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AN EXTENSION OF A THEOREM BY M.I. FREIDLIN

TO GOOD SOLUTIONS TO ELLIPTIC

NONDIVERGENCE EQUATIONS

ORAZIO ARENA - PAOLO MANSELLI

In the context of second order linear uniformly elliptic equations with
measurable coef�cients, a result of Freidlin [9], which deals with homog-
enization type properties for elliptic equations with smooth periodic coef-
�cients, is extended to generalized solutions for equations with measurable
coef�cients.

Introduction.

Let L be an elliptic operator de�ned on R
d as:

(1) L =

d�

i, j=1

ai j (x )
∂2

∂xi∂xj

,

where ai j = a ji are measurable functions satisfying the uniform ellipticity
condition:

(2) λ−1|ξ |2 ≤

d�

i, j=1

ai jξi ξj ≤ λ|ξ |2, ∀ ξ ∈ R
d
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with λ ≥ 1.
In what follows, for convenience, the short notation: L = ai j∂i j will be

used.
Let � be a bounded domain in R

d , d ≥ 2, with smooth boundary ∂�; let
us consider the Dirichlet problem:

(3)

�
Lu = 0 in �,
u = g on ∂�,

where g is a given continuous function. We will deal with the so called good
solutions to the problem (3) (see [5] and [14]).

A function u ∈ C0(�) is a good solution to the problem (3) if there exist a
sequence {Ln} of elliptic operators Ln = a

i j
n ∂i j , with smooth coef�cients in �,

satisfying for any n the ellipticity condition (2), such that a
i j
n → ai j a.e. in �,

and functions un ∈ C0(�) ∩ W 2,d
loc (�), solutions to the problems

�
Lnun = 0 in �

un = g on ∂�,

such that {un} converges uniformly to u in �.
A relevant question, within the class of operators and the class of solu-

tions we are dealing with, is that of the uniqueness for the Dirichlet problem
associated to the operator L of the form (1)-(2).

For a detailed analysis on this matter, let us refer to [16], [19] or [1]. At
any rate, let us remind that, in the dimension d = 2, uniqueness in W 2,2 holds
without any smoothness of the coef�cients ai j (see [20]). In the dimension
d ≥ 3, the uniqueness problem for discontinuous ai j was investigated by
many mathematicians; nevertheless, positive results were obtained only under
additional restrictions on ai j , (see [5], [6], [14], [18] and references therein).
Related results are those of [2], [7].

Recently, N. Nadirashvili [16] has been able to prove that there exists an
elliptic operator of the form (1)-(2) in the unit ball B1 ⊂ R

d , d ≥ 3, and there
is a function g ∈ C2(∂B1), such that the Dirichlet problem (3) has at least two
good solutions.

A constructive proof and a slight generalization of Nadirashvili�s result has
been given by M.V. Safonov [19].

To prove his result N. Nadirashvili does assume, by contradiction, that the
good solution of the Dirichlet problem (3) is always unique and, under this
assumption, then, he proves an extension to good solutions of a theorem due to
M.I. Freidlin [9]. The theorem of Freidlin reads as follows:
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Theorem. (M.I. Freidlin [9]). Let L be an elliptic operator of the type (1)-(2),
de�ned in R

d , with smooth coef�cients ai j , which are periodic functions of each
variable with period 1.
Denote:

Lt = ai j (t ·)∂i j .

Let � be a bounded smooth domain of R
d, g ∈ C0(∂�) and

Ltu(t ) = 0 in �, u(t )|∂� = g.

Then
lim

t→+∞
u(t ) = u in �,

where u is solution to the problem:

�Lu = 0 in �, u|∂� = g,

with
�L = �a i j∂i j

an elliptic operator with constant coef�cients.

Actually, it turns out ([9]; see also [4]) that:

�a i j =

�

Td

ai jm dx ,

T
d being the d -dimensional torus of measure 1. Moreover, m is the unique
equilibrium probability measure on T

d , de�ned as:

L∗m = 0, m > 0 in T
d (L∗ = adjoint operator)

and �

Td

m dx = 1.

It seems to be of some interest the following question: once we do know
([16]) that uniqueness of good solutions to the Dirichlet problem (3), generally,
does not hold, is a version of Freidlin theorem for good solutions still valid?

As it will be shown, the answer to this question is positive.
To get our target, in Section 1, elliptic operators on T

d will be studied.
In Section 2 (Theorem A), it will be proved that the convergence in Freidlin
theorem is uniform with respect to the coef�cients (smooth but arbitrary) of the
operator L .

Next, in Section 3, periodic good solutions will be used and (Theorem B)
the extension to good solutions of Freidlin�s theorem will be proved.
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1. Elliptic operators on T
d .

Let Td denote the d -dimensional torus of measure 1, naturally imbedded in
R

d . Let us identify T
d with [−1/2, 1/2)d and the functions on T

d with periodic
functions of period 1 in each of the variables.

In what follows and throughout the paper, L
p
# = L p(Td ) and W

2,p
# =

W 2,p(Td ), 1 < p < +∞, will stand for the spaces of functions belonging

respectively to L
p
loc(R

d) and W
2,p
loc (R

d ), periodic of period 1 in each of the
variables.

C() will be positive constants (not always the same) depending on the
quantities in parentheses, only.

Let Lλ
# denote the family of linear elliptic operators:

L = ai j (·)∂i j ,

of the type (1)-(2), with the coef�cients ai j ∈ L∞
# = L∞(Td ).

Let us recall the Alexandrov-Bakel�man-Pucci�s estimate (see e.g. [3]),
called ABP for short.

Theorem 1.1. (ABP estimate). Let G be a bounded domain, u ∈ W 2,d
loc (G)

∩C0(G) be a solution to Lu = f ∈ Ld (G) in G, u = 0 on ∂G. Then

(1.1) � u �L∞(G) ≤ C(d, λ) diamG � f �Ld (G),

where C(d, λ) is a constant depending only on d and λ.

A version of the ABP estimate on T
d will be needed. The argument is a

rearrangement of one in Krylov [12].

Theorem 1.2. Let u ∈ W 2,d
# and Lu − u = f ∈ Ld

# . Then, there exists
C = C(d, λ) such that:

(1.2) � u �L∞(Td ) ≤ C(d, λ) � f �Ld (Td ).

Proof. Let us start by making the following remark. Let N ∈N, QN ⊂ R
d be

the cube |xj | ≤ N/2, 1 ≤ j ≤ d , and let in QN :

b(x ) = [cosh(λ−1/2N )]−1
d�

j=1

cosh(α−1
j xj ),

where
α2j = sup

QN

a j j = sup
Q1

a j j , αj ≤ λ1/2.
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Then, it turns out that

Lb − b ≤ 0 in QN , b|∂QN
≥ 1

b(0) = d[cosh(λ−1/2N )]−1.

With no loss of generality one may assume that L has continuous coef�cients
and u(0) = max u > 0.

Choose the cube QN in the above remark, with N = N (d, λ) so large that
b(0) ≤ 1/2 and let v ∈ W 2,d

loc (QN ) ∩ C0(QN ) be the solution to

Lv − v = f in QN , v|∂QN
= 0.

By ABP estimate, one has:

� v �L∞(QN ) ≤ NC(d, λ)� f �Ld (QN )

and then the periodicity of f yields:

(1.3) � v �L∞(QN ) ≤ Nd+1C(d, λ)� f �Ld (Q1)
.

De�ne:
w = u − v − u(0)b.

We have

Lw − w ≥ 0 in QN , w|∂QN
= [u − u(0)b]∂QN

≤ 0.

Then it follows that w ≤ 0 in QN , so

u − u(0)b ≤ v in QN .

Thus, by using (1.3):

u − u(0)b ≤ Nd+1C(d, λ)� f �Ld (Q1)
.

Since 1
2

≤ 1− b(0), one gets:

1

2
u(0) ≤ u(0)− u(0)b(0) ≤ Nd+1C(d, λ)� f �Ld (Q1).

As u(0) = max u, we have

max u ≤ 2C(d, λ)Nd+1� f �Ld (Q1)

and therefore the theorem is proved. �

Next theorem will provide a further useful estimate.
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Theorem 1.3. Let u ∈ W 2,d
# and L ∈ L

λ
# . Then, there exists a constant C,

depending on d and λ only, such that

(1.4) |u(x )− u(0)| ≤ C(d, λ)� Lu �Ld
#
, x ∈ R

d .

Proof. Assume that (1.4) is not true; then there exist a sequence of operators
Lν ∈ L

λ
# and a sequence of functions uν ∈ W 2,d

# , satisfying:

max
x∈Rd

|uν(x )− uν(0)| = 1, � Lνuν �Ld
#
≤ 1, lim

ν
� Lνuν �Ld

#
= 0.

The functions {uν(x ) − uν(0)} are equibounded and equicontinuous; in fact, in
every ball B , by Krylov�Safonov results, if β = β(d, λ, B):

� uν − uν(0) �C0,β (B) ≤ C(d, λ, B)(� Lνuν �Ld
#
+ 1)

≤ 2C(d, λ, B).

Because of the periodicity, there exists a subsequence still called {uν}, such
that {uν − uν(0)} → u uniformly in R

d . The function u is periodic, Hölder
continuous, u(0) = 0 and max |u| = 1. By using again Krylov-Safonov
results (see [10]), if BR and BR0 , BR ⊂ BR0 are balls, there exist C(d, λ) and
β(d, λ) > 0 such that:

oscBR
(uν ) ≤ C(d, λ)

�
R

R0

�β

[oscBR0
(uν) + R0� Lνuν �Ld (BR0

)];

as oscBR0
(uν) ≤ 2, � Lνuν �Ld (BR0

) → 0 as ν → ∞, we have:

oscBR
u ≤ 2C(d, λ)

�
R

R0

�β

.

Since R/R0 can be made arbitrarily small, then u is constant and, being
u(0) = 0, it follows u ≡ 0 contradicting max u = 1. �

A version of Fredholm alternative for equations with periodic coef�cients
is true.

Theorem 1.4. Let L ∈ L
λ
# , L with smooth coef�cients ai j . Then

(i) there exists a positive smooth function m on T
d , such that

�

Td

m dx = 1 and

L∗m = 0, L∗ being the adjoint of L;
(ii) the equation

Lu = f ∈ L p(Td ), p ≥ d,

has a solution u ∈ W 2,p(Td ) if and only if

�

Td

f m dx = 0.
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A proof of (i) and (ii), with f ∈ C∞(Td ) is in [19]. The present result
follows.

Remark 1.1. The above function m (unique) is referred as the equilibrium
probability measure of L .

It is not dif�cult to get the following result (proved in R
d by Krylov [12]).

Theorem 1.5. The equilibrium probability measure m of L, in theorem 1.4, is
such that:

(1.5) �m �Ld/(d−1)(Td ) ≤ K = K (d, λ).

Proof. If ϕ ∈ W 2,d
# , we have that:

�

Td

m(Lϕ − ϕ) dx = −

�

Td

mϕ dx .

Let now f ∈ Ld
# . By classical arguments it turns out that there exists a unique

ϕ ∈ W 2,d
# such that Lϕ − ϕ = f . Thus

�
�
�
�

�

Td

m f dx

�
�
�
� =

�
�
�
�

�

Td

mϕ dx

�
�
�
� ≤ �ϕ �L∞(Td )

�

Td

m dx .

Taking into account Theorem 1.2, we get:

�
�
�
�

�

Td

m f dx

�
�
�
� ≤ C(d, λ)� f �Ld

#

and, therefore, the estimate (1.5) follows. �

2. The uniform convergence theorem for smooth operators and a priori
bounds.

A revised form of the convergence theorem by Freidlin, recalled in the
introduction, is studied.

In [9], for the proof of his result, M.I. Freidlin used probabilistic arguments.
An alternative proof has been given, recently, by M. Safonov in [19]. By revis-
iting Safonov proof, an a priori bound is proved which will yield a convergence
result, uniform also with respect to the operators.
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Let L ∈ L
λ
# a smooth operator. Let

(2.1) Lt = ai j (t ·)∂i j and �L = �a i j∂i j

with�a i j =
�

Td

ai jm dx , m being the equilibrium probability measure for L .

Let g be a uniformly continuous function, bounded in R
d and let ωg(δ) be

the modulus of continuity of g, ωg(δ) = supx,y∈Rd , |x−y|≤δ |g(x ) − g(y)|.
The following result holds.

Theorem A. Let � be a bounded smooth domain of R
d . Let the operators

L, Lt ,�L and the function g as above. Let:

Lt u(t ) = 0 in �, u(t )|∂� = g,

and
�L u = 0 in �, u|∂� = g.

Then, if t > 1 :

(2.2)
�
�u(t ) − u

�
�

L∞(�)
≤ C(d, λ, �)

1

t1/11
[1+ � g �2

C0 ]+ 2ωg(
1

t1/11
).

Proof. We have that �

Td

(ai j −�a i j )m dx = 0.

Then, by Theorem 1.4 there exist Ai j smooth and periodic, satisfying Ai j (0) =

0 and
LAi j = ai j −�a i j , 1 ≤ i, j ≤ d.

Moreover, by Theorem 1.3, one gets:

(2.3) sup
x∈Rd

|Ai j (x )| = sup
x∈Td

|Ai j (x )| ≤ C(d, λ)
�
� ai j −�ai j

�
�

Ld
#

≤ C(d, λ).

Note that:

(2.4)
1

t2
Lt [A

i j (t ·)] = (LAi j )(t ·) = a
i j
t −�ai j .

Let us assume, for a moment, the boundary datum g to be smooth. De�ne:

v(t )(x ) = u(x )−
1

t2
Ai j (t x )∂i j u(x ).
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One has:

v(t )|∂� = g −
1

t2
Ai j (t ·)∂i j u|∂�

and moreover:

Ltv(t ) = Ltu −
1

t2
Lt [A

i j (t ·)]∂i j u+

−
1

t2
Ai j (t ·)Lt (∂i j u)−

2

t
ahk
t (∂h A

i j )(t ·)∂k(∂i j u).

Taking into account (2.4), it follows that in � :

Lt (v(t ) − u(t )) = −
1

t2
Ai j (t ·)Lt (∂i j u)+

−
2

t
ahk
t (∂h A

i j )(t ·)∂k(∂i j u).

We have also:

(v(t ) − u(t ))|∂� = −
1

t2
Ai j (t ·)∂i j u|∂�.

Let w0 ∈ C3(�) be the solution to:

Ltw0 = −
1

t2
Ai j (t ·)Lt (∂i j u) in �,

w0|∂� = −
1

t2
Ai j (t ·)∂i j u|∂�.

Then, by maximum principle and (2.3):

�w0 �L∞(�) ≤
1

t2
sup
∂�

|Ai j (t ·)∂i j u|+(2.5)

+
1

t2
C(d, λ, �)

�
� D4u

�
�

L∞(�)
�i j

�
� Ai j (t ·)

�
�

L∞(�)
≤

≤
1

t2
C(d, λ, �)� u �C4 (�).

On the other hand:
�
�
� −

2

t
ahk
t (∂h A

i j )(t ·)∂k(∂i j u)
�
�
� ≤

≤
1

t
ahk
t �i j (∂h∂i j u)(∂k∂i j u)+

+
1

t
ahk
t �i j (∂h A

i j )(t ·)(∂k A
i j )(t ·).
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Let w1, w2 be the solutions to the problems:

Ltw1 = −
1

t
ahk
t �i j (∂h∂i j u)(∂k∂i j u) in�, w1|∂� = 0,

and

Ltw2 = −
1

t
ahk
t �i j (∂h A

i j )(t ·)(∂k A
i j )(t ·) in�, w2|∂� = 0.

By maximum principle:

(2.6)
�
� v(t ) − u(t ) − w0

�
�

L∞(�)
≤ �w1 �L∞(�) + �w2 �L∞(�)

and

(2.7) �w1 �L∞(�) ≤
1

t
C(d, λ, �)

��
� D3u

�
�

L∞(�)

�2
.

To evaluate w2, let us use the technique of [8]. Let G (t ) be the Green
function, in �, to the Dirichlet problem for Lt . Then:

w2(x ) =
1

t

�

�

G (t )(x , y)ahk
t (y)�i j (∂h A

i j )(t y)(∂k A
i j )(t y) dy =

=
1

t3

�

�

G (t )(x , y)ahk
t (y)�i j

∂

∂yh
[Ai j (t y)]

∂

∂yk
[Ai j (t y)] dy =

=
1

t3

�

�

G (t )(x , y){Lt[
1

2
�i j (A

i j )2(t ·)]}y dy +

−
1

t3

�

�

G (t )(x , y)�i j A
i j (t y){Lt [A

i j (t ·)]}y dy.

By maximum principle and (2.3):

�
�
�
1

2t3

�

�

G (t )(x , y){Lt[�i j (A
i j )2(t ·)]}y dy

�
�
� ≤

1

t3
sup
�

�i j ((A
i j )(t ·))2 ≤

≤
C(d, λ)

t3
.

The equation (2.4) and the bound (2.3) give us:
�
�
�
1

t3

�

�

G (t )(x , y)�i j A
i j (t y){Lt [A

i j (t ·)]}y dy
�
�
� =

=
�
�
�
1

t

�

�

G (t )(x , y)�i j A
i j (t y)(ai j (t y)− âi j ) dy

�
�
� ≤

≤
1

t
C(d, λ, �).
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Then:

(2.8) �w2 �L∞(�) ≤ C(d, λ, �)
1

t
.

The bounds (2.6), (2.5), (2.7), (2.8), give us:

(2.9)
�
� u(t ) − v(t )

�
�

L∞(�)
≤ C(d, λ, �)

1

t
[1+ (� u �

C4(�))
2].

On the other hand the de�nition of v(t ) and (2.3) give us:
�
� v(t ) − u

�
�

L∞(�)
≤
1

t2
C(d, λ)� u �

C2 (�).

This inequality and (2.9), give:
�
�u(t ) − u

�
�

L∞(�)
≤(2.10)

≤
1

t
C(d, λ, �)

�
1+ (� u �C4(�))

2
�

≤

≤
1

t
C(d, λ, �)

�
1+ (� g �C5(∂�))

2
�
.

Assume, now, g ∈ C0. For every � > 0, there exists a function g(�) ∈C∞ ,
satisfying: �

� g − g(�)
�
�

C0(∂�)
≤ ωg(�)

and:
�
� g(�)

�
�

C5(∂�)
≤

C(d, �)

�5
� g �C0 .

Let us consider the Dirichlet problems:

Ltu
�
(t ) = 0 in �, u�

(t )|∂� = g�,

and
L̂u� = 0 in �, u� |∂� = g�.

The maximum principle, the properties of g(�) and (2.10) give:
�
� u(t ) − u�

(t )

�
�
C0 (�)

≤ ωg(�),

� u� − u �
C0(�) ≤ ωg(�),

�
� u� − u�

(t )

�
�

C0(�)
≤
1

t
C(d, λ, �)[1 + (

C(d, �)

�5
� g �C0 )

2],

i.e.:
�
� u(t ) − u

�
�
C0(�)

≤ 2ωg(�)+
1

t
C(d, λ, �)[1+ (

C(d, �)

�5
� g �C0 )

2];

choosing � = t−1/11, the thesis follows. �
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3. Periodic good solutions and the main theorem.

Let L ∈ L
λ
# and f ∈ Ld

# .

De�nition. A function u ∈ C0,α# (for some 0 < α < 1) is a {Ln}-good solution

to Lu = f , if there exist sequences {Ln} and {un}, Ln ∈ L
λ
# smooth, un ∈ W 2,d

# ,
such that:

{Ln} → L a.e., {un} → u uniformly on every compact subset of R
d , and

{Lnun} → Lu in Ld
# .

The following theorem holds.

Theorem 3.1. Let L ∈ L
λ
# and {L(0)ν } be a sequence of smooth operators from

L
λ
# , {L(0)ν } → L a.e.. Let f ∈ Ld

# . There exist:
(i) {Lν}, a subsequence to {L(0)ν },

(ii) m > 0 a.e., m ∈ L
d/(d−1)
# ,

�

Td

m dx = 1, solution to L∗m = 0 (i.e.
�

Td

m · Lφ dx = 0, for every φ ∈ C∞
# ),

such that if
�

Td

f · m dx = 0 then Lu = f has a {Lν}-good solution.

The function m = m({Lν}) above can be referred as the {Lν}-equilibrium
probability measure for L . Such a measure m is {Lν}-unique.

Proof. Let {m(0)
ν } be the sequence of equilibrium probability measures corre-

sponding to {L(0)ν }, given by (i) of theorem 1.4. Then:

1 =

�

Td

m(0)
ν dx ≤ 1 ·

�
�m(0)

ν

�
�

L
d/(d−1)
#

≤ C(d, λ);

thus, there exists a subsequence {mν} weakly convergent in L
d/(d−1)
# to a

function m ≥ 0 a.e. solution to L∗m = 0; moreover

1 =

�

Td

mν dx →

�

Td

m dx .

Let {Lν} the corresponding subsequence of operators; let f in a countable
dense subset of { f : f ∈ Ld

#,
�

Td

f · m dx = 0}.

Set:

fν = f − m1/(d−1)
ν

��

Td

f mν dx

���

Td

md/(d−1)
ν

�−1

.
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One has that: fν ∈ Ld
# and

� fν − f �Ld
#
≤ C(d, λ)

�
�
�
�

�

Td

f mν dx

�
�
�
� → 0, as ν → +∞;

moreover: �

Td

fνmν dx = 0.

Now, let uν ∈ W 2,d
# be the unique solution to Lνuν = fν , uν (0) = 0. By

Theorem 1.3 and Krylov-Safonov results, there exists a subsequence, that can
be called again {uν}, converging uniformly to a function u0 periodic, u0(0) = 0,
satisfying for x ∈ R

d :
|u0(x )| ≤ C� f �Ld

#
,

{Lν}-good solution to Lu0 = f . Using a diagonalization process and an
approximation technique, the existence theorem in (ii) is proved.

To end the proof of the theorem, one has to show that m is actually a.e.
positive. Assume, indeed, by contradiction that m = 0 on a set E ⊂ T

d , with
positive measure.

Let f = −1E ≤ 0. Since

�

Td

f m dx = 0,

then the equation Lu = f ≤ 0 has a periodic non constant {Lν}-good solution
u , which cannot have interior minima. Contradiction. �

LetLλ denote the family of linear elliptic operators of the type (1)-(2) with
coef�cients ai j ∈ L∞(Rd). Clearly L

λ ⊃ L
λ
# .

Theorem 3.2. Let L ∈ L
λ and {Lk} be a sequence of smooth operators

Lk ∈L
λ , such that Lk → L almost everywhere in R

d . Then there exists {L[s]},
subsequence of {Lk}, with the property:

for any smooth bounded subdomain � of R
d and for any f ∈ Ld (�), the

problem:

Lu = f in �, u|∂� = 0

has a unique {L[s]}-good solution.
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To prove this theorem the following Lemma is needed, which provides a
bound uniform, with respect to the operators from L

λ , for solutions to Dirichlet
problems.

Lemma. Let � be a smooth bounded domain of R
d , η > 0 and let D ⊂ � a

smooth subdomain, such that ∂D ∈ {x ∈ R
d : dist(x , ∂�) ≤ η}. Let L ∈ L

λ a
smooth operator. Let f0 ∈ Ld (D), f ∈ Ld(�).

Assume that:

u ∈ W 2,d
γ0
(D), Lu = f0 in D,

v ∈ W 2,d
γ0
(�), Lv = f in �.

Then, there exist β = β(λ, d)∈ (0, 1) and C(d, λ, �, f ) such that

� u − v �L∞(D) ≤ C(d, λ, �)� f0 − f �Ld (D) + ηβC(d, λ, �, f ).

Proof. Writing: u − v = (u − z) + (z − v) with z ∈ W 2,d
γ0
(D) solution to

Lz = f in D, the thesis of the Lemma follows from Alexandrov-Bakel�man-
Pucci estimate and boundary estimates (see e.g. [10]). �

Proof of Theorem 3.2.

Let {�(h)} be a countable family of smooth bounded open sets, such that
for every bounded domain � in R

d there exists {�(hν )} ↑ �. Moreover,
let f h

k ∈ C∞
0 (�

(h)) be a countable family of functions such that for every
f ∈ Ld(�(h)) there exists f h

kµ
→ f in Ld(�(h)), as µ → ∞.

By a diagonalization process one can construct {L[s]}, subsequence of
{Lk}, such that for every h and k the problem:

Lu
(h)
k = f h

k in �(h), u
(h)
k |∂�(h) = 0

has a unique {L[s]}-good solution.
Choose a smooth bounded domain � ∈ R

d and take f ∈ Ld (�). Let
�(hν ) ↑ � and f hν

kµ
→ f in Ld (�(hν )) as µ → +∞. Solve, then, the problems:

L[s]us = f in�, us ∈ W 2,d
γ0
(�),

and

L[s]u
ν,µ
s = f hν

kµ
in �(hν ), uν,µ

s ∈ W 2,d
γ0
(�(hν )).



AN EXTENSION OF A THEOREM BY M.I. FREIDLIN. . . 43

By previous Lemma, for any s ∈ N, η > 0, if ∂�(hν) ∈ {x : dist (x , ∂�) ≤ η}:
�
�us − uν,µ

s

�
�

L∞(�(hν ))
≤(3.1)

≤ C(d, λ, �)
�
�
� f − f hν

kµ

�
�
�

Ld (�(hν ))
+ ηβC(d, λ, �, f ).

Fix � > 0. By choosing, �rst, η suitably small, ν suitably large and taking,
then, µ suitably large too, one gets from (3.1) that:

�
� us − uν,µ

s

�
�

L∞(�(hν ))
< �, for any s ∈ N.

Let now p ∈ N. Then:
�
� us − us+p

�
�

L∞(�(hν ))
≤ 2� +

�
� uν,µ

s − u
ν,µ
s+p

�
�

L∞(�(hν ))
.

As {u
ν,µ
s } is uniformly convergent in � (hν ) , as s → ∞, it follows that {us}

does converge to u ∈ C0(�) in every compact subset of �. Moreover, by
Alexandrov-Bakel�man-Pucci and Krylov-Safonov results, {us} is equibounded
and equicontinuous in �; therefore us → u uniformly in � and u is a {L[s]}-
good solution to Lu = f in �, u|∂� = 0. �

With similar arguments, the following fact can be proved.

Corollary. Let L ∈ L
λ, {Lk} a sequence of smooth operators such that Lk → L

a.e. in R
d . Then the sequence {L[s]}, constructed in theorem 3.2, has also the

following property:
for any smooth bounded subdomain � of R

d and g ∈ C0(∂�), the problem:

Lu = 0 in �, u|∂� = g

admits a unique {L[s]}-good solution.

Now the claimed extension to good solutions of the Freidlin�s result can be
proved.

Let L ∈ L
λ
# and {L(0)ν } a sequence of smooth operators from L

λ
# such that

{L(0)ν } → L almost everywhere. Moreover, let

Lt = ai j (t ·)∂i j ∈ L
λ

and

�L = �a i j∂i j , with�ai j =

�

Td

ai jm dx ,

where m is the {L(0)ν }-equilibrium probability measure associated to L (see
Theorem 3.1).

The following result holds:
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Theorem B. Let L, {L(0)ν }, Lt and �L as above. Then there exists {L[s]} a
subsequence to {L(0)ν } with the following properties:
(i) for any t ≥ 1, � smooth bounded domain of R

d , the problem:

Ltu(t ) = 0 in �, u(t )|∂� = g ∈ C0(∂�)

has a unique {(L[s])t } -good solution u(t ). (Here {(L[s])t } = a
i j
s (t ·)∂i j );

(ii) u(t ) converges uniformly in � to u, where u is the classical solution to

�Lu = 0 in �, u|∂� = g.

Proof. From the corollary to Theorem 3.2, there exists {L[s]}, subsequence to
{L(0)ν }, such that for every smooth bounded subset D of R

d , γ ∈ C0(∂D), there
exists a unique {L[s]}-good solution to Lu = 0 in D, u|∂D = γ .

Let L[s] = a
i j
[s]∂i j and m[s] the corresponding equilibrium probability

measure. Let us assume, with no loss of generality, that m[s] weakly converges

to m in L
d/(d−1)
# (see Theorem 3.1); moreover, let us also assume that a

i j
[s] → ai j

in Ld
# . Thus:

�a
i j
[s] =

�

Td

a
i j
[s]m[s] dx →

�

Td

ai jm dx = �ai j .

Let us prove (i).
Let us extend g as a bounded, uniformly continuous function in R

d and let
us use a scaling argument. Set:

�t = {x � : x � = t x , x ∈ �}.

Then, the problem:

Lv(t ) = 0 in�t , v(t )|∂�t
= g(

·

t
)

has a unique {L[s]}-good solution v(t ).
Let v[s](t ) such that

L[s]v[s](t ) = 0 in �t , v[s](t )|∂�t
= g(

·

t
)

and
v[s](t ) → v(t ) uniformly in �t , as s → +∞.

Then
u[s](t ) := v[s](t )(t ·)
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solves

(L[s])t u[s](t ) = 0 in�, u[s](t )|∂� = g

and, as s → +∞, u[s](t ) → u(t ) uniformly in �, with

u(t ) := v(t )(t ·).

That is, u(t ) is the unique {L[s]t }-good solution to the problem:

Ltu(t ) = 0 in �, u(t )|∂� = g.

Therefore (i) is proved.
To get (ii), now, let us start from the estimate:

�
�u(t ) − u

�
�

L∞ ≤
�
�u(t ) − u[s](t )

�
�

L∞ +
�
� u[s](t ) − u [s]

�
�

L∞+(3.2)

+
�
�u [s] − u

�
�

L∞ .

Recall, then, that:
(a) for any t , u[s](t ) → u(t ) uniformly in �, as s → +∞;
(b) by Theorem A:

�
� u[s](t ) − u[s]

�
�

L∞(�)
≤

≤ C(d, λ, �)
1

t1/11
[1+ � g �2

C0 ]+

+ 2ωg(
1

t1/11
).

uniformly with respect to s .
Moreover, as �L[s]u[s] = �Lu = 0 in �, u[s] = u on ∂� and �a

i j
[s] → �ai j ,

using classical arguments for constant coef�cients elliptic operators:

(3.3)
�
� u[s] − u

�
�

L∞(�)
→ 0.

Hence, u(t ) → u uniformly in �. �
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