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ON BERNOULLI BOUNDARY VALUE PROBLEM

FRANCESCO A. COSTABILE - ANNAROSA SERPE

We consider the boundary value problem:

X(m)(t):f(t,f([)), a<t<b, m>1

x(a) =Po

Ax®) = x8) (h) —xH) (@) = By, k=0,...m—2
where x(1) = (x(1),x (¢),.....xX" (1)), B €R, i =0,...m—1, and f is
continuous at least in the interior of the domain of interest.
We give a constructive proof of the existence and uniqueness of the
solution, under certain conditions, by Picard’s iteration. Moreover
Newton’s iteration method is considered for the numerical compu-
tation of the solution.

1. Introduction

In this paper we consider the following boundary problem:

(la) xM(e)=f (1,%(1)), a<t<b, m>1
(1b) X(a):ﬁo, Axc(tk)Ex(k)(b)_x(k)(a):ﬁk—H k:077m_2
(1)
where x(t) = (x(t),x (¢),.....x"(¢)), f is defined and continuous at least
in the domain of interest included in [a,b] x R™; [a,b] CR, and ;€ R, i=
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0,..m—1.

This problem is called the Bernoulli boundary value ([4],[6]) problem.
The boundary conditions in (la) — (1b) are new and it is easy to give
them physical and engineering interpretations [1]; this is the motivation
of our investigation.

In [6] the authors give a non constructive proof of the existence and
uniqueness of the solution of (la) — (1b), while in this work they prove
the convergence of Picard’s iteration under certain conditions and, there-
fore, supply a constructive proof.

The outline of the paper is the following: in section 2 we give the pre-
liminaries, in section 3 we investigate the existence and uniqueness of
the solution by Picard’s iteration; finally, in section 4 we consider the
Newton’s iterations method for the numerical calculation of the solution.

2. Definitions and preliminaries

If B,(x) is the Bernoulli polynomial of degree n defined by [7]

By(x) =1
B, (x)=nB, 1(x) n>1 (2)
fol B, (x)dx=0 n>1

in a recent paper Costabile [5] proved the following theorems.
Theorem 1. Let f € C)[a,b] we have

Hl) D AR Ry [)(0) (3)

o=+ X5 (50)

where

h=b—a, S()=1Bt)=B(0) , fa=f(a), AL =fO(b)—f(a)
w5 (o (o () o ()

By()=Bu(t) 0<t<1,  Bi(t+1)=Bi()

Theorem 2. Putting

4 x—a\ h*1 _
A =t s () et @

= k!
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the following equalities are true

Py[f](a) = f(a) = fa
Py[f](b) = f(b) = fp
APY = PP (5)—PF (@) = O (b)— fO (@) =AfP, k=1,..,v—1

(5)
The conditions (5) in the previous equalities are called Bernoulli interpo-
latory conditions analogously to Lidstone interpolatory conditions [3],[4].

Theorem 3. If f € C"*V[a,b] we have

RfAW = [ 6o e

where

Glx,t) = % [(x—m _;Sk (x;a) h“;” (kz 1) (b—t>vk+1] ©

with

0 if x<0
Theorem 4. For f € C)[a,b] we have

(x)k { xk if x>0

v—1
R0 < gy | |70 a @

For the following, we need
Lemma 1.[6] If f €C)[a,b] and satisfies the homogeneous Bernoulli in-
terpolatory conditions i.e:

{f()_o k=0,... (8)

O B) =W (a)=0 V=2
putting
_ (v) ‘
My = max, | 10)
the following inequalities hold
FO@O|< oMy b-a) ™t 0<k<v-1 (9)
where |
o= Sy
1
Cyr= k=1,2,...,.v—1

6(27-[)v7k72
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Proof >From (8) the expansion (3) becomes

=" e (50) - et -rii) o

v!
We also have

7@ =)+ [ s

from which
47870 = |1 b) = 10 (@) < Mo —a) (1)
Using the known inequalities in [7]

Al
B <—— leN, >0, 0<x<1
and (7),(11) we have from (10)

h¥-M,
O < 3502

that is (9) for k = 0.
With a successive derivation of (10) and by applying (8) we have

hV*(kJrl) B t—a
Ry — B A=) t—a
() (v o1 Afa Bv_k< h )—1—

—(k+1)
‘/f < >w k=1,2,..,v—1

and applying the previous inequalities we get

h k.M
k v _
‘f( )(;)‘ < RS k=1,2,..,.v—1

that is (9) for k=1,2,...,v—1.

3. Existence and uniqueness

To the boundary value problem (la) — (1b) we associate the homogeneous
boundary value problem

M) = Fx(0),  a<t<b, m>1
{ (a)=x(b)=0 (13)
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From Theorem 3, the solution of the boundary value problem (13) is
x()= [ " Glt,5) f(5,3(s)) ds (14)
a
where G(t,s) is the Green function [8] defined by (6), with v =m—1.

The polynomial P,,_[x](t) defined by (4) with x(a)=Bo, x* (b)—x¥)(a) =
Bii1, k=0,...,m—2, satisfies the boundary value problem:

P x](1) = 0
Po1[3](a) = fo

APY =pW ) p® (a) =By, k=0,..m—2

Therefore, the boundary value problem (la) — (1b) is equivalent to the
following nonlinear Fredholm integral equation:

b
x(t) = Pp—1[x](2) +/ G(t,s)- f(s,x(s))ds (15)
Now, we have the following results:

Theorem 5.[6] Let us suppose that

(i) k>0, 0<i<m—1 are given real numbers and let Q be the maximum
of | f(¢,x0,...,xm—1)| on the compact set [a,b] x Dy, where
Do = {(x0, .y Xm—1) : |xi| <2k;;, 0<i<m—1};

(ii) max ‘Prfle[x] (t)‘ <k; 0<i<m—1, where B,_;[x](¢) is the polynomial

relative to x as in (4);

1
ki O\ o
(iii) (b—a) < (Q - > 0<i<m—1.

Then, the Bernoulli boundary value problem has a solution in Dy.
Proof. The set

Bla,b] = {x(1) € C" Va,b]: me(

<2k, ogigm—l}
is a closed convex subset of the Banach space C"~V[a,b].
Now we define an operator T : C"~D[a,b] — C"[a,b] as follows:

b
(Tx)(1)) = Bn1[¥(2) +/a Gt,s5)- f(s,x(s))ds (16)

It is clear, after (15), that any fixed point of (16) is a solution of the
boundary value problem (1la) and (15).

Let x(t) € Bla,b], then from (16), lemma 1, hypotheses (i),(ii),(iii) we
find:
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(a) TB[a,b] C Bla,b];

(b) the sets {T[x]®(¢) : x(t) € Bla,b]} , 0<i<m~—1 are uniformly bounded
and equicontinuous in [a,b];0n Bernoulli boundary value problem

(c) TBla,b] is compact from the Ascoli - Arzela theorem;

(d) from the Schauder fized point theorem a fixed point of T exists in
Dy.

Corollary 1. Suppose that the function f(¢,x0,x1,...,%,—1) on [a,b] x R"
satisfies the following condition

m—1
|f(t,XO,X1...,Xm_1)| S L+ Z Li |xi|ai
i=0
where L,L; 0<i<m—1 are non negative constants, and 0 < ¢; < 1.
Then the boundary value problem (la)— (1b) has a solution.
Lemma 2 [6] For the Green function defined by (6), for v=m—1 the
following inequalities hold:

G(1,5)] < ¢

withOn Bernoulli boundary value problem

1 27mm!
= —(b—a)" 1+ ).
§=yb-9) (+3(27r—1)>

Proof. The proof follows from the known inequalities of Bernoulli poly-
nomials and from simple calculations.

Theorem 6.[6] Suppose that the function f(z,xo,xi...,x,—1) on [a,b] X D;
satisfies the following condition

m—1
| f(2,x0,x1 s Xm—1)| < L+ Z L; |x;| (17)
i=0
where 0
D1 = {(30.21-0%1) ] < max [ 40|+
L+C
+Cpi(b—a)"g-h- <1+9> , 0<i< m—l}

P ()|

a<t<b
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m—1

O=h-g- (): Cm7,-L,~(b—a)mi> <1, h=b-a (18)
i=0

Then, the boundary value problem (la)— (1b) has a solution in D;.

Proof. Let y(t) =x(t) — Pu—1[x](¢), so that (la) and (1b) is the same as

Y () = f£(1.5(1))
y(@) =y(b) =0 (19)

AP =0 1<k<m—2

whereOn Bernoulli boundary value problem

() =3O + P i ((0), ¥ () + By [0,y 0 + P VI ().

Define M(a, b] as the space of m times continuously differentiable functions
satisfying the boundary conditions of (19). If we introduce in M[a,b] the
norm:

[ —
19(0)]] max

()|

then it becomes a Banach space. As in theorem 5, it suffices to show that
the operator T : M[a,b] — M|a,b] defined by

b
T = | Glr.5)- S(s.5(5))ds

maps the set

S {y(t) € Mla,b] : |lyll.. < hg (%) }

into itself. In order to demonstrate this, it is sufficient to utilise the con-
ditions (17), lemma 1 and lemma 2.

The thesis follows from the application of the Schauder fized point theo-
rem to the operator T.

Definition 1. A function X(t) €C"[a,b] is called an approximate solution
of (1a) — (1b) if there exist non-negative constants 6 and € such that:

maxg<r<p ‘f(m) (t) — f(l,f(l‘))‘ <é

maXa<:<p m—1

P W (r) —PY

[x](t)‘ <e-Cpi-(b—a)™, 0<i<m—1
(20)
w1 [x] () and P,El'l \[x](¢) are the polynomials defined by (5).
The inequality (20) means that there exists a continuous function 1(r)
such that:

where PY)

(1) = (. %(1)) + (1)
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and

an;a;bln(t)! <6

Thus the approximate solution X(¢) can be expressed as:

b
X(t) = Pm1 (1) +/a G(t,5)-[f(s,x(s)) +n(s)]ds

In the following we shall consider the Banach space C"V[a,b] and for
y(t) € C=Y[a,b] the norm ||y|| is defined by:

{ Crolb—a)) \yfm»}

Iyl = max Cor’ Jnax.

0<j<m—1
Now we have:
Theorem 7.(Picard’s iteration)[2]
With respect to the boundary value problem (la)— (1) we assume the
existence of an approximate solution X(¢) and:

(i) the function f(t,xo,...,x,—1) satisfies the Lipschitz condition:

m—i

|f(t,xo, e ,xm_l)—f(l,fo, e Xme1)] < Z Li|x;i—x;| on [a,b] X D»p
i=0

where D, = {(xo,...,xi) : ‘xj—f(j)(tﬂ <N-—Smi_ o< j< m—l}

Cuo(b—a))? = = =
(ii) o <1
(iii) No= (1-0)"1- (e +8)-Cpo(b—a)" <N

Then, the following results hold:

(21,) there exists a solution x*(¢) of (1a) and (1b) in

S(x,No) = {x e CmV[a,b]: |x—3| < No}

(21,) x*(¢) is, the, unique solution of (1a) and (1b) in S(x,N)
(21.) the Picard iterative sequence x,(t) defined by:
xo(t) = x(r)
X1 (1) = P 1 () 4 [P G(t,5) - f(5,%u(s))ds  n=0,1,...

converges to x*(¢) with: [|x* —xo|| < 60" -Ny
and
" = x| < 6(1—6)"" flxo —2xu1 | -
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Proof. Tt suffices to show that the operator T':S(x,N) — C"[a,b] defined
by
b
T(r) = Pact[4(0) + | Glt.)-£(s.X(5))ds

where X (s) = (x(s),x (s),....,x" 1 (s)), satisfies the conditions of the con-
traction mapping theorem.

4. Newton’s iteration

For an efficient numerical calculation of the solution of problem (1a)— (1b)
we can consider Newton’s iteration method. For our problem (la) — (1b)
the quasilinear iterative scheme is defined as:

(2 A0 = 0%+ T (3 (0 -2 (0) - Lol

ﬁ?l(b)_xﬁl(a) = But1, h=0,....m—2, n=0,1,...

where x(t) =X(¢) is an approximate solution of (1a)— (1b).

Theorem 8.(Newton’s iteration)
With respect to the boundary value problem (la)— (1b) we assume that
there exists an approximate solution X(¢), and:

(i) the function f(¢,x0,x1,...,%,—1) is continuously differentiable with
respect to all x; 0<i<m—1 on [a,b]xDy;

(ii) there exist non-negative constants L;, 0 <i <m— 1 such that for all
(t,x0,-..,Xm—1) € [a,b] x D, we have:

af(t,X(),. .. ,Xm_l) <L
ox; -

(iii) 36 < 1
(iv) N3=(1-360)"1(e+8) Cno(b—a)" <N
Then, the following results hold:

(23,) the sequence x,(r) generated by the iterative scheme (22,) — (22;)
remains in S(x,N3).
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(23,) the sequence x,(f) converges to the unique solution x*(f) of the
boundary value problem (la)— (1b).

Proof. The proof requires the equalities and the inequalities that we have
previously determined and is based on inductive arguments.

[1]
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