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ON BERNOULLI BOUNDARY VALUE PROBLEM

FRANCESCO A. COSTABILE - ANNAROSA SERPE

We consider the boundary value problem: x(m)(t) = f (t,x(t)), a ≤ t ≤ b, m > 1
x(a) = β0

∆x(k) ≡ x(k)(b)− x(k)(a) = βk+1, k = 0, ...,m−2

where x(t) = (x(t),x
′
(t), ....,x(m−1)(t)), βi ∈R, i = 0, ...,m−1, and f is

continuous at least in the interior of the domain of interest.
We give a constructive proof of the existence and uniqueness of the
solution, under certain conditions, by Picard’s iteration. Moreover
Newton’s iteration method is considered for the numerical compu-
tation of the solution.

1. Introduction

In this paper we consider the following boundary problem:{
(1a) x(m)(t)= f (t,x(t)) , a≤ t≤ b, m >1
(1b) x(a)=β0, ∆x(k)

a ≡ x(k)(b)−x(k)(a)=βk+1 k = 0, ...,m−2
(1)

where x(t) = (x(t),x
′
(t), ....,x(m−1)(t)), f is defined and continuous at least

in the domain of interest included in [a,b]×Rm; [a,b]⊂R, and βi ∈R, i =
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0, ...,m−1.
This problem is called the Bernoulli boundary value ([4],[6]) problem.
The boundary conditions in (1a)− (1b) are new and it is easy to give
them physical and engineering interpretations [1]; this is the motivation
of our investigation.
In [6] the authors give a non constructive proof of the existence and
uniqueness of the solution of (1a)− (1b), while in this work they prove
the convergence of Picard’s iteration under certain conditions and, there-
fore, supply a constructive proof.
The outline of the paper is the following: in section 2 we give the pre-
liminaries, in section 3 we investigate the existence and uniqueness of
the solution by Picard’s iteration; finally, in section 4 we consider the
Newton’s iterations method for the numerical calculation of the solution.

2. Definitions and preliminaries

If Bn(x) is the Bernoulli polynomial of degree n defined by [7]
B0(x) = 1
B
′
n(x) = nBn−1(x) n ≥ 1∫ 1

0 Bn(x)dx = 0 n ≥ 1
(2)

in a recent paper Costabile [5] proved the following theorems.
Theorem 1. Let f ∈ C(ν)[a,b] we have

f (x) = f (a)+
ν

∑
k=1

Sk

(
x−a

h

)
h(k−1)

k!
∆ f (k−1)

a −Rν [ f ](x) (3)

where
h = b−a, Sk(t)=1Bk(t)−Bk(0) , fa = f (a), ∆ f (k)

a = f (k)(b)− f (k)(a)

Rν [ f ](x) =
h(ν−1)

ν!
·
∫ b

a

(
f (ν)(t)

(
B∗ν

(
x− t

h

)
+(−1)ν+1Bν

(
t−a

h

)))
dt

and
B∗m(t) = Bm(t) 0 ≤ t ≤ 1, B∗m(t +1) = B∗m(t)

Theorem 2. Putting

Pν [ f ](x) = fa +
ν

∑
k=1

Sk

(
x−a

h

)
h(k−1)

k!
∆ f (k−1)

a (4)
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the following equalities are true
Pν [ f ](a) = f (a)≡ fa

Pν [ f ](b) = f (b)≡ fb

∆P(k)
ν ≡ P(k)

ν (b)−P(k)
ν (a)= f (k)(b)− f (k)(a)≡∆ f (k)

a , k = 1, ...,ν −1
(5)

The conditions (5) in the previous equalities are called Bernoulli interpo-
latory conditions analogously to Lidstone interpolatory conditions [3],[4].
Theorem 3. If f ∈C(ν+1)[a,b] we have

Rν [ f ](x) =
∫ b

a
G(x, t) f (ν+1)(t)dt

where

G(x, t) =
1
ν!

[
(x− t)ν

+−
ν

∑
k=1

Sk

(
x−a

h

)
h(k−1)

k!

(
ν

k−1

)
(b− t)ν−k+1

]
(6)

with

(x)k
+ =

{
xk i f x ≥ 0
0 i f x < 0

Theorem 4. For f ∈C(ν)[a,b] we have

|Rν [ f ](x)| ≤ hν−1

6(2π)ν−2

∫ b

a

∣∣∣ f (ν)(t)
∣∣∣dt (7)

For the following, we need
Lemma 1.[6] If f ∈C(ν)[a,b] and satisfies the homogeneous Bernoulli in-
terpolatory conditions i.e:{

f (a) = 0
f (k)(b)− f (k)(a) = 0 k = 0, ...,ν −2

(8)

putting
Mν = max

a≤t≤b

∣∣∣ f (ν)(t)
∣∣∣

the following inequalities hold∣∣∣ f (k)(t)
∣∣∣≤Cν ,k ·Mν ·(b−a)ν−k 0 ≤ k ≤ ν −1 (9)

where 
Cν ,0 =

1
3(2π)ν−2

Cν ,k =
1

6(2π)ν−k−2 k = 1,2, ..,ν −1
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Proof >From (8) the expansion (3) becomes

f (t) =
hν−1

ν!

[
Bν

(
t−a

h

)
−Bν

]
∆ f (ν−1)

a −Rν [ f ](t) (10)

We also have
f (ν−1)(t) = f (ν−1)(a)+

∫ t

a
f (ν)(s)ds

from which ∣∣∣∆ f (ν−1)
a

∣∣∣≡ ∣∣∣ f (ν−1)(b)− f (ν−1)(a)
∣∣∣≤ Mν(b−a) (11)

Using the known inequalities in [7]

|Bl(x)| ≤
l!

12(2π)l−2 l ∈ N, l ≥ 0, 0 ≤ x ≤ 1

and (7),(11) we have from (10)

| f (t)| ≤ hν ·Mν

3(2π)ν−2

that is (9) for k = 0.
With a successive derivation of (10) and by applying (8) we have

f (k)(t) =
hν−(k+1)

(ν − k)!
∆ f (ν−1)

a Bν−k

(
t−a

h

)
+

− hν−(k+1)

(ν − k)!

∫ b

a
f (ν)(t)B∗ν−k

(
t− s

h

)
ds k = 1,2, ...,ν −1

(12)

and applying the previous inequalities we get∣∣∣ f (k)(t)
∣∣∣≤ hν−k ·Mν

6(2π)ν−k−2 k = 1,2, ...,ν −1

that is (9) for k = 1,2, ...,ν −1.

3. Existence and uniqueness

To the boundary value problem (1a)−(1b) we associate the homogeneous
boundary value problem

x(m)(t) = f (t,x(t)), a ≤ t ≤ b, m > 1
x(a) = x(b) = 0
∆x(k) ≡ x(k)(b)− x(k)(a) = 0 k = 1, ...,m−2

(13)
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From Theorem 3, the solution of the boundary value problem (13) is

x(t) =
∫ b

a
G(t,s) f (s,x(s))ds (14)

where G(t,s) is the Green function [8] defined by (6), with ν = m−1.
The polynomial Pm−1[x](t) defined by (4) with x(a)=β0, x(k)(b)−x(k)(a)=
βk+1, k = 0, ...,m−2, satisfies the boundary value problem:

P(m)
m−1[x](t) = 0

Pm−1[x](a) = β0

∆P(k)
m−1 ≡ P(k)

m−1(b)−P(k)
m−1(a) = βk+1, k = 0, ...,m−2

Therefore, the boundary value problem (1a)− (1b) is equivalent to the
following nonlinear Fredholm integral equation:

x(t) = Pm−1[x](t)+
∫ b

a
G(t,s) · f (s,x(s))ds (15)

Now, we have the following results:
Theorem 5.[6] Let us suppose that

(i) ki > 0, 0≤ i≤m−1 are given real numbers and let Q be the maximum
of | f (t,x0, ...,xm−1)| on the compact set [a,b]×D0, where
D0 = {(x0, ...,xm−1) : |xi| ≤ 2ki, 0≤ i ≤m−1};

(ii) max
∣∣∣P(i)

m−1[x](t)
∣∣∣≤ ki 0≤i≤m−1, where Pm−1[x](t) is the polynomial

relative to x as in (4);

(iii) (b−a)≤
(

ki

Q ·Cm,i

) 1
(m−i)

0≤ i ≤m−1.

Then, the Bernoulli boundary value problem has a solution in D0.
Proof. The set

B[a,b] =
{

x(t) ∈C(m−1)[a,b] :
∥∥∥x(i)

∥∥∥
∞

≤ 2 · ki, 0≤ i≤m−1
}

is a closed convex subset of the Banach space C(m−1)[a,b].
Now we define an operator T : C(m−1)[a,b]→C(m)[a,b] as follows:

(T [x](t)) = Pm−1[x](t)+
∫ b

a
G(t,s) · f (s,x(s))ds (16)

It is clear, after (15), that any fixed point of (16) is a solution of the
boundary value problem (1a) and (1b).
Let x(t) ∈ B[a,b], then from (16), lemma 1, hypotheses (i),(ii),(iii) we
find:
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(a) T B[a,b]⊆ B[a,b];

(b) the sets
{

T [x](i)(t) : x(t) ∈ B[a,b]
}

, 0≤i≤m−1 are uniformly bounded
and equicontinuous in [a,b];On Bernoulli boundary value problem

(c) T B[a,b] is compact from the Ascoli - Arzela theorem;

(d) from the Schauder fixed point theorem a fixed point of T exists in
D0.

Corollary 1. Suppose that the function f (t,x0,x1, ...,xm−1) on [a,b]×Rm

satisfies the following condition

| f (t,x0,x1...,xm−1)| ≤ L+
m−1

∑
i=0

Li |xi|αi

where L,Li 0≤ i≤m−1 are non negative constants, and 0 ≤ αi ≤ 1.
Then the boundary value problem (1a)− (1b) has a solution.
Lemma 2 [6] For the Green function defined by (6), for ν = m− 1 the
following inequalities hold:

|G(t,s)| ≤ g

withOn Bernoulli boundary value problem

g =
1
ν!

(b−a)m
(

1+
2π2m!

3(2π −1)

)
.

Proof. The proof follows from the known inequalities of Bernoulli poly-
nomials and from simple calculations.
Theorem 6.[6] Suppose that the function f (t,x0,x1...,xm−1) on [a,b]×D1
satisfies the following condition

| f (t,x0,x1...,xm−1)| ≤ L+
m−1

∑
i=0

Li |xi| (17)

where
D1 = {(x0,x1...,xm−1) : |xi| ≤ max

a≤t≤b

∣∣∣P(i)
m−1[x](t)

∣∣∣+
+Cm,i(b−a)mg ·h ·

(
L+C
1−θ

)
, 0≤ i≤ m−1

}

C = max
a≤t≤b

m−1

∑
i=0

Li

∣∣∣P(i)
m−1[x](t)

∣∣∣
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θ = h ·g ·

(
m−1

∑
i=0

Cm,iLi(b−a)m−i

)
< 1, h = b−a (18)

Then, the boundary value problem (1a)− (1b) has a solution in D1.
Proof. Let y(t) = x(t)−Pm−1[x](t), so that (1a) and (1b) is the same as

y(m)(t) = f (t,y(t))
y(a) = y(b) = 0
∆y(k)

a = 0 1 ≤ k ≤ m−2
(19)

whereOn Bernoulli boundary value problem

y(t) = y(t)+Pm−1[x](t), y
′
(t)+P

′
m−1[x](t), .....,y

(m−1)(t)+P(m−1)
m−1 [x](t).

Define M[a,b] as the space of m times continuously differentiable functions
satisfying the boundary conditions of (19). If we introduce in M[a,b] the
norm:

‖y(t)‖
∞

= max
a≤t≤b

∣∣∣y(m)(t)
∣∣∣

then it becomes a Banach space. As in theorem 5, it suffices to show that
the operator T : M[a,b]→ M[a,b] defined by

T [y](t) =
∫ b

a
G(t,s) · f (s,y(s))ds

maps the set

S =
{

y(t) ∈ M[a,b] : ‖y‖
∞
≤ hg

(
L+C
1−θ

)}
into itself. In order to demonstrate this, it is sufficient to utilise the con-
ditions (17), lemma 1 and lemma 2.
The thesis follows from the application of the Schauder fixed point theo-
rem to the operator T.
Definition 1. A function x(t)∈C(m)[a,b] is called an approximate solution
of (1a)− (1b) if there exist non-negative constants δ and ε such that:

maxa≤t≤b
∣∣x(m)(t)− f (t,x(t))

∣∣≤ δ

maxa≤t≤b

∣∣∣P(i)
m−1[x](t)−P(i)

m−1[x](t)
∣∣∣≤ ε ·Cm,i · (b−a)m−i, 0 ≤ i ≤ m−1

(20)
where P(i)

m−1[x](t) and P(i)
m−1[x](t) are the polynomials defined by (5).

The inequality (20) means that there exists a continuous function η(t)
such that:

x(m)(t) = f (t,x(t))+η(t)
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and
max

a≤t≤b
|η(t)| ≤ δ

Thus the approximate solution x(t) can be expressed as:

x(t) = Pm−1[x](t)+
∫ b

a
G(t,s)·[ f (s,x(s))+η(s)]ds

In the following we shall consider the Banach space C(m−1)[a,b] and for
y(t) ∈C(m−1)[a,b] the norm ‖y‖ is defined by:

‖y‖= max
0≤ j≤m−1

{
Cm,0(b−a) j

Cm, j
· max

a≤t≤b

∣∣y j(t)
∣∣}

Now we have:
Theorem 7.(Picard’s iteration)[2]
With respect to the boundary value problem (1a)− (1b) we assume the
existence of an approximate solution x(t) and:

(i) the function f (t,x0, . . . ,xm−1) satisfies the Lipschitz condition:

| f (t,x0, . . . ,xm−1)− f (t,x0, . . . ,xm−1)| ≤
m−i

∑
i=0

Li |xi−xi| on [a,b]×D2

where D2 =
{
(x0, . . . ,xi) :

∣∣x j − x( j)(t)
∣∣≤ N · Cm, j

Cm,0(b−a) j , 0 ≤ j ≤ m−1
}

(ii) θ < 1

(iii) N0 = (1−θ)−1·(ε +δ )·Cm,0(b−a)m ≤ N

Then, the following results hold:

(21a) there exists a solution x∗(t) of (1a) and (1b) in

S(x,N0)=
{

x ∈C(m−1)[a,b] : ‖x− x‖ ≤ N0

}
(21b) x∗(t) is, the, unique solution of (1a) and (1b) in S(x,N)

(21c) the Picard iterative sequence xn(t) defined by:{
x0(t) = x(t)
xn+1(t) = Pm−1(t)+

∫ b
a G(t,s) · f (s,xn(s))ds n = 0,1, . . .

converges to x∗(t) with: ‖x∗− x0‖ ≤ θ n ·N0
and

‖x∗− xn‖ ≤ θ(1−θ)−1 · ‖x0− xn−1‖ .
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Proof. It suffices to show that the operator T :S(x,N)→C(m)[a,b] defined
by

T [x](t) = Pm−1[x](t)+
∫ b

a
G(t,s) · f (s,X(s))ds

where X(s)=(x(s),x
′
(s), ....,x(m−1)(s)), satisfies the conditions of the con-

traction mapping theorem.

4. Newton’s iteration

For an efficient numerical calculation of the solution of problem (1a)−(1b)
we can consider Newton’s iteration method. For our problem (1a)− (1b)
the quasilinear iterative scheme is defined as:

(22a) x(m)
n+1(t) = f (t,xn(t))+∑

m−1
i=0

(
x(i)

n+1(t)− x(i)
n (t)

)
· ∂ f (t,xn(t))

∂x(i)
n (t)

(22b)

{
xn+1(a) = β0

x(h)
n+1(b)−x(h)

n+1(a) = βh+1, h=0, . . . ,m−2, n=0,1, . . .

where x0(t) = x(t) is an approximate solution of (1a)− (1b).

Theorem 8.(Newton’s iteration)
With respect to the boundary value problem (1a)− (1b) we assume that
there exists an approximate solution x(t), and:

(i) the function f (t,x0,x1, . . . ,xm−1) is continuously differentiable with
respect to all xi 0 ≤ i ≤ m−1 on [a,b]×D2;

(ii) there exist non-negative constants Li, 0 ≤ i ≤ m−1 such that for all
(t,x0, . . . ,xm−1)∈ [a,b]×D2 we have:∣∣∣∣∂ f (t,x0, . . . ,xm−1)

∂xi

∣∣∣∣≤ Li

(iii) 3θ < 1

(iv) N3 = (1−3θ)−1(ε +δ ) ·Cm,0(b−a)m ≤ N

Then, the following results hold:

(23a) the sequence xn(t) generated by the iterative scheme (22a)− (22b)
remains in S(x,N3).
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(23b) the sequence xn(t) converges to the unique solution x∗(t) of the
boundary value problem (1a)− (1b).

Proof. The proof requires the equalities and the inequalities that we have
previously determined and is based on inductive arguments.
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