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THE NON-LINEAR DIRICHLET PROBLEM AND

THE CR YAMABE PROBLEM

NICOLA GAROFALO - DIMITER VASSILEV

In ricordo di Filippo, amico insostituibile

1. Introduction.

To introduce the questions addressed in this paper we recall that a Carnot
group G is a simply connected nilpotent Lie group such that its Lie algebra

g admits a strati�cation g =
r
⊕
j=1

Vj , with [V1, Vj ] = Vj+1 for 1 ≤ j < r ,

[V1, Vr ] = {0}. We assume that a scalar product< ·, · > is given on g for which
the V �

j s are mutually orthogonal. Every Carnot group is naturally equipped with
a family of non-isotropic dilations de�ned by

δλ(g) = exp ◦�λ ◦ exp−1(g), g ∈ G,

where exp : g → G is the exponential map and �λ : g → g is de�ned by
�λ(X1 + ... + Xr ) = λX1 + ... + λr Xr . The topological dimension of G is
N =

�r
j=1 dimVj , whereas the homogeneous dimension of G , attached to the

group of dilations {δλ}λ>0 , is given by Q =
�r

j=1 j dimVj . We denote by

dH = dH (g) a �xed Haar measure on G . One has dH (δλ(g)) = λQdH (g),
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so that the number Q plays the role of a dimension with respect to the group
dilations.

The Euclidean distance to the origin | · | on g induces a homogeneous norm
| · |g on g and (via the exponential map) one on the group G in the following
way (see also [15]). For ξ ∈ g, with ξ = ξ1 + ... + ξr , ξi ∈ Vi , we let

(1.1) |ξ |g =

�
r�

i=1

|ξi |
2r!/ i

�2r!

,

and then de�ne |g|G = |ξ |g if g = exp ξ . Such homogeneous norm on G can
be used to de�ne a pseudo-distance on G :

(1.2) ρ(g, h) = |h−1g|G .

Let X = {X1,. . . ,Xm} be a basis of V1 and continue to denote by X the
corresponding system of sections on G . The pseudo-distance (1.2) is equivalent
to the Carnot-Carathéodory distance d(·, ·) generated by the system X , i.e.,
there exists a constant C = C(G ) > 0 such that

(1.3) Cρ(g, h) ≤ d(g, h) ≤ C−1ρ(g, h), g, h ∈G,

see [36]. If B(x , R) = {y ∈ G | d(x , y) < R}, then by left-translation and
dilation it is easy to see that the Haar measure of B(x , R) is proportional to RQ ,

where Q =
r�

i=1

i dimVi is the homogeneous dimension of G . One has for every

f, g, h ∈ G and for any λ > 0

d(g f, gh) = d( f, h), d(δλ(g), δλ(h)) = λd(g, h).

The sub-Laplacian associated to X is the second-order partial differential
operator on G given by

L = −

m�

j=1

X ∗
j X j =

m�

j=1

X 2
j

(we recall that in a Carnot group one has X ∗
j = −Xj , see [15]). By the

assumption on the Lie algebra one immediately sees that the system X satis�es
the well-known �nite rank condition, therefore thanks to Hörmander�s theorem
[22] the operator L is hypoelliptic. However, it fails to be elliptic, and the loss
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of regularity is measured by the step r of the strati�cation of g. For a function
u on G we let |Xu| = (

�m
j=1(Xj u)

2)1/2. For 1 ≤ p < Q we set

◦

D1,p (�) = C∞
0 (�)

||·||
D1, p(�),

where D
1,p(�) indicates the space of functions u ∈ L p∗

(�) having distribu-
tional horizontal gradient Xu = (X1u, ..., Xmu) ∈ L p(�). The space D

1,p(�)
is endowed with the obvious norm

||u||D1, p(�) = ||u||L p∗
(�) + ||Xu||L p(�).

Here, p∗ = pQ
Q−p

is the Sobolev exponent relative to p. The relevance
of such number is emphasized by the following important embedding due to
Folland and Stein [15], [16].

Theorem. (Folland and Stein). Let � ⊂ G be an open set. For any 1 < p < Q
there exists Sp = Sp(G ) > 0 such that for u ∈ C∞

0 (�)

(1.4)

��

�

|u|p∗

dH

�1/p∗

≤ Sp

��

�

|Xu|pdH

�1/p

.

We are interested in the following non-linear Dirichlet problem

(1.5)

�
Lu = −u

Q+2
Q−2

u ∈
◦
D1,2 (�), u ≥ 0.

When � coincides with the whole group G we will talk of an entire
solution to the problem (1.5). We are interested in questions of existence and
non-existence of weak solutions when:

• [i] � is bounded;
• [ii] � is unbounded, yet it is not the whole group;
• [iii] � coincides with the whole group.
The exponent Q+2

Q−2
= 2∗−1 is critical for the case p = 2 of the embedding

(1.4). To motivate our results we recall that in the classical Riemannian setting
the equation �u = −u(n+2)/(n−2) is connected to the compact Yamabe problem
[40], [3], [38], see also the book [4] and the survey article [32]. There exists
an analogue of such problem in CR geometry, namely: Given a compact,
strictly pseudo-convex CR manifold, �nd a choice of contact form for which
the Webster-Tanaka pseudo-hermitian scalar curvature is constant. The pde
associated to the CR Yamabe problem is the one that appears in (1.5). Although
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on the formal level this problem has many similarities with its Riemannian
predecessor, the analysis is considerably harder since, as we mentioned, the sub-
Laplacian L fails to be elliptic everywhere. In 1984�88 D. Jerison and J. Lee
in a series of important papers [24], [25], [26], [27] gave a complete solution to
the CR Yamabe problem when the CR manifold M has dimension ≥ 5 and M
is not locally CR equivalent to the sphere in Cn+1 . They proved �rst that the CR
Yamabe problem can be solved on any compact CR manifold M provided that
the CR Yamabe invariant of M is strictly less than that of the sphere in Cn+1 .
Similarly to Aubin�s approach in the Riemannian case, in order to determine
when the problem can be solved they then proved that the Yamabe functional
is minimized by the standard Levi form on the sphere and its images under CR
automorphisms. A crucial step in this analysis is the explicit computation of the
extremal functions in the special case when p = 2 and G is the Heisenberg
group in the above stated Folland-Stein embedding. Jerison and Lee made the
deep discovery that, up to group translations and dilations, a suitable multiple
of the function

(1.6) u(z, t) = ((1+ |z|2)2 + t2)−(Q−2)/4,

is the only positive solution of (1.5) when � = H
n . Here, we have denoted with

(z, t), z ∈ Cn, t ∈ R, the variable point in Hn .
In 1980 A. Kaplan [28] introduced a class of Carnot groups of step two

in connection with hypoellipticity questions. Such groups, which are called
of Heisenberg type, constitute a direct and important generalization of the
Heisenberg group, as they include, in particular, the nilpotent component in the
Iwasawa decomposition of simple groups of rank one. In his �rst work on the
subject Kaplan [28] constructed an explicit fundamental solution for the sub-
Laplacian, thus extending Folland�s result for the Heisenberg group [14], see
(1.8). In [6] Capogna, Danielli and one of us found explicit formulas for the
fundamental solution of the p-sub-Laplacian in any group of Heisenberg type,
and for the horizontal p-capacity of rings.

Some years ago we discovered that when G is a group of Heisenberg
type, then problem (1.5) possesses the following remarkable family of entire
solutions.

Theorem 1.1. Let G be a group of Heisenberg type. For every � > 0 the
function

(1.7) K�(g) = C�

�
(�2 + |x (g)|2)2 + 16|y(g)|2

�−(Q−2)/4
, g ∈ G,

where C� = [m(Q − 2)�2](Q−2)/4, is a positive, entire solution of the Yamabe
equation (1.5).
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The symbols x (g), y(g) in (1.7) respectively denote the projection of the
exponential coordinates of the point g ∈ G onto the �rst and second layer of the
Lie algebra g, whereas m indicates the dimension of the �rst layer. One should
compare (1.7) with the Jerison-Lee minimizer (1.6). To give a glimpse of the
complexity of the present situation with respect to the classical one we recall
Folland�s mentioned fundamental solution for the Kohn sub-Laplacian on Hn

(1.8) �(z, t) = CQ (|z|
4 + t2)−(Q−2)/4,

where CQ is a suitable constant. Whereas � is (remarkably) a function of
the natural homogeneous gauge ρ = ρ(z, t) = (|z|4 + t2)1/4, the Jerison-Lee
minimizer in (1.6) is not. This is in strong contrast with the famous results
of Aubin [1], [2] and Talenti [39] who proved that for every value of p the
minimizers in the Sobolev embedding are functions with spherical symmetry.
After discovering the entire solutions K� we formulated the following

Conjecture: In a group of Heisenberg type, up to group translations the
functions K� in (1.7) are the only positive entire solutions to (1.5).

If true, such conjecture would generalize Jerison and Lee�s cited result to
groups of Heisenberg type. This problem turns out to be considerably harder
than its already dif�cult Heisenberg group predecessor. In a forthcoming work
we plan to come back to it and prove the full conjecture. However, in section
four we announce some partial progress toward it.

In closing we mention that the results described in this paper are contained
in the two papers [19], [20].

2. Bounded domains.

We next describe the main results, starting with the case of bounded
domains. In the following de�nition the notion of starlikeness is expressed by
means of the in�nitesimal generator Z of the group dilations {δλ}λ>0.

De�nition 2.1. Let D ⊂ G be a connected open set of class C1 containing
the group identity e. We say that D is starlike with respect to the identity e (or
simply starlike) along a subset M ⊂ ∂ D, if

< Z , η > (g) ≥ 0

at every g ∈ M. D is called starlike with respect to the identity e if it is starlike
along M = ∂ D. We say that D is uniformly starlike with respect to e along M
if there exists a constant α = αD > 0 such that for every g ∈ M

< Z , η > (g) ≥ α.
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A domain as above is called starlike (uniformly starlike) with respect to
one of its points g along M ⊂ ∂ D, if g−1D is starlike (uniformly starlike)
along g−1M with respect to e.

Theorem 2.2. Let D ⊂ G be C∞ , bounded and starlike with respect to go ∈ D.
Suppose that u ∈ �0,α(D) is a non-negative solution of

(2.1)

�
Lu = − f (u)

u ∈
◦
D1,2 (�), u ≥ 0,

with f ∈ C∞(R). Assume in addition that Xu ∈ L∞(D) and Zu ∈ L∞(D). If

(2.2) 2QF(u)− (Q − 2)u f (u) ≤ 0,

then u ≡ 0. In particular, (2.1) has no non-trivial such solution when
f (u) = uq , if q ≥ Q+2

Q−2
.

Remark 2.3. The inequality (2.2) is the analogue of the famous Poho�zaev
condition for Laplace equation, see [37]. We mention that the �rst non-existence
result for the Heisenberg group H

n was obtained via an integral identity of
Rellich-Pohozaev type in [17]. In that paper however the relevant solutions were
a priori assumed to be globally smooth and the delicate question of regularity
at characteristic points was not addressed.

It is important to remark that the vector �eld Z is neither left-invariant, nor
it is sub-unitary according to C. Fefferman and D.H. Phong [13]. One easily
sees that, in exponential coordinates, the vector �eld Z involves commutators
up to maximum length. In the classical case the boundary regularity of the
relevant solution which is necessary to apply the Rellich-Poho�zaev identity is
guaranteed, via standard elliptic theory, by suitable smoothness assumptions
on the ground domain �, see, e.g., [37]. The situation is drastically different
in the sub-elliptic setting even if the domain � is C∞ , due to the presence of
characteristic points on the boundary of �. We recall that the characteristic set
of a smooth domain � ⊂ G with respect to the system X is

� = ��,X = {g ∈ ∂� | Xj (g)∈ Tg(∂�), j = 1, ..., m}.

A bounded domain with trivial topology in a group of Heisenberg type
always has a non-empty characteristic set. Theorem 2.2 constitutes the main
motivation for our study of the regularity near the characteristic set. Due to
the well-known counterexample of Jerison [23] to the boundary regularity in a
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neighborhood of a characteristic point it is not clear a priori that Theorem 2.2
has any content at all. The next two results prove that it does indeed, at least if
the ground domain � satisfy some very natural and easily veri�able geometric
conditions.

Henceforth, we consider a C∞ , connected, bounded open set � ⊂ G . We
suppose that � satis�es the following natural condition: There exist A, r0 > 0
such that for every Q ∈ ∂� and every 0 < r < r0

(2.3) | (G \ �) ∩ B(Q, r) |≥ A | B(Q, r) | .

Such geometric assumption is ful�lled if, e.g., � satis�es the uniform corkscrew
condition, see [7], [9]. These papers contain an extensive study of examples of
domains which, in particular, satisfy (2.3). For us it is important that (2.3) allows
to adapt to the present setting the classical arguments that lead, via Moser�s
iteration, to obtain u ∈ �0,α(�) for some 0 < α < 1, see, e.g., [21], Section
8.10. Extending u with zero outside �, we can assume henceforth that

(2.4) u ∈ �0,α(G).

If we suppose further that� is a C∞ domain, and denote by� = ��,X the
characteristic set of�, then thanks to the results of Kohn and Nirenberg [29], for
every Q ∈ ∂�\� there exists a neighborhoodU of Q such that u ∈ C∞(�∩U ).
From these considerations it is clear that the main new obstacle to overcome is
the regularity of a weak solution to (1.5) near the characteristic set � .

Since our assumptions on � are of a local nature, and they involve the
geometry of the domain near its characteristic set � , there is no restriction in
assuming the existence of ρ ∈ C∞(G ) and of γ� > 0 such that for some R ∈ R

(2.5) � = {g ∈ G | ρ(g) < R},

and for which one has |Dρ(g)| ≥ γ� > 0, for every g in some relatively
compact neighborhood K of ∂ D. The outward pointing unit normal to ∂�

is η = Dρ

|Dρ|
.

We now assume that � be uniformly starlike along � , see De�nition 2.1,
with respect to one of its points, which by performing a left-translation we can
take to be the group identity e. We explicitly remark that when this is the case,
then by the compactness of � we can �nd a bounded open set U and a constant
δ > 0 such that � ⊂ U and for which, setting � = ∂� ∩ U , one has

(2.6) Zρ(go) ≥ δ > 0, for go ∈ �.
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We note that the uniform transversality condition (2.6) implies that the
trajectories of Z starting from points of� �ll a full open set ω interior to �. By
possibly shrinking the set U we can assume that ω = �∩U . To �x the notation
we suppose that there exists λo > 0 such that

δλgo ∈ ω for λo < λ < 1.

Hereafter, given a point g ∈ G we respectively denote with

x (g) = (x1(g), ..., xm(g)), y(g) = (y1(g), ..., yk(g))

the projection of the exponential coordinates of g on the �rst and second layer
of the Lie algebra g. We de�ne ψ(g) = |x (g)|2.

In addition to (2.6) we assume that there exists Co > 0 such that the
de�nining function ρ of � satis�es the following convexity condition

(2.7) Lρ ≥ Co < Xρ, Xψ > in ω.

We emphasize that a suf�cient condition for (2.7) to hold is the strict L-
sub-harmonicity of the de�ning function ρ of � near the characteristic set � .
On the other hand, since on � we evidently have < Xρ, Xψ >= 0, theL-sub-
harmonicity of ρ on � (but not the strict one) is also necessary.

The following two theorems constitute the main regularity results of this
section.

Theorem 2.4. Consider a C∞ domain � in a Carnot group G satisfying (2.3),
(2.6) and (2.7). Let u be a weak solution of (1.5), then

Xu ∈ L∞(�).

In the next result we establish the boundedness of the Z−derivative of
the solution of (1.5) near the characteristic set. We stress once again that such
derivative involves commutators of the vectors Xj up to maximum order.

Theorem 2.5. Let G be a Carnot group of step two. Consider a C∞ connected,
bounded open set � ⊂ G satisfying (2.3), (2.6) and (2.7). Under these
assumptions, if u is a weak solution of (1.5) one has

(2.8) Zu ∈ L∞(�).
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Remark 2.6. Unlike Theorem 2.4, in Theorem 2.5 we have assumed that the
group G be of step two. We do not presently know whether Theorem 2.5
continues to hold for groups of arbitrary step.

We next provide an important class of domains to which Theorems 2.4,
2.5, and therefore Theorem 2.2 apply. Let G be a Carnot group of step two. We
de�ne the function

(2.9) f� (g) =
�
(�2+ | x (g) |2)2 + 16 | y(g) |2

�1/4
, � ∈ R.

For R > 0 and � ∈ R, with �2 < R2, consider the C∞ bounded open set

(2.10) �R,� = {g ∈ G | f� (g) < R}.

When � = 0 it is clear that �R,� is nothing but a gauge pseudo-ball centered
at the group identity e, except that the natural gauge is de�ned in (1.1) without
the factor 16. Here we have introduced such (immaterial) factor for the purpose
of keeping a consistent de�nition with the case of groups of Heisenberg type
discussed in the next section. For g ∈ G , we let

�R,�(g) = {h ∈ G | f� (g
−1h) < R} = g�R,�.

It is very easy to verify that the domains �R,�(g) ful�ll the geometric assump-
tions (2.3), (2.6) and (2.7), so that Theorems 2.4, 2.5 and 2.2 can be applied.
This proves the following basic result.

Theorem 2.7. Let G be a Carnot group of step two. Given any g ∈ G, R ∈ R

and � ∈ R with �2 < R2, the function u ≡ 0 is the only non-negative weak
solution of (1.5) in �R,�(g).

Besides having an interest in its own right, Theorem 2.7 also plays an
important role in the analysis of unbounded domains, to which task we now
turn.

3. Unbounded domains different from the whole group.

Our �rst objective is to introduce an appropriate notion of cones and half-
spaces in a Carnot group. This can be done in a natural way by means of the
exponential map, or instead working directly on the group by exploiting its
homogeneous structure. This latter approach was fully developed in [7]. Below,
we will use the former approach. We recall that for a point g ∈ G we denote
with x (g) = (x1(g), ..., xm(g)) and y(g) = (y1(g), ..., yk(g)) the projection of
the exponential coordinates of g on the �rst and second layer of the Lie algebra
g. We indicate with Rk

+ the cone {(y1, ..., yk )∈ Rk | yi ≥ 0, i = 1, ..., k}.
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De�nition 3.1. Let G be a Carnot group of step two. Given M, b ∈ R, and
a ∈ Rk \ {0}, we call the open sets

C+
M,b,a = {g ∈ G |< y(g), a > > M |x (g)|2 + b}

and

C−
M,b,a = {g ∈ G |< y(g), a > < −M |x (g)|2 + b}

characteristic cones. In the case in which a ∈ R
k
+ \ {0}, then we call the cone

convex if M ≥ 0, concave if M < 0. When M = 0 we use the notation H ±
b,a to

indicate the characteristic half-spaces

C+
0,b,a = {g ∈ G |< y(g), a > > b}, C−

0,b,a = {g ∈ G |< y(g), a > < b}.

The boundaries of such half-spaces are called characteristic hyperplanes.

The relevance of these domains becomes especially evident in the frame-
work of groups of Heisenberg type due to a remarkable notion of inversion and
Kelvin transform which for the Heisenberg group Hn were �rst developed by
Korányi in [30]. Subsequently, such inversion formula, as well as the Kelvin
transform, were generalized in [11] and [10] to all groups of Heisenberg type.
We begin with the formal de�nition of group of Heisenberg type. Let G be
a group of step two with Lie algebra g = V1 ⊕ V2 and consider the map
J : V2 → End(V1) de�ned by

(3.1) < J (ξ2)ξ
�
1, ξ ��

1 >=< [ξ �
1, ξ ��

1 ], ξ2 >, ξ �
1, ξ ��

1 ∈ V1, ξ2 ∈ V2.

From the de�nition it is immediately obvious that

< J (ξ2)ξ1, ξ1 >= 0, ξ1 ∈ V1, ξ2 ∈ V2.

De�nition 3.2. A Carnot group of step two, G , is called of Heisenberg type if
for every vector ξ2 ∈ V2 the map J (ξ2) : V1 → V1 de�ned by (3.1) is orthogonal,
i.e.,

(3.2) |J (ξ2)ξ1| = |ξ2| |ξ1|.

De�nition 3.2 is due to A. Kaplan [28]. We are now ready to introduce the
CR inversion and Kelvin transform in a group of Heisenberg type, see [30], [11]
and [10].
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De�nition 3.3. Let G be a group of Heisenberg type with Lie algebra g =
V1 ⊕ V2. For g = exp(ξ ) ∈ G , with ξ = ξ1 + ξ2 , the inversion σ : G∗ → G∗ ,
where G∗ = G \ {e} is de�ned by

σ (g) =
�
−

�
|x |2 + 4J (ξ2)

�−1
ξ1, −

ξ2

|x |4 + 16|y|2

�
,

where the map J is as in (3.1). One easily veri�es that

σ 2(g) = g, g ∈ G∗.

As in de�nition (2.9) in the sequel we will use the renormalized gauge

(3.3) N (g) =
�
|x (g)|4 + 16|y(g)|2

�1/4
,

since the latter is better suited than (1.1) to the structure of a group of Heisenberg
type. This fact is witnessed by the following remarkable fact which was
discovered by Kaplan [28]. In a group of Heisenberg type the fundamental
solution � of the sub-Laplacian L is given by the formula

(3.4) �(g, h) = C(G )N (h−1g)−(Q−2), g, h ∈G, g �= h,

where C(G ) > 0 is a suitable constant. Equation (3.4) will play an important
role in De�nition 3.6 below. Writing σ (g) = exp(η), with η = η1 + η2, for the
image of g we see easily from De�nition 3.3 and (3.2) that

(3.5) |η1| =
|ξ1|

N (g)2
and |η2| =

|ξ2|

N (g)4
.

An immediate consequence of (3.5) is that

(3.6) N (σ (g)) = N (g)−1, g ∈ G∗.

A direct veri�cation shows that the inversion anticommutes with the group
dilations, i.e.,

(3.7) σ (δλ(g)) = δλ−1(σ (g)), g ∈ G∗.

A corollary of (3.7) is that starlikeness behaves well under inversion. This is
contained in the following result.
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Proposition 3.4. Let ρ ∈ C∞(G). The following formula holds

Z (ρ ◦ σ ) = −(Zρ) ◦ σ.

In connection with Proposition 3.4 we mention that the starlikeness of the
level sets of positive L−harmonic functions in unbounded domains in Carnot
groups was �rst obtained in [12].

The next proposition underlines the remarkable connection between the
convex cones in groups of Heisenberg type and the bounded domains introduced
in (2.10).

Proposition 3.5. Let G be a group of Heisenberg type with the inversion as in
De�nition 3.3. For every M ≥ 0, b > 0, a ∈ Rk

+ \ {0}, de�ne � =
√

M/2b,

R2 =
�
16M2 + |a|2/8b, and consider the set

�R,� = {g ∈ G | (|x (g)|2 + �2)2 + 16|y(g)|2 < R4}.

One has

σ (C+
M,b,a) = (0, −

a

32b
)�R,� =

=
�

g ∈ G | (|x (g)|2 + �2)2 + 16|y(g)+
a

32b
|2 < R4

�
.

In particular, the image through the inversion of the characteristic half-
space H +

b,a = {g ∈ G |< y(g), a > > b} is the gauge ball B((0, − a
32b
), R) =

{g ∈ G | |x (g)|4 +
�
�y(g)+ a

32b

�
�2 < R4}.

In the sequel we denote by �∗ the image of a generic domain � under the
inversion σ . We stress that, since we have chosen not to de�ne the inversion of
the point at in�nity, in the case in which � is a neighborhood of ∞, by which
we mean that there exists a ball B(e, R) such that (G \ B(e, R)) ⊂ �, then �∗

is a punctured neighborhood of the identity, i.e., �∗ = D \ {e}, for an open set
D such that e ∈ D. The reader should keep this point in mind for the statement
of the next results.

De�nition 3.6. Let G be a group of Heisenberg type, and consider a function
u on G . The CR Kelvin transform of u is de�ned by the equation

u∗(g) = N (g)−(Q−2)u(σ (g)), g ∈ G∗.
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An important subset of that of groups of Heisenberg type is the class of
groups of Iwasawa type. Such groups arise as the nilpotent component N in
the Iwasawa decomposition K AN of a simple group of rank one. When G is
a group of Iwasawa type, then it was proved in [10] that the inversion and the
Kelvin transform possess some remarkable properties. In the following theorem
we collect the two which are most important in the sequel.

Theorem 3.7. (see [10]). Let G be a group of Iwasawa type. The Jacobian of
the inversion is given by

d(H ◦ σ )(g) = N (g)−2QdH (g), g ∈ G∗.

The Kelvin transform u∗ of a function satis�es the equation

Lu∗(g) = N (g)−(Q+2)(Lu)(σ (g)), g ∈ G∗.

The following theorem is an important consequence of the conformal
properties of the inversion and of the Kelvin transform expressed by Theorem
3.7.

Theorem 3.8. The Kelvin transform is an isometry between
◦

D1,2 (�) and
◦

D1,2 (�∗).

Such result is used in combination with the conformal invariance of the
Yamabe type equation expressed by the following proposition.

Proposition 3.9. Let u be a solution of

(3.8)

�
Lu = −u p

u ∈
◦

D1,2 (�), u ≥ 0,

and denote by u∗ its Kelvin transform. Then u∗ satis�es

(3.9) Lu∗(g) = −N (g)p(Q−2)−(Q+2)u∗(g)p, g ∈ �∗.

In particular, when p = Q+2
Q−2

we conclude that if u satis�es problem (1.5), then
u∗ is a solution of the same problem in �∗ .

The following theorem asserts that if u∗ is a solution to (1.5) in a neigh-
borhood of in�nity, then the Kelvin transform of u∗ has a removable singularity
at the group identity e. It plays a crucial role in converting the Yamabe problem
(1.5) on an unbounded domain to the same problem on a bounded one, via the
CR inversion.
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Theorem 3.10. Let G be an Iwasawa group. Suppose that u∗ is a solution of
(1.5) in �∗ , with �∗ a neighborhood of in�nity. Let u be the Kelvin transform of
u∗ de�ned in �, then the group identity e is a removable singularity, i.e., u can
be extended as a smooth function in a neighborhood of e where the equation is
satis�ed.

Using Theorem 3.8, Proposition 3.9, and Theorems 3.10, 2.4, 2.5 and 2.2,
we obtain the main non-existence result for unbounded domains (which do not
coincide with the whole group).

Theorem 3.11. Let G be a group of Iwasawa type. Consider a C∞ unbounded
open set �∗ ⊂ G and denote by � its image through the inversion. Suppose
that � = D \ {e}, where D is a bounded open set, containing the identity,
which satis�es all the hypothesis in Theorem 2.4. In this situation there exists
no solution to problem (1.5) in �∗ , other than u∗ ≡ 0.

Here is a basic consequence of Theorem 3.11.

Corollary 3.12. Let G be a group of Iwasawa type and consider the unbounded
domain �∗ = {g ∈ G | N (gg−1

o ) > R}, where N is the gauge in (3.3), go ∈ G
and R > 0 are �xed. There exist no non-trivial solution to (1.5) in �∗ .

Proof. By left-translation and rescaling we can suppose that go = e, R = 1. In
this situation, it is easy to verify �∗ is mapped by the inversion in D = � \ {e},
where � = {g ∈ G | N (g) < 1}. To complete the proof it is enough to observe
that, as it was proved in Theorem 2.7 (case � = 0), the domain � ful�lls the
assumptions in Theorem 2.4. �

We �nally consider a notable class of unbounded domains with non-
compact boundary, the convex characteristic cones, and prove that these sets
do not support non-trivial solutions to the Yamabe problem (1.5).

Theorem 3.13. Consider a group of Iwasawa type G . Let C±
M,b,a ⊂ G be a

convex characteristic cone as in De�nition 3.1. There exists no solution to (1.5)
in �∗ = C+

M,b,a , other than u ≡ 0. In particular, there exist no non-trivial

solutions for the characteristic half-spaces H ±
b,a .

Proof. Suppose u∗ is a non-trivial solution to (1.5) in C+
M,b,a and denote by u

its Kelvin transform. In view of Proposition 3.5, u is de�ned in (0, − a
32b
)�R,� ,

where �R,� is the domain in (2.10), with R and � speci�ed as in Proposition 3.5.
By left-translationwe obtain a new non-trivial function, which for simplicity we
continue to denote with u, de�ned in the bounded open set�R,� . From Theorem

3.8 we infer that u ∈
◦

D1,2 (�)R,� . Thanks to Proposition 3.9 we know that u is
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a non-trivial solution to problem (1.5) in�R,� . At this point we invoke Theorem
2.7 to reach a contradiction. The proof is thus completed. �

In connection with Theorem 3.13 we mention that Lanconelli and Uguz-
zoni [31] have recently obtained in the special case of the Heisenberg group
H

n an interesting non-existence result for the non-characteristic hyperplanes,
i.e., those hyperplanes which are parallel to the group center (the t -axis). Their
analysis is essentially different from ours since, given the absence of charac-
teristic points on the boundary, their focus is on the asymptotic behavior of a
solution to (1.5) at in�nity. In a note added in proof in [31] it is said that in
the forthcoming article [41] Uguzzoni has obtained, for the characteristic hy-
perplanes Ha in the Heisenberg group, a uniqueness result similar to the second
part of our Theorem 3.13.

4. Entire solutions.

We �nally describe some progress toward the proof of the main Conjecture
in section one. Before proceeding we note that an important consequence of a
suitable adaptation of the method of concentration of compactness due to P. L.
Lions [33], [34] allows to prove that in any Carnot group (1.5) always admits
at least one entire solution, see [42]. In this regard an elementary, yet crucial
observation, is that if u is an entire solution to (1.5), then such are also the two
functions

(4.1) τhu
def
= u ◦ τh, h ∈ G,

where τh : G → G is the operator of left-translation τh(g) = hg, and

(4.2) uλ
def
= λ(Q−2)/2u ◦ δλ, λ > 0.

We need the following de�nition.

De�nition 4.1. Let G be a Carnot group of step two with Lie algebra g =
V1 ⊕ V2. We say that a function U : G → R has partial symmetry if there exist
an element go ∈ G such that for every g = exp(x (g)+ y(g))∈G one has

U (gog) = u(|x (g)|, y(g)),

for some function u : [0, ∞)× V2 → R.
A function U is said to have cylindrical symmetry if there exist go ∈ G and

φ : [0, ∞) × [0, ∞) → R for which

U (gog) = φ(|x (g)|, |y(g)|),

for every g ∈ G .
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Our main result is the following.

Theorem 4.2. Let G be a group of Iwasawa type. If U �≡ 0 is an entire solution
to (1.5) having partial symmetry, then up to group translations and dilations we
must have U = K� , where K� is the function in Theorem 1.1.

Theorem 4.2 is a direct consequence of the following two results.

Theorem 4.3. Let G be an Iwasawa group. Suppose U �≡ 0 is an entire
solution of (1.5). If U has partial symmetry, then U has cylindrical symmetry.

Theorem 4.4. Let U �≡ 0 be an entire solution to (1.5) in a Iwasawa group G
and suppose that U has cylindrical symmetry. There exists � > 0 such that

U (g) = [m(Q − 2)�2](Q−2)/4((�2 + |x (g)|2)2 + 16|y(g)|2)−(Q−2)/4.

All other cylindrically symmetric solutions are obtained from this one by
the left-translations (4.1).

One should notice that, unlike the Euclidean case, in the Folland-Stein
embedding there exists no spherical symmetrization, and therefore the search
of minimizers cannot be reduced to an ordinary differential equation, as in the
famous results of Aubin [1], [2] and Talenti [39]. Therefore, after Theorem 4.3
is in force one still needs to confront the non-trivial problem of the uniqueness
of positive solutions of a certain non-linear pde in the Poincaré half-plane. This
aspect is taken care of by Theorem 4.4.

In closing we mention that some interesting existence and non-existence
results for positive entire solutions of the equation Lu = −K (x )u p in Carnot
groups were announced by G. Lu and J. Wei in [35]. These authors also study
the asymptotic behavior at in�nity of the relevant solutions. We also mention
that we have recently received a preprint by I. Birindelli and J. Prajapat [5] in
which the authors prove in the context of the Heisenberg groupHn an interesting
non-existence theorem for positive entire solutions having cylindrical symmetry
of the equation Lu = −u p , with sub-critical exponent p < (Q + 2)/(Q − 2).
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