∇u0|
− 2

p−1 is locally integrable, hence we readily obtain

|D| ≤ CW
− 1

p

0

��

D

|∇u0|
2
� 1

p

and (10) follows.
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