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1. Introduction.

The de�nition of Sobolev spaces used nowadays in literature reads as
follows. If � ⊆ R

n(n ≥ 1) is an open set, if m ∈ N and if 1 ≤ p < ∞

then

Wm,p(�) :=
�
u ∈ L p(�) : ∃Dαu ∈ L p(�) for |α| ≤ m

�

is called a Sobolev space (all functions we consider are assumed to be real

valued). Here Dαu =
∂ |α|u

∂xα1
1 · . . . · ∂x

αn
n

denotes the weak (distributional)

derivative of u corresponding to the multi-index α = (α1, . . . , αn) and |α| :=
α1 + . . .+ αn denotes its order. By

�u�Wm, p(�) :=




�

|α|≤m

�Dαu�
p
L p(�)





1
p

if 1 ≤ p < +∞,



150 CHRISTIAN G. SIMADER

for u ∈ Wm,p(�) a norm is de�ned on Wm,p(�). By means of the de�nition
of weak derivative and of the completeness of L p-spaces it is readily seen
that (Wm,p(�), ||.||Wm, p(�) is a Banach space and in case of p = 2 a Hilbert
space with suitable inner product. This de�nition �ts perfectly with the weak
formulation of many boundary value problems for partial differential equations
in bounded domains. But as soon as unbounded domains are considered it turns
out that the spaces Wm,p(�) are too �narrow�. As an example consider for
n ≥ 2 the exterior domain

(1.1) � :=
�
x ∈R

n : |x | > 1
�
,

and the functions

(1.2) h(x ) :=

�
1− |x |2−n if n ≥ 3, x ∈�,
ln |x | if n = 2, x ∈�.

Then h ∈C∞(�̄),

(1.3)






h ∈ L
q
loc(�) for 1 ≤ q <∞

h /∈ Ls (�) for all 1 ≤ s <∞, but

∇h ∈ L p(�)n for all n
n−1

< p <∞

∂i∂j h ∈ L p(�) for all 1 ≤ p <∞, i, j = 1, . . . , n.

Therefore h /∈ W 1,p(�) and h /∈ W 2,p(�) for all 1 ≤ p < ∞. On the other
hand, �h = 0 in � and h|∂� = 0.
A functional analytical setting of the Dirichlet problem for the Laplacian in the
sense of weak or strong L p-solutions in exterior domains has clearly to cover
such an example. But this is obviously not possible within the framework of
Wm,p(�)-spaces (compare [14]).
Another example arises from the Hilbert space setting of the weak Neumann
problem. Let � ⊂ R

n be a domain and let f := ( f1, . . . , fn) ∈ L2(�)n be

given. We would call any u ∈W 1,2(�) satisfying

< ∇u,∇� >�=< f ,∇� >� for all �∈W 1,2(�)(1.4)

(Here < ∇u,∇� >�:=

�

�

n�

i=1

∂i u∂i� dx )

a weak L2-solution of the Neumann problem

�u = div f in�,
∂u

∂N
|∂�= fN | ∂�
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(where N should denote the exterior normal of � (if it exists), ∂u(x)
∂N

:=
�n

i=1 ∂i u(x )Ni (x ) |x∈∂� and f
N
(x ) :=

�n
i=1 fi (x )Ni (x ) |x∈∂�). To solve the

functional equation (1.4) it would suf�ce to consider a suitableHilbert space so
that < ∇.,∇. >� becomes an inner product on it. In case that e.g. |�| <∞ to
rule out the constants it would suf�ce to consider the subspace

(1.5) W 1,2
� (�) :=

�

u ∈W 1,2(�) :

�

�

udy = 0

�

.

Then < ∇.,∇. >� is clearly an inner product on the space de�ned by (1.5) (see
Theorem A below). But the question arises whether W 1,2

� (�) equipped with
this inner product is complete. This question will be studied systematically in
Section 4.
The dif�culties arising in both examples above we can avoid if we remember
Sobolev�s original de�nition given in his pioneering works [15], [16] from
1936-1938 and in his monography [17] from 1950. For � ⊂ R

n a domain,
m ∈N and 1 ≤ p <∞ Sobolev de�nes

(1.6) Lm,p(�) :=
�
u ∈ L1loc(�) : ∃D

αu ∈ L p(�) for all α with |α| = m
�
.

He assumes for � in addition that
i) � ist bounded;
ii) � is a �nite union of domains each of which is starshaped with respect to
a ball (see also [2], [8], [17]).

In 1964 it was proved by Gröger [5] that assumption i) can be dropped, but
assumption ii) seems to be essential (see [2], [7] too). Last assumption is
needed because of the use of Sobolev�s ingenious, but rather dif�cult method
of spherical projection operators. The de�nition (1.6) is slightly more general
then Sobolev�s original de�nition [15], [16], [17], where he used functions
u ∈ L1(�) in place of L1loc(�). We should mention that the letters W and L for
the notation of the above spaces in [17] are changed in contemporary literature.
Our de�nition coincides with that given in [7], [8]. If � ⊂ R

n is de�ned by
(1.1) and h by (1.2) then we see by (1.3), (1.6): h ∈ L1,p(�) for n

n−1
< p <∞

and h ∈ L2,p(�) for 1 ≤ p <∞.
To de�ne a norm on Lm,p(�), we choose an arbitrary but �xed G ⊂⊂ � (here
and in the sequel we always assume for those sets G �= ∅ ) and we de�ne

(1.7) �u�m,p;�,G := �u�L1(G) + |u|m,p;�,

where

|u|m,p;� :=

�
�

|α|=m

�Dαu�
p
L p(�)

� 1
p
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(note that �u�m,p;�,G = 0 implies in particular |u|m,p;� = 0, hence u = P
(= polynomial of degree ≤ m − 1; cf. Theorem B below) a.e. on �, and
0 = �u�L1(G) = �P�L1(G) gives P ≡ 0).
The following problems occur while studying the spaces Lm,p(�):

1. existence of intermediate derivatives Dβu ∈ L
p
loc(�) (|β| ≤ m− 1) for any

u ∈ Lm,p(�);

2. completeness of Lm,p(�) with respect to the norm � · �m,p;�,G;

3. equivalence of the norms � · �m,p;�,Gk
for arbitrary Gk ⊂⊂ � (k = 1, 2);

4. possible other choice of equivalent norms more adopted to a �natural�
decomposition of Lm,p(�) (see (3.4) below).

The �rst aim of this paper is to give report on recent joint work with
Naumann [10], where we presented an entirely different and quite elementary
method to solve problems 1�4 avoiding at the same moment the above men-
tioned restrictions i) and ii) concerning �. This method is essentially based on
Poincaré�s inequality for balls or cubes (compare Appendix 2), which can be
proved by elementary calculus arguments. The second aim of our paper is to
study very weak conditions on � so that L1,p(�) = W 1,p(�).

2. Notations. Ingredients.

For m ∈N0 := N ∪ {0} we put

P(m) : =

�

P = P(x ) : P(x ) =
�

|α|≤m

aαx
α, : x ∈R

n, aα ∈R

�

= vector space of real polynomials of degree ≤ m in R
n .

For G ⊆ R
n and x ∈G let

dx :=






1

4
dist (x , ∂G) if G �= R

n,

1 if G = R
n.

We put for x0 ∈R
n and R > 0

BR(x0) := {x ∈R
n : |x − x0| < R}.

In particular, we let denote Bdx
= Bdx

(x ) for x ∈G ⊆ R
n .

First we start with two standard arguments, whose proof can e.g. be found in
[10] or [14].
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Theorem A. Let G ⊂ R
n be a bounded open set. Then for any u ∈Wm,p(G)

there exists a uniquely determined polynomial Pu ∈P(m − 1) such that

(2.1)

�

G

Dα(u − Pu) dx = 0 ∀|α| ≤ m − 1,

(2.2) �Pu�Wm−1, p(G) ≤ C�u�Wm−1, p(G),

where the constant C > 0 depends only on m, n, p and |G|.

Theorem B. Let G ⊆ R
n be a domain. Let u ∈ Lm,p(G) satisfy Dαu = 0 a.e.

in G for all |α| = m. Then there exists exactly one P ∈P(m − 1) such that

u = P a.e. in G.

In addition we need

Theorem C. (Poincaré�s inequality). Let BR = BR(x0) be any �xed ball. Then
there exists a constant C(R) > 0 (depending on m, n, p too) such that

(2.3)






||u||Wm−1, p(BR) ≤ C(R)|u|m,p;BR

∀u ∈Wm,p(BR) with

�

BR

Dβu dx = 0 ∀|β| ≤ m − 1.

An elementary proof of this theorem for m = 1 which is based on
potential estimates, may be found in [4]. The proof for m ≥ 2 follows
by induction. For x ∈ R

n we may replace the Euclidean norm |x | =

|x |2 =

�
n�

i=1

x 2i

� 1
2

by the equivalent norm |x |∞ := max {|xi |, i = 1, . . . , n}.

Then a �ball� BR(x0) with respect to | · |∞-norm is the cube WR(x0) :=
{x ∈R

n : |xi − x0 i | < R, i = 1, . . . , n}. With this change all our arguments re-
main valid. But for WR(x0) Poincaré�s inequality admits a very simple proof by
induction on n (see Appendix 2).
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3. The spaces Lm, p(�) and their properties.

The proof of the following statements rests only Theorems A�C and is
given in detail in [10].

Theorem 3.1. Let u ∈ Lm,p(�). Then there exist the weak derivatives

Dβu ∈ L
p
loc(�) ∀|β| ≤ m − 1.

Let now G ⊂⊂ �. Because of Theorem 3.1 we may de�ne for u ∈ Lm,p(�)

(3.1) ||u||m−1;G :=
�

|β|≤m−1

�
�
�
�
�

�

G

Dβu dx

�
�
�
�
�

and

(3.2) ||u||m,p;�,G := ||u||m−1;G + |u|m,p;�.

Both expressions are semi-norms on Lm,p(�). If P ∈P(m−1) and ||P ||m−1;G =
0, then it is readily seen P ≡ O . Therefore by (3.1) a norm is de�ned on
P(m − 1). Suppose now that u ∈ Lm,p(�) and ||u||m,p;�,G = 0. Then |u|m,p;� =

0 and by Theorem B we see u = P ∈P(m−1). Since 0 = ||u||m−1;G = ||P ||m−1;G
we conclude u = P = 0. Therefore by (3.2) a norm is de�ned on Lm,p(�) (all
other properties of a norm are obvious). Let us now de�ne

(3.3) L
m,p
G (�) :=

�

u ∈ Lm,p(�)
�
�
�

�

G

Dβu dx = 0 ∀|β| ≤ m − 1

�

.

For u ∈ Lm,p(�), by Theorem A there exists a uniquely determined Pu ∈

P(m − 1) such that
�

G

Dβ (u − Pu) dx = 0 ∀|β| ≤ m − 1.

Then u0 := (u − Pu)∈ L
m,p
G (�) and u = u0 + Pu .

If v ∈ L
m,p
G (�) ∩ P(m − 1)|�, i.e. v ∈ P(m − 1) and

�

G

Dβv dx = 0 for all

|β| ≤ m − 1, it follows that v ≡ 0. Therefore we see the direct decomposition

(3.4)
Lm,p(�) = L

m,p
G (�)⊕ P(m − 1)|�

u = u0 + Pu .



SOBOLEV�S ORIGINAL DEFINITION OF. . . 155

With that decomposition we have

(3.5) ||u||m,p;�,G = |u0|m,p;� + ||Pu ||m−1;G.

Furthermore | · |m,p;� is a norm on L
m,p
G (�). The most important tool of this

section is the following Theorem 3.2 whose proof (see [10], Theorem 4.2) rests
solely on Theorems A�C. This result is a straight forward generalization of
an argument, we used a couple of years ago in our proof of the Helmholtz-
decompositon (see [13], Lemma 2.2).

Theorem 3.2. Let (uk ) be a sequence of functions in Lm,p(�) such that

|uk − ul |m,p;�→ 0 as k, l →∞.

Let x0 ∈� be arbitrary, but �xed, and let Puk
= P (x0)uk

∈P(m−1) the polynomial
according to Theorem A:

�

Bdx0

Dβ (uk − Puk
) dx = 0 ∀|β| ≤ m − 1 (k = 1, 2, . . .).

Then there exists a u ∈ Lm,p(�) such that

�
�
�u − (uk − Puk

)
�
�
�
Wm−1, p(��)

→ 0 as k→∞, ∀�� ⊂⊂ �,(3.6)

|u − uk |m,p;�→ 0 as k→∞.(3.7)

If we put G := Bdx0
then with our notation (uk − Puk

)∈ L
m,p
Bdx0
(�). Clearly

|(uk − Puk
) − (ul − Pul

)|m,p;� = |uk − ul |m,p;�→ 0 as k, l →∞

If we choose for (3.6) �� := Bdx0
then ||u − (uk − Puk

)||Wm−1, p(Bdx0
) → 0 as

k →∞ and therefore

�

Bdx0

Dβu dx = lim
k→∞

�

Bdx0

Dβ(uk − Puk
) dx = 0 for |β| ≤ m − 1.

Therefore u ∈ L
m,p
Bdx0
(�) and we derived as a �rst consequence
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Corollary 3.3. Let (uk ) ⊂ L
m,p
Bdx0
(�) be Cauchy with respect to the norm |·|m,p;�

(coinciding with || · ||m,p;�,Bdx0
on L

m,p
Bdx0
(�)). Then there exists u ∈ L

m,p
Bdx0
(�) such

that
�u− uk�Wm−1, p(��) → 0 as k→∞, ∀�� ⊂⊂ �,

|u − uk |m,p;�→ 0 as k→∞.

Based on this result, using Theorem A and the fact, that any two norms on
the �nite dimensional vector space P(m − 1) are equivalent, we readily derive

Theorem 3.4. Let G ⊂⊂ �. Let (uk ) ⊂ L
m,p
G (�) be Cauchy with respect to the

norm | · |m,p;�. Then there exists u ∈ L
m,p
G (�) such that

�u − uk�Wm−1, p(��) → 0 as k→∞, ∀�� ⊂⊂ �,(3.8)

|u − uk |m,p;�→ 0 as k→∞.

Due to the direct decomposition (3.4) and using the fact that dim P(m −
1) <∞ it follows from Theorem 3.4

Theorem 3.5. Let G ⊂⊂ �. Then Lm,p(�) is a Banach space with respect to
the norm || · ||m,p;�,G.

A further trivial consequence of (3.8) is the following Poincaré - type
inequality which is of its own interest. We observe that in next theorem it ist not
assumed that G ⊂ �� or G ∩ �� �= ∅.

Theorem 3.6. Let G ⊂⊂ �. Then for every �� ⊂⊂ � there exists a constant
C�� > 0, such that

(3.9) �u�Wm−1, p(��) ≤ C�� |u|m,p;� ∀u ∈ L
m,p
G (�).

Based on (3.9) and the decomposition (3.4), we readily prove that our
norms (3.2), depending on the choice of the sets G , are equivalent one to the
other. Moreover they are equivalent with Sobolev�s norm (1.7).

Theorem 3.7. Let Gi ⊂⊂ � (i = 1, 2). Then there exists a constant
K = KG1,G2

> 0 such that

||u||m,p;�,G1
≤ K ||u||m,p;�,G2

∀u ∈ Lm,p(�).
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Theorem 3.8. Let G ⊂⊂ �. Then there exist constants Ki > 0 (i = 1, 2) such
that

K1�u�m,p;�,G ≤ ||u||m,p;�,G ≤ K2�u�m,p;�,G ∀u ∈ Lm,p(�).

Besides the compatibility (3.5) of our norm (3.2) with the direct decompo-
sition (3.4) another advantage may be seen if we consider the quotient space

Lm,p(�)/P(m − 1) := {[u] : u ∈ Lm,p(�)}.

where as usual [u] := {v ∈ Lm,p(�) : u − v ∈P(m − 1)}, [u] + [v] := [u + v]
and λ[u] := [λu] for λ∈R. The norm is given by (where G ⊂⊂ � is �xed)

�[u]�m,p;�,G := inf{�v�m,p;�,G : v ∈ [u]}.

For u ∈ Lm,p(�) let Pu ∈ P(m − 1) be the (by Theorem A even unique)
polynomial so that u0 := (u − Pu)∈ L

m,p
G (�). Then [u] = [u0].

If v0 ∈ L
m,p
G (�) satis�es v0 ∈ [u0], then v0 = u0 + q with q ∈P(m − 1). Then

||q||m−1;G = ||v0 − u0||m−1;G = 0, therefore q = 0 and v0 = u0. Therefore

[u0] = {u0 + P : P ∈P(m − 1)}.

Then by (3.5)

||u0 + P ||m,p;�,G = |u0|m,p;� + ||P ||m−1;G ≥ |u0|m,p;� ∀ P ∈P(m − 1).

Then ||[u0]||m,p;�,G = |u0|m,p;�.
If u ∈ Lm,p(�), u0 ∈ L

m,p
G (�), Pu ∈ P(m − 1) and u = u0 + Pu , then, as we

have seen above, an isometric isomorphic map is de�ned by

J : Lm,p(�)/P(m − 1)→ L
m,p
G (�)

[u]→ J [u] := u0.

In case p = 2 we can de�ne an inner product on Lm,2(�). Let again G ⊂⊂ �.
We set

(3.10) < u, v >m;�:=
�

|α|=m

< Dαu, Dαv >� for u, v ∈ Lm,2(�),
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where < f, g >�:=
�

�

f (x )g(x ) dx for f, g ∈ L2(�), and

(3.11) << u, v >>m;G :=
�

|β|≤m−1

��

G

Dβudx
�
·

��

G

Dβvdx
�
.

Then by

(3.12) << u, v >>m;�,G :=< u, v >m;� + << u, v >>m;G

an inner product is de�ned on Lm,2(�). If u = u0 + Pu, v = v0 + Pv with
u0, v0 ∈ Lm,2(�) and Pu, Pv ∈P(m − 1) then

(3.13) << u, v >>m;�,G=< u0, v0 >m;� + << Pu, Pv >>m;G .

Further for u0, v0 ∈ Lm,2
G (�) we see

<< u0, v0 >>m;�,G=< u0, v0 >m;�

Clearly (3.4) holds in the sense of an orthogonal decomposition. By

|||u|||m,2;�,G := (<< u, u >>m;�,G)
1
2 for u ∈ Lm,2(�)

a norm is de�ned. Let us denote by c(n,m) the number of multi-indices
β = (β1, . . . βn) with |β| ≤ m − 1. Since

(3.14) |||u|||m,2;�,G ≤ (1+ c(n,m))||u||m,2;�,G

and by Schwarz�s inequality

(3.15) ||u||m,2;�,G ≤ (1+ c(n,m)2)
1
2 |||u|||m,2;�,G

we have equivalence of norms and hence (Lm,2(�), << ., . >>m;�,G) is a
Hilbert space. Finally, by Theorem 3.7, for any two Gi ⊂⊂ � i = 1, 2) the
corresponding inner products (3.12) are equivalent. Clearly, if G ⊂⊂ � and
� ⊆ R

n is any domain, then Lm,2
G (�) ⊂ Lm,2(�) is a closed subspace. We

regard now the case m = 1 and the functional equation (1.4) considered in the
introduction. Since for u0, �0 ∈ L1,2G (�) by (3.13)

<< u0;�0 >>1;�,G=< u0, �0 >1,�≡< ∇u0,∇�0 >�
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we see by the Riesz-representation-theorem applied to the Hilbert space

(L1,2G (�), < ∇.,∇. >�)

that for any f ∈ L2(�)n there exists a unique u0 ∈ L1,2G (�) such that

(3.16) < ∇uo,∇�o >�=< f ,∇�o >� ∀�o ∈ L1,2G (�).

If c ∈ R = P(0) ⊂ L1,2(�), then ∇c = 0 and (3.16) holds even for all
� ∈ L1,2(�). In case 1 < p < ∞ instead of (3.1), (3.2) for u ∈ Lm,p(�)
we could introduce

(3.17) |||u|||m,p;�,G :=



|u|
p
m,p;� +

�

|β|≤m−1

|

�

G

Dβu dx |p





1
p

de�ning again a norm on Lm,p(�). We see similarly to (3.14), (3.15) that the
norms de�ned by (3.2) and (3.17) are equivalent. For our purposes the choice
of (3.2) seemed to be simpler. But if we observe that in case 1 < p < ∞,
p� := p

p−1
, the right hand side of (3.10) is well de�ned for u ∈ Lm,p(�) and

v ∈ Lm,p�(�), then << u, v >>m;�;G is de�ned. Hence by Hölder�s inequality

| << u, v >>m;�,G | ≤ |||u|||m,p;�,G|||v|||m,p�;�,G

for all u ∈ Lm,p(G), v ∈ Lm,p�(G).
A further problem is the density of a suitable subspace of smooth functions. In
case of the spaces Wm,p(�) a positive answer was given by the famous �H =
W�-paper byMeyers and Serrin [9]. If we carry over carefully their proof to the
underlying situation, we see

Theorem 3.9. For a domain � ⊆ R
n,m ∈N, 1≤ p <∞, we put

Cm,p(�) := {ϕ ∈C∞(�) : Dαϕ ∈ L p(�) for |α| = m}.

Then Cm,p(�) ⊂ Lm,p(�). In addition for any G ⊂⊂ �,

Cm,p(�)

�
�|
�
�.
�
�|
�
�
m, p;�,G = Lm,p(�),

Moreover, given u ∈ Lm,p(�) and ε > 0. Then there exists ϕ ∈ Cm,p(�) such
that

(3.18) ||u − ϕ||Wm, p(�) ≤ ε.

Estimate (3.18) is a surprise, since neither u nor ϕ need to belong to
Wm,p(�). But the method of proof developed in [9] is so powerful that the
approximation ϕ of u even satis�es (u − ϕ)∈Wm,p(�) and the estimate. This
result is stronger than that of [7], Chapter 1, Section 1.1.5.
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4. Necessary and suf�cient conditions for L1, p(�) = W 1, p(�).

De�nition 4.1. Let ∅ �= � ⊂ R
n and ∂� �= ∅. We say that ∂�∈C0 if for each

x0 ∈ ∂� there exists an orthogonal matrix S̃ so that with the map S : Rn → R
n ,

Sx := S̃(x − xo) the following conditions are satis�ed:

(For α > 0 let Q �α := {y
� ∈ R

n−1 : |yi | < α, i = 1, ., n − 1}). There exist
α, β > 0 and a continuous map a : Q �α → R so that with

Mαβ : =
�
(y �, a(y �)+ t) : y � ∈ Q �α |t | < β

�

S−1(Mαβ ) ∩ ∂� = S−1
��
(y �, a(y �)) : y � ∈ Q �α

��
⊂ ∂�

S−1(Mαβ ) ∩ � = S−1
��
(y �, a(y �)+ t) : y � ∈ Q �α, 0 < t < τ

��
⊂ �

S−1(Mαβ ) ∩ (R
n\�̄) = S−1

��
(y �, a(y �)− t) : y � ∈ Q �α,−τ < t < 0

��
⊂

⊂ R
n\�̄.

Roughly speaking this condition means that after shifting the origin to x0 ∈ ∂�

and performing a suitable rotation of coordinates (S̃), the intersection of a
neighborhood of x0 with ∂� can be represented as the graph of a continuous
function. Using a suitable representation in local coordinates (compare e.g.
[11], Chap. 2, Théorème 7.6) and a standard covering argument one proves
easily

Lemma 4.2. Let � ⊂ R
n be a domain with ∂� ∈ C0 . For R > 0 let

�R := � ∩ BR (where BR := BR(0)). Suppose that �R �= ∅ and R� > R.
If u ∈ L

p
loc(�)(1 ≤ p < ∞) and ∇u ∈ L p(�R� )

n then u ∈ L p(�R) and there
exist �� = ��(R, R�, ∂�) ⊂⊂ �R� , Ci,R� = Ci (R, R�, ∂, �) > 0 (i = 1, 2),
independently of u, so that

(4.1) ||u||
p
p;�R
≤ C1,R||∇u||

p
p;�R�
+ C2,R ||u||

p
p;��

Theorem 4.3. Let � ⊂ R
n be a domain with ∂� ∈ C0 , let 1 ≤ p < ∞ and

m ∈ N. Let R > 0 with �R := � ∩ BR �= ∅. Then u |�R
∈ Wm,p(�R ) for

u ∈ Lm,p(�). If G ⊂⊂ �, then there is a constant CR = C(R, �, G, p) > 0 so
that

(4.2) ||u||Wm−1, p(�∩BR ) ≤ CR ||u||m,p;�,G ∀u ∈ Lm,p(�).
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Proof. i) We choose R� > R and for k ∈N0, 0 ≤ k ≤ m − 1, let

Rk := R + k ·
(R� − R)

m

and let �k := � ∩ BRk
. Let v ∈ Lm,p(�) and assume in addition that

Dαv ∈ L p(�Rk+1
) ∀|α| = k + 1.

Let |β| = k. Then by Lemma 4.2 we see Dβυ ∈ L p(�k ) and with a suitable
��k ⊂⊂ �k+1 , and with Ci,k > 0 we get

||Dβv||
p
p;�k
≤ C1,k ||∇Dβv||

p
p;�k+1

+ C2,k ||D
βv||

p
p;�k�

.

With a constant Ck := C(n, k) > 0 we have

�

|β|=k

||∇Dβv||
p
p;�k+1

≤ Ck |υ|
p
k+1,p;�k+1

.

Summation over |β| = k yields with D1,k := C1,k · Ck

(4.3) |υ|
p
k,p;�k

≤ D1,k |υ|
p
k+1,p;�k+1

+ C2,k |υ|
p
k,p;��

k
.

By (3.4) we write υ = υ0+ Pυ with υ0 ∈ L
m,p
G (�) and Pυ ∈P(m−1). Because

of equivalence of norms on P(m − 1) there is Kk = K (��k, k) > 0 so that

|P |k,p;��
k
≤ Kk ||P ||m−1;G ∀ P ∈P(m − 1).

By Theorem 3.6 there is Mk = Mk (�
�
k ,m, p) > 0 so that

|υ0|k,p;��
k
≤ Mk |υ0|m,p;�.

With D2,k = max(Kk, Mk)
p because of

|υ|k,p;��
k
≤ |υ0|k,p;��

k
+ |Pυ|k,p;��

k
≤

≤ Mk |υ0|m,p;� + Kk ||Pυ ||m−1;G ≤ D
1
p

2,k ||υ||m,p;�,G

we get from (4.3)

(4.4) |υ|
p
k,p;�k

≤ D1,k |υ|
p
k+1,p;�k+1

+ D2,k ||υ||m,p;�;G
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ii) We put k := m − j and we prove by induction on j = 1, . . . ,m that
Dβu ∈ L p(�m− j ) for m − j ≤ |β| ≤ m and

(4.5)

m−1�

i=m− j

|u|
p
i,p;�m− j

≤ M
p
j ||u||

p
m,p;�,G

with M
p
j > 0. For j = 1, Dβu ∈ L p(�m−1) by Lemma 4.2 and since

|u|m,p;� ≤ ||u||m,p;�,G estimate (4.5) follows with M1 = (D1,k + D2,k)
1
p . If

the assertion is true for some 1 ≤ j ≤ m − 1, then by part i) we see
Dβu ∈ L p(�m− j−1) for |β| = m − j − 1 and (4.4) holds with k = m − j − 1.
By (4.5) |u|m− j−1,p;�m− j−1

≤ Mj ||u||
p
m,p;�,G. Last estimate we put in (4.4) (with

k = m − j − 1) to derive (4.5) with j replaced by ( j + 1). For j = m we get
(4.2) with CR = Mm . �

Corollary 4.4. Let � ⊂ R
n be a bounded domain with ∂� ∈ C0 and let

G ⊂⊂ � then Lm,p(�) = Wm,p(�) for m ∈N, 1 ≤ p <∞ and there exists a
constant C = C(n,m, p, G, �) > 0 such that

(4.6) ||u0||Wm−1, p(�) ≤ C|u0|m,p;� ∀u0 ∈ L
m,p
G (�)

and

(4.7) ||u||Wm, p(�) ≤ C||u||m,p;�,G ∀u ∈ Lm,p(�).

Proof. We choose R > 0 so big that � ⊂ BR . Then (4.6) follows immediately
from (4.2) and (3.5) for u0 ∈ L

m,p
G (�). (4.7) follows from (4.2) with C =

(C
p
R + 1)

1
p . �

Estimate (4.6) is a Poincaré inequality for the whole bounded domain �.
We should compare this with (3.9). By (3.4) u ∈ Lm,p(�) may be written
u = u0 + Pu with u0 ∈ L

m,p
G (�) and Pu ∈ P(m − 1). We write 1

p�
:= p−1

p
for 1 ≤ p < ∞. By (3.1) and Hölder�s inequality (in case 1 < p < ∞) using
(2.2) we see

||Pu ||m−1,G ≤
�

|β|≤m−1

||Dβ Pu ||p,G|G|
1
p� ≤

≤ c(n,m)|G|
1
p�




�

|β|≤m−1

||Dβ Pu ||
p
p,G





1
p

≤

≤ c(n,m)|G|
1
p� C||u||Wm−1, p(G) =: K ||u||Wm−1, p(G).
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where c(n,m) denotes the number of all multi-indices β = (β1, . . . , βn) with
|β| ≤ m − 1. Then

||u||m,p;�,G = |u0|m,p;� + ||Pu||m−1,G ≡

≡ |u|m,p;� + ||Pu||m−1,G ≤ (1+ K )||u||Wm, p(G).

Together with (4.7) this proves equivalence of norms on Wm,p(�) in the case
of a bounded domain � with ∂� ∈ C0 . This result we �nd e.g. in Ne�cas [11],
Chap. 2, Théorème 7.6. Contrary to that case, for general unbounded domains
� with ∂� ∈ C0, the result of Theorem 4.3 seems to be best possible because
of P(m − 1) ⊂ Lm,p(�). Clearly the function u(x ) := 1 for x ∈ � satis�es
u ∈P(m−1) for all m ≥ 1, but u ∈Wm,p(�) if and only if |�| <∞. Therefore
Wm,p(�)⊂

�=
Lm,p(�) if |�| = ∞.

If � ⊂ R
n is a bounded domain, m ∈ N and 1 ≤ p < ∞, then it is called

e.g. by Ne�cas ([11], Chapt. 2, Sect. 7.3) a (m, p) - Nikodym-domain, if
Wm,p(�) = Lm,p(�) (due to our Theorem 3.1 we see that the spaces Vm

p (�)

de�ned in [11] satisfy V (m)
p (�) = Lm,p(�)). By the remark above, a (m, p)

- Nikodym-domain satis�es necessarily |�| < ∞. Even in case m = 1 and
p = 2 there exist bounded domains � ⊂ R

n so that W 1,2(�)⊂
�=
L1,2(�), as was

proved by Nykodym [12] (see e.g. [7], Sect 1.1.4. Similar examples had been
given later by Courant-Hilbert [3], p. 521. Compare our Appendix 1). With
respect to Corollary 4.4, those domains must have a �bad� boundary ∂�.
For our next considerations we restrict ourselves to the case m = 1 and
1 ≤ p < ∞. If � ⊂ R

n is an arbitrary domain then for u ∈ W 1,p(�) by
(compare (1.8))

(4.8) |u|1,p;� ≡ ||∇u||p;� =

�
n�

i=1

||∂i u||
p
p

� 1
p

a semi-norm is de�ned. In case |�| < ∞ the constant functions belong to
W 1,p(�). We rule them out if we choose an open ∅ �= G ⊆ � and consider

(4.9) W
1,p
G (�) :=

�

u ∈W 1,p(�) :

�

G

u(x ) dx = 0

�

.

This linear space is even well de�ned for an arbitrary domain � ⊆ R
n if

|G| <∞. Because of Theorem B by |.|1,p;� even a norm is de�ned onW
1,p
G (�).
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If |�| = ∞ and if u ∈W 1,p(�) satis�es ∇u = 0, then u(x ) = c ∈R a.e. and
because of u ∈ L p(�) we see c = 0. Therefore in case |�| = ∞ by |.|1,p;� a
norm is de�ned on W 1,p(�). In both cases we study the question whether these
normed spaces are complete or not.

Theorem 4.5. Let � ⊂ R
n be a domain, let G ⊆ � be an open set with

0 < |G| <∞ and let 1 ≤ p <∞. Then, (W
1,p
G (�), |.|1,p;�) is complete if and

only if there exists a constant C > 0 so that

(4.10) ||u||p;� ≤ C|u|1,p;� ∀u ∈W
1,p
G (�)

(Poincaré�s inequality).
Proof. a) Assume (4.10) to hold. Then

(4.11) ||u||W 1, p(�) ≤ (1+ Cp)
1
p |u|1,p;� ∀u ∈W

1,p
G (�).

If (uj ) ⊂ W
1,p
G (�) with |uj − uk |1,p;� → 0 ( j, k → ∞), then by (4.11)

and because of completeness of W 1,p(�) there exists u ∈ W 1,p(�) with ||u −
uj ||W 1, p(�)→ 0. Since |G| <∞ we see

�

G

u dx = lim
j→∞

�

G

uj dx = 0 and therefore u ∈W
1,p
G (�), |u−uj |1,p;�→ 0.

b) i) Assume that (W
1,p
G , |.|1,p;�) is complete. Let

J : W
1,p
G (�)→ L

p
G(�), Ju := u,

(where L
p
G (�) := {v ∈ L p(�) :

�

G

vdx = 0}).

Let (uj ) ⊂ W
1,p
G (�), u ∈W

1,p
G (�) so that |u − uj |1,p;�→ 0 and let υ ∈ L

p
G(�)

with ||υ−uj ||p;� ≡ ||υ− Juj ||p;� → 0. Then for ϕ ∈C∞c (�) and i = 1, . . . , n
we see �

�

υ∂iϕ = lim
j→∞

�

�

uj∂iϕ = − lim
j→∞

�

�

∂i uϕ.

Therefore υ has the weak ∂i -derivative ∂i u ∈ L p(�), i = 1, . . . , n.
ii) Since υ ∈ L

p
G (�) we get υ ∈ W

1,p
G (�). Because of |u − υ|1,p;� = 0 we

conclude υ = u and the closedness of J . By means of Banach�s closed graph
theorem the operator J is bounded and (4.10) holds with C > 0. �
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Remark 4.6. Let �, G and p be as in Theorem 4.5. Let m ∈ N and let
W

m,p
G (�) be de�ned analogously to (3.3). By means of a conclusion completely

analogous to part b) of proof of Theorem 4.5, we see directly that completeness
of (W

m,p
G (�), |.|m,p;�) is equivalent to (Cm > 0)

(4.12) ||u||Wm−1, p(�) ≤ Cm |u|m,p;� ∀u ∈W
m,p
G (�)

Clearly, if (4.10) holds, then (4.12) follows by iterated application of
(4.10). But we didn�t succeed to prove conversely that the validity of (4.12) for
some m ≥ 2 implies (4.10). Similiarly if (4.10) holds for a p with 1 ≤ p <∞,
we could not prove that it holds for other 1 ≤ s <∞ too.

Theorem 4.7. Let � ⊂ R
n be a domain and let G ⊆ � be an open set with

0 < |G| < ∞. If with a constant C > 0 the Poincaré-inequality (4.10) holds
for all u ∈ W

1,p
G (�), then for every open G � ⊆ � with 0 < |G �| < ∞ there

exists a constant CG � > 0 so that

||u||p;� ≤ CG � |u|1,p;� ∀u ∈W
1,p
G � (�).

Proof. Suppose that ∅ �= G � ⊆ � is open, |G �| < ∞ and that the Poincaré-

inequality does not apply to W
1,p
G � (�). Then there is a sequence (uk) ⊂ W

1,p
G � (�)

so that ||uk ||p;� = 1 and |uk |1,p;� → 0. Since ∅ �= G is open, there is
a ball B = B�(x0) ⊂ G (x0 ∈ G , � > 0) and 0 ≤ ϕ ∈ C∞c (B) with
A :=
�

B

ϕ(y)dy > 0. We set ck :=
1
A

�

G

ukdy and υk := uk − ckϕ . Then

�

G

υkdy =

�

G

ukdy − ck

�

G

ϕdy =

�

G

ukdy − ck A = 0.

Therefore υk ∈W
1,p
G (�). Further,

|ck | ≤ A−1|G|
1
p� ||uk ||p;G ≤ A−1|G|

1
p� .

Then there exists a subsequence (again denoted by ck ) and c ∈ R such that
c = lim

k→∞
ck . Further

|υk − υj |1,p;� = |uk − uj + (ck − cj )ϕ|1,p;� ≤

≤ |uk − uj |1,p;� + |ck − cj | |ϕ|1,p;�→ 0
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as k, j → ∞. By completeness of W
1,p
G (�) (Theorem 4.5) there exists υ ∈

W
1,p
G (�) with |υ − υk |1,p;�→ 0. Because of (4.10) we see ||υ − υk ||p;� → 0.

We set u := υ + cϕ . Then u ∈W 1,p(�) and

||u − uk ||p,� ≤ ||υ − υk ||p;� + |c − ck |||ϕ||p;�→ 0 (k→∞).

Then ||u||p;� = lim
k→∞
||uk ||p;� = 1. Further,

�

G �
udx = lim

k→∞

�

G �
ukdx = 0,

therefore u ∈W
1,p
G � (�). If ϕ ∈C∞c (�) then for i = 1, . . . , n
�

�

u∂iϕ = lim
k→∞

�

�

uk∂iϕ = − lim
k→∞

�

�

∂i ukϕ = 0

Therefore ∇u = 0 a. e., u ∈ W
1,p
G � (�) and so u = 0 a. e., contradicting

||u||p,� = 1. �

A �rst application of last theorem is the proof of

Lemma 4.8. Let � ⊂ R
n be a domain, let ∅ �= G ⊆ � be an open set with

|G| <∞ and assume that (4.10) holds for some 1 ≤ p <∞. Then |�| <∞.

Proof. i) For α ∈ R and x �= 0 we consider ϕ(x ) := eα|x| . Then ϕ ∈

C∞(Rn\{0}) and

(4.13) |∂iϕ(x )| ≤ |α|e
α|x|, i = 1, . . . , n.

ii) Because of Theorem 4.7 without any restriction we may assume ∅ �= G ⊂⊂
�. We choose G � ⊂⊂ � so that G ⊂⊂ G � ⊂⊂ �, and η ∈ C∞(Rn) with the
properties η |�\G �= 1 and η |G= 0. Then supp|∇η| ⊂ G �.

iii) Let now α < 0 and assume without loss of generality that 0 ∈ G . We
set u(x ) := η(x )eα|x| for x ∈ R

n . Then u ∈ C∞(Rn), u ∈ L p(Rn) and
∇u ∈ L p(Rn)n . Therefore the restriction of u to� (again denoted by u) satis�es

u ∈W
1,p
G (�). By (4.10), (4.13)

||ηeα|.|||p;� ≤ C|α|||ηeα|.|||p;� + C||eα|.|∇η||p;� ≤

≤ C|α|||ηeα|.|||p;� + C||∇η||∞;Rn ||eα|.|||p;G �

since supp|∇η| ⊂ G �. We choose α < 0 with |α| < 1
2C
. Then we see

||ηeα|.|||p;� ≤
C

1− C|α|
||∇η||∞;Rn |G �|

1
p

If we pass to the limit α→ 0 wee see by Levi�s theorem (or by Fatou�s lemma)

||η||p;� ≤ C||∇η||∞;Rn |G �|
1
p <∞. Since ||η||p;� ≥ ||η||p;�\G � = |�\G

�|
1
p we

�nally derive

|�| = |�\G �| + |G �| ≤ (Cp ||∇η||
p
∞;Rn + 1)|G

�| <∞. �

From the proofs of Theorem 4.4 and Lemma 4.7 we easily deduce



SOBOLEV�S ORIGINAL DEFINITION OF. . . 167

Theorem 4.9. Let � ⊂ R
n be a domain with |�| = ∞. Then (W 1,p(�),

|.|1,p;�) is a normed linear space for 1 ≤ p < ∞, but it is not complete.
Furthermore, there is no constant c > 0 so that estimate (4.10) holds for all
u ∈W 1,p(�).

Proof. As we mentioned above, |.|1,p;� is a norm on W 1,p(�) if |�| = ∞.
Suppose now that (W 1,p(�), |.|1,p;�) would be complete. We proceed as in part

b. i) of the proof of Theorem 4.5 (replacing W
1,p
G (�) by W 1,p(�) and L

p
G(�)

by L p(�)). Then we �nd υ ∈W 1,p(�) with |∇υ −∇u|1,p;� = 0 and therefore
υ = u. Again by the closed graph theorem with a constant C > 0 estimate
(4.10) would hold for all u ∈W 1,p(�). With literally the same arguments used
in the proof of Lemma 4.8 we would see |�| <∞. �

Theorem 4.10. Let � ⊂ R
n be a domain, let ∅ �= G ⊆ � be an open set

with |G| < ∞ and let 1 ≤ p < ∞. If (W
1,p
G (�), |.|1,p;�) is complete (or

equivalently, if (4.10) holds), then there exists β0 > 0 so that eβ0|.| ∈ L p(�) and
in addition there is D > 0 so that

(4.14) |� ∩ (Rn\BR)| ≤ D · e−pβ0R for R ≥ R0.

Proof. Because of Theorem 4.7 we may assume G ⊂⊂ �. Like in part ii) of
proof of Lemma 4.8 we choose G � with G ⊂⊂ G � ⊂⊂ � and η∈C∞(Rn). For
r > 0 and β > 0 we set

�
eβ|x|
�
r
:=

�
eβ|x| for |x | ≤ r

eβr for |x | > r

and ur := η · (eβ|.|)r . By Lemma 4.8 we know |�| < ∞ and therefore
ur ∈ L p(�) for 1 ≤ p < ∞. As is readily seen, ur has weak derivatives
∂i ur ∈ L p(�) (i = 1, . . . , n) given by

(4.15) ∂i ur (x ) = (∂iη)(x )(e
β|x|)r + η(x )

�
βeβ|x| xi

|x|
if |x | ≤ r

0 else

Then ur ∈W
1,p
G (�). Let dβ := ||∇η||∞ sup

�
eβ|x| : x ∈G �

�
.

Since supp|∇η| ⊂ G � we see ||∇η(eβ|.|)r ||p,� ≤ dβ |G
�|
1
p . Then, by (4.10),

(4.15) we get

||η(eβ|.|)r ||p,� ≤ Cβ||ηeβ|.|||p,�∩Br
+ Cdβ |G

�|
1
p .
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Clearly,
||ηeβ|.|||p,�∩Br

≤ ||η(eβ|.|)r ||p,�.

We choose β = β0 :=
1
2C
. Then

||η(eβ0|.|)r ||p,� ≤ 2Cdβ0 |G
�|
1
p for all r > 0.

By Levi�s theorem we may pass to the limit r →∞ to see ηeβ0|.| ∈ L p(�) and
therefore eβ0|.| ∈ L p(�). Then

Dp := ||eβ0|.|||
p
p,� ≥

�

�∩(Rn\BR )

epβ0|x| dx ≥ epβ0R|� ∩ (Rn\BR)|. �

Remark 4.11. The result of Theorem 4.10 is best possible in the sense that �
needs not to be bounded. Let α > 0 and consider (n ≥ 2)

� :=
�
(x �, xn)∈R

n : |x �| < e−αxn , 1 < xn <∞
�
.

It is easy to see that � supports the Poincaré-estimate (4.10) for 1 ≤ p < ∞

and that (4.14) holds: If G ⊂⊂ � and u ∈ W
1,p
G (�) one has only to write

u(x �, xn) = u0(x
�, xn)+ h(xn) where

h(xn) :=
1

|B �xn |

�

B�xn

u(y �, xn)dy
�

(where B �xn := {y
� ∈ R

n−1 : |y �| < e−αxn }) and u0 := u − h. For every
xn u0 has vanishing mean value over the cross-section B �xn . Since for any �xed
1 < xn < ∞ the (n − 1) dimensional Poincaré inequality holds, the desired
estimate for u0 follows by means of Fubini�s theorem. For h one has to apply a
Hardy-typed estimate. �

Theorem 4.12. Let � ⊂ R
n be a domain, let ∅ �= G ⊂⊂ � and let

1 ≤ p < ∞. Suppose that the Poincaré inequality (4.10) holds with some
C > 0 for all u ∈W

1,p
G (�). Then L

1,p
G (�) = W

1,p
G (�).

Proof. Clearly, W
1,p
G (�) ⊆ L

1,p
G (�) and it remains to prove the converse

inclusion. For k ∈N let �k : R→ R,

�k (x ) :=






t for |t | ≤ k

k
t

|t |
for |t | > k.
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Then �k is Lipschitz and even �k ∈ C∞(R\{−k, k}). By Lemma 4.8 we

know |�| < ∞. If u ∈ L
1,p
G (�), then �k(u) := �k ◦ u is measurable,

�k(u) ∈ L∞(�) and therefore �k(u) ∈ L p(�). Since for any �� ⊂⊂ � we
have u |�� ∈W 1,p(��), by the chain rule for the spaces W 1,p(��) (see e.g. [4],
Section 7.4) we see �k (u) |�� ∈W 1,p(��) and for x ∈��

(4.16)
(∂i�k(u)) (x ) =a.e.

�
∂i u(x ) for |u(x )| ≤ k

0 for |u(x )| > k

i = 1, . . . , n.

The functions at the right hand side belong (for every k ∈ N) even to L p(�).
Since �� ⊂⊂ � was arbitrary we �nally see �k(u) ∈ W 1,p(�). We see
|�k(u)| ≤ |u| and �k(u) → u ∈�. Since u |�� ∈ L p(��) for each �� ⊂⊂ �

we see

(4.17) ||u −�k (u)||p;�� → 0 (k→∞)

Let ck := |G|−1
�

G

�k(u)dy . Then from (4.17) with �� = G we derive

ck → |G|
−1
�

G

udy = 0. Now (�k(u) − ck )∈W
1,p
G (�) and by (4.10), (4.16)

|| (�k(u)− ck)−
�
�j (u)− cj

�
||p;� ≤ C|�k (u)−�j (u)|1,p;�→ 0 as k, j → 0

Then

||�k(u)−�j (u)||p;� ≤ || (�k(u) − ck)−
�
�j (u) − cj

�
||p;�+|ck−cj ||�|

1
p → 0.

Then there is υ ∈ L p(�) so that ||υ − �k(u)||p;� → 0. On the other hand,
by (4.17) u |��= υ |�� a.e. in �� ⊂⊂ �. If we use a sequence (�j ) with

�j ⊂⊂ �j+1 ⊂⊂ � for all j ∈N,
∞�

j=1

�j = � then we get �nally u = υ a. e.

in � and therefore u ∈ L p(�). Then u ∈W
1,p
G (�). �

Theorem 4.13. Let � ⊂ R
n be a domain. Then the following statements are

equivalent
1. L1,p(�) = W 1,p(�) (as vector spaces) (⇒ |�| <∞).

2. L
1,p
G (�) = W

1,p
G (�) for all ∅ �= G ⊂⊂ �.

3.
�
W
1,p
G (�), |.|1,p;�

�
is complete for all ∅ �= G ⊂⊂ �.

4. The Poincaré-estimate (4.10) holds for all u ∈ W
1,p
G (�) and for all ∅ �=

G ⊆ �.

5. For every ∅ �= G ⊂⊂ � the norms ||.||W 1, p(�) and ||.||1,p;�,G are equivalent
on W 1,p(�).
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Proof. 1. ⇒ 2. u(x ) := 1 for x ∈ �, u ∈ L1,p(�) = W 1,p(�), therefore
u ∈ L p(�) and necessarily |�| < ∞. If u ∈ L

1,p
G (�) ⊂ L1,p(�) = W 1,p(�),

then clearly u ∈W
1,p
G (�). Because trivially W

1,p
G (�) ⊂ L

1,p
G (�) 2. follows.

2. ⇒ 3. If (uk ) ⊂ W
1,p
G (�) with |uk − uj |1,p;� → 0 (as k, j → ∞), then

by completeness of L
1,p
G (�) with respect to |.|1,p;�-norm (Theorem 3.4), there

exists u ∈ L
1,p
G (�) = W

1,p
G (�) with |u − uk |1,p;�→ 0.

3.⇒ 4. Theorem 4.5.

4. ⇒ 1. By Theorem 4.12 L
1,p
G (�) = W

1,p
G (�). Further by Lemma 4.8

|�| <∞. Then P(0) = R ⊂ W 1,p(�). Because of (3.4)

L1,p(�) = L
1,p
G (�)⊕ R = W

1,p
G (�)⊕R = W 1,p(�).

4.⇒ 5. By Hölder�s inequality and (3.2) for u ∈W 1,p(�)

||u||1,p;�,G = |u|1,p;� + ||u||o;G ≤(4.18)

≤ |u|1,p;� + ||u||p,G |G|
1
p� ≤

≤ (1+ |G|)
1
p� ||u||W 1, p(�).

By (3.4) we write u = u0 + c, u0 ∈W
1,p
G (�), c ∈R. Then by (4.10)

||u||W 1, p(�) ≤ ||u0||W 1, p(�) + ||c||W 1, p(�) ≤

≤ (Cp + 1)
1
p ||u0||1,p;� + |c||�|

1
p

≤ (Cp + 1)
1
p ||u0||1,p;� + |G|

−1|�|
1
p |

�

G

udx |

≤ max
�
(Cp + 1)

1
p , |G|−1|�|

1
p

�
||u||1,p;�,G.

5.⇒ 4. Let with a constant D > 0

||u||
p
W 1, p(�)

= ||u||
p
p;� + |u|

p
1,p;� ≤ Dp

�
|u|1,p;� + ||u||0;G

�p

for all u ∈ W 1,p(�) (see (3.1), (3.2)). If u0 ∈ W
1,p
G (�), u0 �= 0, then we see

D > 1 and
||u0||p,� ≤ (D

p − 1)
1
p |u0|1,p;�

for all u0 ∈W
1,p
G (�).
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Remark 4.14. a) Once we know that either 1. or 2. hold, then because of
|�| <∞ we may allow in 2. � 5. even ∅ �= G ⊆ �.

b) Suppose that � ⊂ R
n is a domain, that 1 ≤ p <∞, ∅ �= G ⊂⊂ � and

that L
1,p
G (�) = W

1,p
G (�) holds, then from (4.10) by iterated application we see

(4.12) for u ∈W
m,p
G (�) (m ∈N arbitrary). If m ≥ 2 and u ∈W

m,p
G (�), then for

|β| = m − 1 we see Dβu ∈ L
1,p
G (�) = W

1,p
G (�) and therefore Dβu ∈ L p(�).

Iterating this argument, we see �nally u ∈ W
m,p
G (�). By Theorem 4.10 there

is β0 > 0 so that eβ0|.| ∈ L p(�). If P ∈ P(m − 1) then there is constant
KP = K (P, β)> 0 so that

|P(x )| ≤ KPe
β0|x| for x ∈�.

Then we see Dβ P ∈ L p(�) for |β| ≤ m and for all P ∈P(m − 1). Therefore
P(m − 1) ⊂ Wm,p(G). Then, Lm,p(G) = Wm,p(G). This proves the inclusion
�L1,p(�) = W 1,p(�)⇒ Lm,p(�) = Wm,p(�) ∀m ∈N�. �

Appendix 1: Example of a bounded domain � ⊂ R
2 with W 1, p(�)⊂

�=

L1, p(�).

For k ∈N0 = N ∪ {0} let ak :=
k�

j=0

2− j . Then ak − ak−1 = 2
−k for k ∈N.

If 1 ≤ p <∞ let

Q0 :=
�
(x1, x2)∈R

2 : |xi | < 1, i = 1, 2
�

H
(p)
k :=

�
(x1, x2)∈R

2 : a2k ≤ x1 ≤ a2k+1, |x2| < 2−3pk
�

for k ∈N0

Qk :=
�
(x1, x2)∈R

2 : a2k−1 < x1 < a2k, |x2| < 1
�

for k ∈N.

Let

M
(p)
+ := H

(p)
0 ∪

∞�

k=1

(Qk ∪ H
(p)
k )

M
(p)
− := {(x1, x2)∈R

2 : (−x1, x2)∈ M
(p)
+ }.

Then �(p) := Q0 ∪ M
(p)
+ ∪ M

(p)
− is a domain with �(p) ⊂ {x ∈ R

2 : |x1| <
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2, |x2| < 1}. Let f : �→ R be de�ned by

f (x ) :=






0 in Q0

2
2
p+1(x1 − a0) for x ∈ H

(p)
0

2
2
p ·k for x ∈ Qk, k ∈N

(2
2
p − 1)22k+1+

2
p
·k (x1 − a2k)+ 2

2
p
·k for x ∈ H

(p)
k , k ∈N

− f (−x1, x2) for x ∈ M
(p)
− .

For n ∈N we set
�n := � ∩ {x ∈R

2 : |x1| < a2n}.

Then we de�ne

fn (x ) :=

�
f (x ) for x ∈�n

2
2
p ·k sgn f (x ) for x ∈�\�n.

Then fn , f : �(p) → R are continuous, fn → f (n→∞) pointwise. It is easy
to see that f is even piecewise continuously differentiable with respect to x1,
therefore weakly differentiable, and that ∂2 f (x ) = 0 for all x ∈�. Further

∂1 f (x1, x2) =






0 in Q0

2
2
p
+1 in H

(p)
0

0 in Qk

(2
2
p − 1)22k+1+

2
p
·k in H

(p)
k

For n ∈N we see

�

�

| fn (x )|
p dx ≥ 2

n�

k=1

22k |Qk| = 2

n�

k=1

22k−2k+1 = 4n →∞ (n→∞)

�

�

|∂1 fn (x )|
pdx ≤ 2 · 22+p|H

(p)
0 | + 2 · (2

2
p − 1)p

∞�

k=1

2p(2k+1)+2k|H
(p)
k |

≤ 23+p + 2p+1(2
2
p − 1)p

∞�

k=1

2−2pk <∞ for all n ∈N.
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Since | fn (x )| ≤ | f (x )| and || fn ||p;� → ∞ we see f /∈ L p(�), but clearly
f ∈ L1loc(�). Therefore f ∈ L1,p(�) and fn ∈ W 1,p(�) for all n ∈ N. If

we choose any open G ⊂⊂ Q0 then we even have fn ∈ W
1,p
G (�) for all

n ∈ N. But a Poincaré-type inequality cannot hold true for � and W
1,p
G (�)

since || fn ||p;� → ∞ but ||∇ fn ||p;� ≤ C < ∞ for all n ∈N. In addition, the
embedding J : W 1,p(�) → L p(�) cannot be compact, because otherwise a

Poincaré-type estimate (4.10) has to hold for W
1,p
G (�).

Appendix 2: A simple proof of Poincaré�s inequality in a cube.

Theorem. For a > 0 let Ia :=]− a, a[. Let 1 ≤ p <∞ and 1
p�
:= p−1

p
. Then

for n ∈N

(A.1) ||u||p;I na ≤ an
1
p� ||∇u||p;I na

holds for all u ∈ W 1,p(I na ) with
�

I na

u(x ) dx = 0. (Here, ||∇u||p;I na :=

(
n�

i=1

||∂i u||
p
p;I na
)
1
p )

Proof. (A) i) Let n = 1 and let u ∈ C1( Īa) satisfy
�

Ia

u(x ) dx = 0. Then for

x , y ∈ Īa we see u(y)− u(x ) =
y�

x

u�(t)dt .

ii) Therefore

(A.2) 2au(y)−

�

Ia

u(x ) dx =

a�

−a





y�

x

u�(t)dt



 dx .

Then

2au(y) =

a�

−a





y�

x

u�(t)dt



 dx −

a�

y





x�

y

u�(t)dt



 dx

and

2a|u(y)| ≤

y�

−a





y�

x

|u�(t)|dt



 dx +

a�

y





x�

y

|u�(t)|dt



 dx .
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After a partial integration we see

(A.3) 2a|u(y)| ≤

y�

−a

(a + x )|u�(x ) | dx +

a�

y

(a − x )|u�(x )| dx .

For a > 0 �xed we set �(x , y) := a + x · sgn (y − x ). Then

(A.4) �(x , y) ≥ a − |x | ≥ 0 for x , y ∈ Īa

and (A.3) may be rewritten as

(A.5) 2a|u(y)| ≤

+a�

−a

�(x , y)|u�(x )| dx .

We observe

(A.6)

+a�

−a

�(x , y)dy = 2(a2 − x 2) ≤ 2a2 for x ∈ Īa

(A.7)

+a�

−a

�(x , y) dx = a2 + y2 ≤ 2a2 for y ∈ Īa.

Integrating (A.5) with respect to y yields after interchanging the order of
integration because of (A.6)

2a

+a�

−a

|u(y)|dy ≤

+a�

−a

|u�(x )|





+a�

−a

�(x , y)dy



 dx ≤ 2a2
+a�

−a

|u�(x )| dx

and therefore (A.1). In case of 1 < p <∞ we see because of (A.4), (A.6,7) by
means of Hölder�s inequality

2a|u(y)| ≤

+a�

−a

�(x , y)
1
p��(x; y)

1
p |u�(x )| dx ≤

≤ (2a2)
1
p�





+a�

−a

�(x , y)|u�(x )|p dx





1
p
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and

(2a)p
+a�

−a

|u(y)|pdy ≤ (2a2)
p

p�

+a�

−a

|u�(x )|p





+a�

−a

�(x , y)dy



 dx

≤ (2a2)p
a�

−a

|u�(x )|p dx .

But this is (A.1) for n = 1, 1 < p <∞.

(B) Suppose now that n ≥ 1 and (A.1) holds true for all u ∈ C1( Ī na ) with�

I na

u(x ) dx = 0. Let υ ∈ C1( Ī n+1a ) and let x ∈ Ī na , t ∈ Īa and y := (x , t)∈ Ī n+1a .

Let

(A.8) h(t) := |I na |
−1

�

I na

υ(z, t)dz for t ∈ Īa

and let u(x , t) := υ(x , t) − h(t) for (x , t) ∈ Ī n+1a . For �xed t ∈ Īa we see
u(., t)∈C1( Ī na ) and

�

I na

u(x , t) dx = 0. By induction hypothesis for t ∈ Īa

�

I na

|u(x; t)|p dx ≤ a pn p−1

�

I na

|∇xu(x , t)|p dx .

Integrating with respect to t ∈ Īa yields

(A.9) ||u||p;I n+1a
≤ an

1
p� ||∇xu||p;I n+1a

= an
1
p� ||∇xυ||p;I n+1a

.

Further

(A.10) ||u||p;I n+1a
≥ ||υ||p;I n+1a

− ||h||p;I n+1a
.

Since υ ∈C1( Ī n+1a ) we see

h�(t) = |I na |
−1

�

I na

∂tυ(z, t)dz
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and therefore (in case 1 < p <∞ by Hölder�s inequality)

(A.11) |h�(t)| ≤ |I na |
−1+ 1

p� ||∂tυ(., t)||p;I na .

By means of (A.1) for n = 1 we see with the help of (A.11)

||h||
p

p;I n+1a
=

�

I na




�

Ia

|h(t)|pdt



 dx ≤ |I na |a
p

�

Ia

|h�(t)|pdt ≤

≤ |I na |a
p|I na |

−p+
p

p�

�

Ia






�

I na

|∂tυ(z, t)|
pdz




 dt .

If we combine last estimate with (A.9), (A.10) we derive

||υ||p;I n+1a
≤ an

1
p� ||∇xυ||p;I n+1a

+ a||∂tυ||υ;I n+1a
.

In case p = 1 (that is 1
p�
= 0) we see (A.1) for (n + 1). In case 1 < p <∞ we

apply Hölder�s inequality (for vectors) to get

||υ||p;I n+1a
≤ a

�

n
p�

p� + 1

� 1
p�

�
n�

i=1

||∂iυ||
p

p,I n+1a
+ ||∂tυ||

p

p,I n+1a

� 1
p

≤ a(n + 1)
1
p� ||∇n+1υ||p;I n+1a

.

This is (A.1) for n + 1 and smooth functions.

(C) If u ∈ W 1,p(I na ) with
�

I na

u(x ) dx = 0, then we choose 0 < a� < a and for

0 < ρ < a − a� we regard the molli�ed function uρ (using a standard molli�er
kernel). Then uρ |I n

a�
∈ C∞( Ī na� ) and for x ∈ Ī na� we see ∂i [uρ (x )] = (∂i u)ρ(x ),

i = 1, . . . , n. Therefore

||u − uρ ||p;I n
a�
→ 0, ||∇u −∇uρ ||p;I n

a�
→ 0(ρ → 0).

Let ca� := |I
n
a� |
−1
�

I n
a�

u(y) dy and

ca�,ρ := |I
n
a� |
−1

�

I n
a�

uρ(y) dy, then ca�,ρ → ca� (ρ → 0).
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We apply (A.1) to (uρ − ca�,ρ )| Ī n
a�
(0 < ρ < a − a�). After passing to the limit

ρ → 0 we see

||u − ca� ||p;I n
a�
≤ a�n

1
p� ||∇u||p;I n

a�
.

For a� → a we get ca� → 0 and bymeans of Lebesgue�s theorem in last estimate
we may pass to the limit a� → a to get (A.1) for u. �

Remark. Part.A. ii) of proof could be replaced by a much shorter argument,
but for the price of a bigger constant. From (A.2) it follows

2a|u(y)| ≤

a�

−a





a�

−a

|u�(t)|dt



 dx = 2a

+a�

−a

|u�(t)|dt .

This gives for 1 ≤ p ≤ ∞ and n = 1

||u||p;Ia ≤ 2a||u
�||p;Ia

and �nally

||u||p;I na ≤ 2an
1
p� ||∇u||p;I na .

But that constant is twice the constant from (A.1)! �
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