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UNILATERAL PROBLEMS WITH
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Dedicato a Filippo Chiarenza

In this note we prove some existence and regularity results for unilateral
problems with degenerate coercivity.

1. Introduction.

Let � be a bounded, open subset of R
n , with N > 2, and a(x , s) :

� × R → R be a Carathéodory function (that is, measurable with respect to
x for every s ∈ R, and continuous with respect to s for almost every x ∈ �)
satisfying the following conditions:

(1)
α

(1+ |s|)θ
≤ a(x , s) ≤ β,

for some real number θ such that

(2) 0 ≤ θ < 1,

for almost every x ∈ �, for every s ∈ R, where α and β are positive constants.
If we de�ne Au = − div(a(x , u)Du), under assumption (1) the operator A,
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though well de�ned between H 1
0 (�) and its dual H−1(�), is not coercitive,

since 1
1+|u|

goes to zero when u is large.
In the papers [1], [3], [6] existence and regularity results of the Dirichlet
problem associated to the operator A have been proved.
The objective of this note is to study the existence and regularity of the solutions
of unilateral problems associated to A and with data f belonging to various
Lebesgue space Lm (�), for some m > 1.
There are two dif�culties associated with the study of unilateral problems with
degenerate coercivity.
First of all, the classical method used in order to prove the existence of solutions
to unilateral problems cannot be applied, even if the datum f is regular. We
overcome this dif�culty by considering a sequence of nondegenerate Dirichlet
problems, having nonnegative solutions. This approximation has been intro-
duced in [10] in the framework of obstacle problems associated to uniformly
elliptic operators and has been already used in [5] for unilateral problems with
L1 data.
An additional advantage of this approach will be the proof of the Lewy-
Stampacchia inequality.
A second dif�culty appears when we weaken the summability hypotheses on f .
As a matter of the fact, when f ∈ Lm(�), with m <

2(N−θ)
N+2−θ

, even in the case of

the equations, the product f u does not belong to L1(�). Hence, the classical
de�nition of unilateral problem is inadeguate.
We solve this dif�culty by using another formulation, already used in the
framework of uniformly elliptic unilateral problems having data in L1(�).

2. Statements of the results.

Up to now, we will assume that hypotheses (1) holds. The �rst result
we state concerns with data having high summability and coincides with the
classical boundedness result for the unilateral problems associated to uniformly
elliptic operators.

Theorem 1. Let f ∈ Lm(�), m > N
2
.

Then there exists a function u ∈ H 1
0 (�) ∩ L∞(�) which is solution of the

following unilateral problem

(3)






u ≥ 0 a.e. in �

�Au, u − v� ≤

�

�

f (u − v)

∀v ∈ H 1
0 (�), v ≥ 0, a.e. in �.
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Moreover u satis�es the inequality

(4) f ≤ Au ≤ f +.

The next result deals with data f which give unbounded solutions in
H 1
0 (�).

Theorem 2. Let f ∈ Lm(�), with m such that

(5)
2N

N + 2− θ (N − 2)
≤ m <

N

2
.

Then there exists a function u ∈ H 1
0 (�) ∩ Lr (�), with

(6) r =
Nm(1 − θ )

N − 2m

which is a solution of problem (3).
Moreover u satis�es the inequality (4).

Remark 1. We observe that the hypotheses on m imply that f belongs to
L2

��

(�), where 2� = 2N
N−2

is the Sobolev embedding exponent for H 1
0 (�). Then,

the second term of (3) is well de�ned, as well as the �rst one, since a is bounded.
When θ = 0 the previous theorem gives the classical regularity result for
uniformly elliptic unilateral problems.

If we weaken the summability hypotheses on f we obtain solutions not
belonging to H 1

0 (�), even if f belongs to the space H−1(�), as the following
theorem states.

Teorema 3. Let f be a function in Lm(�), with

(7)
N (2− θ )

N + 2− Nθ
≤ m <

2N

N + 2− θ (N − 2)
.

Then, there exists a function u ∈ W
1,q
0 (�), with

(8) q =
Nm(1 − θ )

N − m(1+ θ )

such that

(9) a(x , u)|Du|2 ∈ L1(�).

Moreover u is a solution of the unilateral problem (3) and satis�es the inequality
(4).
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Remark 2. We notice that every term in (3) is meaningfull. This is clear for
the left hand side, since (9) holds. As to the right hand side we note that by
Sobolev�s embedding the solution u given by the previous theorem belongs to
Lr (�), with r as in (6) and hypotheses on m implies f ∈ Lr �

(�).

As already mentioned in the introduction, if we decrease the summability
of f , the classical formulation of unilateral problem fails since the product f u,
even in the case of equations (see [6]), does not belong to L1(�). In order to
introduce the new formulation of unilateral problem let us recall the de�nition
of the truncature function.

Given a constant k > 0 let Tk : R → R the function de�ned by

Tk(s) = max{−k,min{k, s}}.

We will prove the following result

Teorema 4. Let f be a function in Lm(�), with m > 1 such that

(10)
N

N + 1− θ (N − 1)
< m <

N (2 − θ )

N + 2− Nθ
.

Then, there exists a function u ∈ W
1,q
0 (�), with q as in (8) such that

(11)






u(x ) ≥ 0 a.e. x ∈ �

Tk(u)∈ H 1
0 ∀k > 0

�Au, Tk(u − v)� ≤

�

�

f Tk(u − v)

∀v ∈ H 1
0 ∩ L∞(�), v ≥ 0 a.e. in �.

Moreover u satis�es the inequality (4).

Remark 3. We point out that the previous de�nition of solution of unilateral
problem has been used in [5] in the framework of unilateral problems associated
to uniformly elliptic operators and having L1- functions as data. Moreover, this
de�nition is quite similar to the de�nition of �entropy solution� of the Dirichlet
problem, already used in [6].

Remark 4. Notice that both terms in (11) are well de�ned. The second term
offers no dif�culty, since f ∈ L1(�). As to the �rst member, we observe that,
for all k > 0,

�Au, Tk(u − v)� =

�

�

a(x , u)DThuDTk(u − v)

where h = k + �v�∞ .
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Remark 5. As in Remark 2, we observe that u belongs to Lr (�), with r de�ned
by (6).
In the case m = 1 the previous result is not true in general. As a matter of the
fact, if θ = 0 the operator A is uniformly elliptic and the solution of unilateral

problem with L1- data does not belong to W
1, N

N−1

0 (�), but to W 1,s
0 (�), for every

s < N
N−1

(see [5]).
The lower bound for m guarantees that q is greater than 1.
For reasons of coincision we have chosen not to include the study of the case

1 ≤ m ≤ max
�

N
N+1−θ(N−1)

, 1
�
. In this case we have to use another functional

setting since the gradient of u may no longer be in L1(�). However, following
the method used in [6] for the Dirichlet problem, our approach allows us to
prove that the unilateral problem (11) has a solution belonging (as well as its
weak gradient, see [2]) to a suitable Marcinkiewicz space.

3. A priori estimates and proofs of the Theorems.

Let f be a function of Lm(�), with m as in the statement of the Theorems
and let { fn } be a sequence of regular functions such that

(12) fn ∈ L
2N
N+2 (�) fn → f strongly in Lm (�)

and

(13) � fn�Lm(�) ≤ � f �Lm(�), ∀n ∈ N.

Let us de�ne the following sequence of Dirichlet problems

(14)

�
Anun + f −

n
un

1
n
+|un|

= f +
n in�

un = 0 on ∂�.

where

Anun = − div(a(x , Tn(un))Dun).

We remark that, for every n ∈ N, the function a(x , Tn(s)) satis�es the condition
(1). Moreover, since

(15) a(x , Tn(s)) ≥
α

(1+ n)θ
, for a.e. x ∈ �, ∀s∈ R,
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and since fn belongs to H−1, by well-known results (see [11]) there exists at
least a solution un of problem (14) in the sense that

(16)






un ∈ H 1
0 (�)�

�

a(x , Tn(un))DunDv +

�

�

f −
n

un

1
n

+ |un|
v =

�

�

f +
n v

∀v ∈ H 1
0 (�).

Note that, ∀n ∈ N

(17) un(x ) ≥ 0 for a.e. x ∈ �.

As a matter of the fact, taking as test function in (16) v = u−
n we obtain

−

�

�

a
�
x , Tn(un)

�
|Du−

n |2 =

�

�

f +
n u−

n +

�

�

f −
n

(u−
n )

2

1
n

+ |un |
.

Since the right hand side is non negative and using condition (15) we have

α

(1+ n)θ

�

�

|Du−
n |2dx ≤ 0,

which implies (17). Consequently un is a solution of the problem

(18)






un ∈ H 1
0 (�)�

�

a(x , Tn(un))DunDv +

�

�

f −
n

un

1
n

+ un

v =

�

�

f +
n v

∀v ∈ H 1
0 (�).

The main tool of the proofs of our results will be some a priori estimates
on the solutions of the approximate problems (14). Once this has been accom-
plished, thanks to the linearity of the operator with respect to the gradient and
the boundedness and continuity of a, we will pass to the limit, thus �nding a
solution of the unilateral problem.

In order to prove Theorem 1 we need the following L∞ a priori estimate

Lemma 1. Let f ∈ Lm(�), with m > N
2
and let un be a solution of (14).

Then, there exist two positive constants c1, c2, depending on N,m, α, θ ,
|�|, � f �Lm(�), such that, for any n ∈ N,

�un�L∞(�) ≤ c1,(19)

�un�H 1
0
(�) ≤ c2.(20)
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Proof. Let us de�ne, for s in R and k > 0,

Gk(s) = s − Tk(s),

and set, for n in N

(21) Ak = {x ∈ � : un(x ) > k}.

If we take Gk(un) as test function in (18), and use assumption (1) and condition
(17), we obtain

α

�

Ak

|Dun |
2

(1+ un)θ
≤

�

�

| f |Gk(un) ≤(22)

≤ � f �Lm(�)

��

�

(Gk(un))
m �

� 1
m�

,

where m� = m
m−1

. Thanks to estimate (22) we get the L∞ -estimate as in the
proof of Lemma 2.2 of [6].
In order to prove estimate (20), let us take un as test function in (18). Using
hypothesis (1) we get

α

�

�

|Dun |
2

(1+ un)θ
≤

�

�

f +un −

�

�

f − un

1
n

+ un

un ≤

�

�

| f |un.

From this estimate, using (19) we obtain

�

�

|Dun |
2 ≤

(1+ c1)
θ+1

α
� f �Lm(�).

The next result will be used in the proof of Theorem 2.

Lemma 2. Let f ∈ Lm(�), with m satisfying hypothesis (5), and let un be a
solution of problem (14).
Then, there exist two positive constants c3, c4, depending on N,m, α, θ ,
|�|, � f �Lm(�), such that, for any n ∈ N,

�un�Lr(�) ≤ c3,(23)

�un�H 1
0
(�) ≤ c4,(24)

where r is de�ned by (6).
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Proof. Let k > 0. Following the outline of the proof of Lemma 2.3 of [6] we
have to prove the following estimate

(25) α

�

Bk

|Dun |
2 ≤ (2+ k)θ

�

Ak

| f |,

where Ak is the set de�ned in (21) and

(26) Bk = {x ∈ � : k ≤ un < k + 1}.

If we take in (18) v = T1(Gk (un)), thanks to hypothesis (1) and condition (17)
we obtain

α

�

Bk

|Dun |
2

(1+ un)θ
≤

�

Ak

| f |T1(Gk(un)),

which implies (25).

The next lemma deals with the case in which the sequence {un} is not
bounded in H 1

0 and will be used in the proof of Theorems 3, 4.

Lemma 3. Assume f ∈ Lm(�) with

(27)
N

N + 1− θ (N − 1)
< m <

2N

N + 2− θ (N − 2)
.

Let { fn } be a sequence of functions satisfying (12) and (13), and let un be a
solution of (14).
Then, for any n ∈ N and k > 0 we have

(28)

�

�

|DTk(un)|
2dx ≤

� f �L1(�)

α
(1+ k)θ+1.

Moreover

(29) �un�W
1,q
0

≤ c5, ∀n ∈ N,

where c5 depends on N,m, θ, α, |�|, � f �Lm (�) and q is de�ned by (8).

Proof. Let us take Tk(un) as test function in (18); using (1) and condition (17)
we obtain

α

(1+ k)θ

�

�

|DTk(un)|
2 ≤

�

�

f +
n Tk(un)+

+

�

�

f −
n

un

1
n

+ un

Tk(un) ≤

�

�

| fn |Tk(un)dx

which implies (28).
The estimate (29) follows working as in the proof of Lemma 2.5 of [6].

Before proving the theorems we state the following �weak lower semicon-
tinuity� result (for the proof see Lemma 2.8, [6]).
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Lemma 4. Let {vn} be a sequence of functions which is weakly convergent to
v in H 1

0 (�), and let un be a sequence of functions which is almost everywhere
convergent to some function u in �. Then

�

�

a(x , u)|Dv|2 ≤ lim inf
n→+∞

�

�

a(x , Tn(un))|Dvn |
2 ≤ c.

We are now in position to prove the Theorems.

Proof of Theorems 1 and 2.
Let f ∈ Lm(�), with m as in the statements of the theorems and let {un} be

a sequence of solutions of (14). Using the results of Lemmas 1 and 2 we obtain
that the sequence {un} is bounded in H 1

0 (�) and in the Lebesgue spaces as in
the statements of the theorems.
Then, there exists a subsequence, still denoted by {un}, which is weakly
convergent to some function u in H 1

0 (�). Moreover, un converges to u almost
everywhere in � as a consequence of the Rellich theorem.
Let us prove that u is a solution of the unilateral problem (3).
Since un(x ) ≥ 0 a.e. x ∈ � for any n ∈ N we have

u(x ) ≥ 0 a.e. x ∈ �.

Let w ∈ H 1
0 (�), w ≥ 0, and take un −w as test function in (18). We obtain
�

�

a(x , Tn(un))DunD(un − w) =(30)

=

�

�

fn (un − w) +
1

n

�

�

f −
n (un − w).

Applying Lemma 4 with vn = un we have
�

�

a(x , u)|Du|2 ≤ lim inf
n→+∞

�

�

a(x , Tn(un))|Dun |
2.

Thanks to the boundeness and the continuity of a(x , s), and since un converges
to u weakly in H 1

0 (�) and almost everywhere in � we have

lim
n→+∞

�

�

a(x , Tn(un))DunDw =

�

�

a(x , u)DuDw.

Hence, taking the limit as n → +∞ in (30), since the right hand side converges
to �

�

f (u − w) dx ,
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u is a solution of (3).
In order to prove the inequality (4) we note that, since un is nonnegative, from
(14) we derive

f ≤ Anun ≤ f +.

Thanks to the linearity of Anun with respect to Dun , letting n → +∞ in the
previous inequality, we obtain inequality (4).

Proof of Theorem 3.
Let { fn } be a sequence of functions satisfying (12) and (13), with m as in

the statement of Theorem 3, and let {un} be a sequence of solutions of problem
(14). By Lemma 3 the sequence {Tk(un)} is bounded in H 1

0 (�). Moreover the

sequence {un} is bounded in W
1,q
0 (�) and in Lr (�), with q and r de�ned by

(8), (6), respectively. Thus, there exists a subsequence, denoted by {un} such
that

(31)






un → u weakly- W
1,q
0 (�)

un → u strongly- Lq , and a.e. x ∈ �,

Tkun → Tku weakly- H
1
0 (�).

Let us prove that u satis�es (9).
Taking Tk(un) as test function in (18), we have

(32)

�

�

a(x , Tn(un))|DTk(un)|
2 ≤

�

�

fn Tk(un)+
1

n
� f −

n �1.

Applying Lemma 4 with vn = Tk(un), we thus have

(33)

�

�

a(x , u)|DTk(u)|
2 ≤ lim inf

n→+∞

�

�

a(x , Tnun)|DTk(un)|
2.

Passing to the limit as n → +∞ in (32) we obtain

�

�

a(x , u)|DTk(u)|
2 ≤

�

�

f Tk(u).

Letting k tend to in�nity, we obtain

(34)

�

�

a(x , u)|Du|2 ≤

�

�

f u ≤ c.

Now we can prove that u is a solution of the unilateral problem (3). First of all
we note that u(x ) ≥ 0 almost everywhere x ∈ �.
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Let ϕ be a function in C∞
0 (�), ϕ(x ) ≥ 0 a.e. x ∈ � and k > 0. Taking

Tk(un)− ϕ as test function in (18), we obtain

�

�

a(x , Tn(un))DunDTk(un)−

�

�

a(x , Tn(un))DunDϕ ≤(35)

≤

�

�

fn (Tk(un) − ϕ))+
1

n
� f −

n �1.

The right hand side easily passes to the limit as n tends to in�nity. As for
the left hand side, we note that condition (33) holds; moreover a(x , Tnun)Dϕ

converges to a(x , u)Dϕ in any L p . Thus, it is possible to pass to the limit in
(35) to obtain

�

�

a(x , u)|DTku|2 −

�

�

a(x , u)DuDϕ ≤

�

�

f (Tku − ϕ).

A further limits on k → +∞ yelds

(36)

�

�

a(x , u)Du(Du − Dϕ) ≤

�

�

f (u − ϕ),

∀ϕ ∈ C∞
0 (�), ϕ(x ) ≥ 0 a.e. x ∈ �. At least, by standard density argument we

can prove that (36) holds also for nonnegative test functions in H 1
0 (�).

The proof of the inequality (4) follows as in Theorems 1 and 2.

Proof of Theorem 4.

Let { fn } be a sequence of functions satisfying (12) and (13), with m as in
the statement of Theorem 4, and let {un} be a sequence of solutions of problem
(14). As in the proof of Theorem 3, {un} has a subsequence, still denoted by
{un} satisfying (31). Moreover, u(x ) ≥ 0 a.e. x ∈ �.
Let v ∈ H 1

0 (�) ∩ L∞(�), v(x ) ≥ 0 a.e. x ∈ �.

Taking Tk(un − v) as test function in (18) we obtain

(37)

�

�

a(x , Tnun)DunDTk(un − v) ≤

�

�

fn Tk(un − v) +
1

n
� f −

n �1.

The left hand side of the previous inequality can be rewritten as follows

�

�

a(x , Tn(un))|DTk(un − v)|2 −

�

�

a(x , Tn(un))DvDTk(un − v).
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Since the sequence {Tk(un − v)} is weakly convergent to Tk(u − v) in H 1
0 by

Lemma 4 with vn = Tk(un − v) we have

�

�

a(x , u)|DTk(u − v)|2 ≤ lim inf
n→+∞

�

�

a(x , Tn(un))|DTk(un − v)|2.

Moreover, due to the boundedness and continuity of a we get

�

�

a(x , u)DvDTk(u − v) = lim
n→+∞

�

�

a(x , Tn(un))DvDTk(un − v).

Then the �rst member of (37) passes to the limit, as well as the second member.
Hence u satis�es

�

�

a(x , u)DuDTk(u − v) ≤

�

�

f Tk(u − v),

for every v in H 1
0 ∩ L∞(�), v(x ) ≥ 0 a.e. x ∈ �, that is u is a solution of the

unilateral problem (11).
As for as the inequality (4) is concerned, we can prove it as in Theorems 1 and
2.
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