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Dedicated to the memory of Filippo Chiarenza

1. Introduction.

The main object of the present work is the linear operator

(1.1) Au = div (A(x )∇u)

where A : � → R
n×n is a measurable function in open set � ⊂ R

n with values
in the space of all n × n symmetric matrices, satisfying the usual ellipticity
condition at almost every point of the domain �

(1.2)
|ξ |2

K (x )
≤ �A(x )ξ, ξ� ≤ K (x )|ξ |2.

In Section 2 we treat the case

K (x ) ≡ K

and

(1.3) A(x )∈ V M O(�; R
n×n )
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and report brie�y on some results obtained in [12].
In Section 3 we assume only

(1.4) K (x )∈ B M O(�)

and we describe some recent results contained in joint papers with T. Iwaniec
(see [13], [14]).
Recall that (1.4) means

||K ||BM O = sup{�
�

Q

|K (x )− KQ |dx , Q cube, Q ⊂ �} < ∞

and that V M O is the closure of C∞
0 in the BMO norm.

2. The coef�cient matrix in VMO.

The domain of the operator A will be the Sobolev space W
1,p
0 (�), 1 <

p < ∞, which is the completion of C∞
0 with respect to the norm

|u|p = ||∇u||L p .

For some unbounded regions, such as � = R
n , functions from W

1,p
0 (�) which

differ by a constant are indistinguishable. We use the notationW
1,p(Rn) for the

space W
1,p
0 (Rn).

In the present section we assume that the operator A is uniformly elliptic, that
is

(2.1)
|ξ |2

K
≤ �A(x )ξ, ξ� ≤ K |ξ |2

for a certain constant K ≥ 1, for almost every x ∈ � and all vectors ξ ∈ R
n .

Thus

(2.2) A : W
1,p
0 (�) → W −1,p(�)

and the problem whether or not this operator has an inverse is of interest for us.
In other words, given f ∈ L p(�; R

n), does the differential equation

(2.3) div(A(x )∇u) = div f

have a unique solution u ∈ W
1,p
0 (�)?
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This is obviously true for p = 2 with uniform bound

|u|2 ≤ K || f ||L2 .

When p is �close� to 2, the same is true if we require some regularity on the
domain �. According to Meyers [16], there is infact an ε = ε(n, K ) ∈ (0, 1]
such that

(2.4) |u|p ≤ cp(n, K , �)|| f ||L p

for 2−ε ≤ p ≤ 2+ε . Similar results concerning nonlinear variational equations
such as

(2.5) divA(x , ∇u) = divF

where A : � × R
n → R

n veri�es the Leray-Lions usual assumptions, have
been recently establish in [11].
We want to emphasize that, without further assumptions on the coef�cients,
inequality (2.4) fails if p is too far from 2 (see [12] e.g.).
As far as we are aware the fact that continuity of A(x ) is suf�cient to obtain
(2.4) for any 1 < p < ∞ goes back to Simader [19].
Let us now recall that V M O is the space of functions with vanishing mean
oscillation introduced by Sarason. The idea to relax continuity of A into the
assumption A ∈ V M O(�; R

n×n ) is due to [6] and can be traced back to the
important work of Filippo with M. Frasca and P. Longo [4], [5] dedicated to

W
2,p
0 estimates for nondivergence elliptic equations with V M O coef�cients.

In [12] similar results based on estimates for the Riesz transforms, were estab-
lished for the equation (2.3) in R

n . Other related papers are [7], [8], [9], [15],
[1], [2].
Let us mention a recent result concerning nonlinear equations in divergence
form

(2.6) div
�
�A(x )∇u, ∇u�

p−2
p A(x )∇u

�
= 0

where A(x ) is a symmetric matrix verifying (2.2), due to Greco-Verde [10].

Theorem 2.1. Assume A ∈ V M O(�; R
n×n ). For any 1 < r1 < 2 there

exists δ > 0 such that, if |p − 2| < δ and u ∈ W 1,r1
loc (�) satis�es (2.6), then

u ∈ W 1,r2
loc (�) for all exponents 1 < r2 < ∞.
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3. The coef�cient matrix with upper bound in BMO.

In the following we wish to illustrate some recent theorems obtained with
T. Iwaniec for equation (2.3) under the non-uniform ellipticity condition

(3.1)
|ξ |2

K (x )
≤ �A(x )ξ, ξ� ≤ K (x )|ξ |2.

The point is that the function K (x ) ≥ 1 need not to be bounded. Our basic
assumption will be

(3.2) ||K ||BM O ≤ λ(n)

for λ(n) suf�ciently small.
In particular, since the BMO-norm of a constant function K (x ) ≡ K is zero, we
are treating a natural extension of the classical case. One of the central results
is the �higher� integrability of gradients.
We cannot expect the same sort of results as for the classical theory K (x ) ≡ K ,
i.e. ∇u ∈ L2+ε

loc . We must content ourselves with only a very slight degree of
improved integrability. We have the following

Theorem 3.1. If (3.1), (3.2) hold with λ(n) suf�ciently small and u ∈ W 1,1
loc (�)

is a solution to the equation

div(A(x )∇u) = 0,

if the gradient ∇u is of class L2 log−1 L, then it belongs to L2 log L at least
locally.

It is worthwile noting that we are also relaxing the usual requirement for the
ratio of the upper and the lower bounds at (3.1) to be uniformly bounded (quasi-
isotropic case). Thus, the right spaces in genuine nonisotropic situation are the
Orlicz-Sobolev classes u ∈ W 1,1

loc such that ∇u ∈ L2 logα L loc . Examples show

that one cannot go far beyond these classes and in particular that ∇u /∈ L2+ε
loc

for any ε > 0 even though the B M O -norm of K (x ) can be chosen arbitrarily
small.

For our purpose it will be useful to review the L p theory of Hodge decomposi-
tion in R

n . In this case explicit calculations are possible by means of the Riesz
transform

(3.3) R : L p(Rn) → L p(Rn; R
n), 1 < p < ∞,



ELLIPTIC EQUATIONS AND BMO-FUNCTIONS 141

where

R f (x ) =
�

�
n+1
2

�

π
n+1
2

�

Rn

(x − y) f (y)

|x − y|n+1
dy.

Given a vector �eld F = ( f 1, ..., f n) ∈ L p(Rn; R
n), we �rst solve the Poisson

equation

(3.4) �U = (�u1, ..., �un) = F

for U = (u1, ..., un) ∈ D
�(Rn; R

n), which yields the following decomposition
of F

F = B + E, divB = 0 and curlE = 0

where

B = �U − ∇divU and E = ∇divU.

Then we de�ne a n-dimensional version S of the Hilbert transform by

S(F) = E − B.

Thus S acts as identity on gradient �elds and as minus identity on divergence
free vector �elds. In terms of the projection operators one can write

−S = B − E = I + 2R ⊗ R.

Let us list basic properties of the operator S:

i) S is an involution, that is S ◦ S = I

ii) S is self adjoint, that is

�

Rn

�SF, G� =

�

Rn

�F, SG�

for F ∈ L p(Rn; R
n) and G ∈ Lq (Rn; R

n) with 1 < p, q < ∞, p + q = pq .
Thus, in particular

iii) S is an isometry in L2(Rn; R
n).

By a duality argument it can be proved that ||S||q = ||S||p.

A device for the integral estimates for the solutions of PDE�s is the Beltrami
operator

I − µS : Lφ(Rn; R
n) → Lφ (Rn; R

n)
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where � is a suitable Orlicz function and the matrix µ satis�es

|µ(x )| ≤
K (x )− 1

K (x )+ 1
.

In fact, one way to express the Dirichlet problem

(3.5)

�
divA(x )∇u = divA(x ) f

u ∈ W 1,1
0 (�)

where A(x ) is a symmetric matrix with measurable coef�cients satisfying the
ellipticity bounds

(3.6)
|ξ |2

K (x )
≤ �A(x )ξ, ξ� ≤ K (x )|ξ |2

under the assumption (3.2), is the following.
By making the positions:

E = ∇u,

B = A(x )(∇u − f ), divB = 0,

F− =
E − B

2
, F+ =

E + B

2
we see that the equation (3.5) can be rewritten as

F− = µ(x )F+ + g

where

µ(x ) =
I − A(x )

I + A(x )
,

g(x ) =

�
−A(x )

I + A(x )

�

f (x ), |g| ≤ | f |

and the solvability of (3.5) relies upon the invertibility of

I − µS.

It is obvious that I − µS is invertible in all Lebesgue spaces Lr (Rn; R
n) for

which ||µ||∞||S||r < 1. Less obvious is the following (see [14])

Theorem 3.2. If (3.2) holds, then for α ∈ {−1, 0, 1} there exists a bounded
linear operator

� : L2 logα L(Rn, dω)→ L2 logα L(Rn, dx )

such that
� ◦ (I − µS) = (I − µS) ◦ � = I

where dω = K 2(x )dx .
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Proof. The proof requires some steps.
First Step. The Hilbert transform

S : L2(Rn, dω)→ L2(Rn, dω)

is bounded:

||SF ||L2(Rn,dω) = ||K SF ||2 ≤ ||S(K F)||2 + ||(K S− SK )F ||2 ≤

≤ ||K F ||2 + c(n)||K ||BM O ||F ||2 ≤ c(n)||F ||L2(Rn,dω).

Here we have used a well known estimate for the commutator K S− SK due to
Coifman, Rochberg and Weiss.

Second Step. We obtain the estimate:

(3.7) ||�g||L2(Rn,dx) ≤ 2||g||L2(Rn,dω).

The proof is based on the following pointwise inequality

(3.8)
|SF |2 + |F |2

1+ εK
≤

2K

1+ εK
(|SF |2 − |F |2)+ 4K 2|(I − µS)F |2

which can be proved rather easily (see [14]).
Note that k = K

1+εK
is bounded and its BMO-norm does not depend on ε:

||k||BM O ≤ 2||K ||BM O ≤ 2λ(n).

The existence of the operator � follows from the estimate

(3.9) ||F ||L2(Rn ,dx) ≤ 2||(I − µS)F ||L2(Rn,dω)

for F ∈ L2(Rn, dx ), which derives by integrating (3.8). Namely if we introduce
SF = S(E − B) = E + B and note that |SF |2 − |F |2 = 4�B, E�, we have

(3.10)

�

Rn

|E |2 + |B|2

1+ εK
≤ 4

�

Rn

�kB, E� + 2||F − µSF ||2L2(Rn,dω)

we then apply Hodge decomposition of the vector �eld kB ∈ L2(Rn, dx )

kB = B � + E �
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and so, by Hölder�s inequality,

�
�
�
�

�

Rn

�kB, E�

�
�
�
� =

�
�
�
�

�

Rn

�E �, E�

�
�
�
� ≤ ||E �||2||E ||2.

Using again Coifman-Rochberg-Weiss theorem we obtain

||E �||2 ≤ c(n)||k||BM O ||B||2 ≤ λ(n)c(n)||B||2

and therefore (3.10) implies

�

Rn

|E |2 + |B|2

1+ εK
≤ 4λ(n)c(n)

�

Rn

(|E |2 + |B|2)+ 2||F − µSF ||2L2(Rn,dω).

By monotone convergence theorem and choosing ε small enough we deduce

1

2

�

Rn

|F |2 ≤ 2||F − µSF ||2L2(Rn,dω)

and the second step is achieved, after an approximation argument of µ based on
the sequence of bounded matrices

µh(x ) =






µ(x ) if |µ(x )| ≤ 1− 1
h

(h − 1)µ(x )

h|µ(x )|
otherwise

which satis�es

|µh(x )| ≤
K (x )− 1

K (x )+ 1

and the operator I − µh S is invertible in L2(Rn, dx ).

Third Step. The operator �, originally de�ned in L2(Rn, dω) with values in
L2(Rn, dx ) extends to a continuous operator

� : L2 log L(Rn, dω)→ L2 log L(Rn, dx ).

A crucial role is played by inequality

(3.11)

�
�
�
�

�

Rn

k�B, E�

�
�
�
� ≤ c(n)||k||BM O ||B||L2 log L ||E ||L2 log−1 L
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for divB = 0 and curlE = 0, which can be proved much the same way as the
corresponding inequality in the second step, plus a suitable tool for establishing
boundedness of singular integrals, maximal operators and some commutators in
L p logα L spaces, see [11]�[14].
Another useful fact is that the norms

||g||L2 log L(Rn,dω) , ||Kg||L2 log L(Rn ,dx)

are comparable.
The above mentioned extension of the operator� is established by mean of the
inequality

||F ||L2 log L(Rn,dω) ≤ c(n)||K (I − µS)F ||L2 log L(Rn,dx) + c(n)[K ]||F ||2

where

[K ] = ||K0||∞ + ε(n)

�

Rn

�
e

K −K0
ε(n) − 1

�

and K0 ∈ L∞(Rn) is such that 1 ≤ K0(x ) ≤ K (x ) and e
K −K0
ε(n) − 1∈ L1(Rn). But

this is a rather technical step that we don�t pursue here (see [14]).

Fourth Step. The operator � satis�es also

(3.12) ||�g||L2 log−1 L(Rn,dx) ≤ c(n)[K ]||g||L2 log−1 L(Rn,dω).

The veri�cation of (3.12) is another technical piece of work that the interested
reader will �nd in paper [14]. �

By the previous Theorem 3.2 it is possible to obtain local estimates from which
Theorem 3.1 follows.
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