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ON TAIL ASYMPTOTICS FOR L1-NORM

OF CENTERED BROWNIAN BRIDGE

OLGA A. PODKORYTOVA

Asymptotics of the tail probability for L1-norm of the centered Brown-
ian bridge is obtained.

1. Introduction.

Let us consider the Gaussian process de�ned as follows:

(1) ξ(t) = B(t) −

� 1

0

B(s) ds, t ∈ [0, 1],

where B is the standard Brownian bridge on [0, 1]. In this paper we obtain
the rough asymptotics of the tail probability of the L1-norm of the process
ξ . Distributions of different norms of Gaussian processes were investigated
by many authors. Such results are very useful, in particular, in creating new
nonparametric tests and exploring their limiting distributions, see Shorack and
Wellner [9]. The tail probabilities of these distributions play the key role in
calculating the Bahadur asymptotic ef�ciency of statistical tests. Details may
be found in Bahadur [1] and Nikitin [6]. To exemplify let us refer to the
papers closely connected to our subject, namely by Shepp [8] and Cifarelli [2]
in which the distribution of of the L1-norm of B was described, by Darling
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[3] who investigated the distribution of the L∞-norm of ξ and by Watson [10],
the distribution of the L2-norm of ξ being discussed in it. One can also recall
the paper by Kallianpur and Oodaira [5] that contains calculations of the tail
probability asymptotics of L p -norm of standard Wiener process and Brownian
bridge for each p > 0.

2. Asymptotics of the tail probability.

Consider the process ξ de�ned by (1). Obviously, Eξ(t) = 0 for each
t ∈ [0, 1]. Let K (t, s) be the covariance function of ξ :

K (t, s) = E(ξ(t)ξ(s)).

One can easily see that

(2) K (t, s) =
1

2

�

(t − s)2 − |t − s| +
1

6

�

.

Let us denote the norm of ξ in the Lebesgue space L1 as

||ξ ||1 : ||ξ ||1 =

� 1

0

|ξ(s)| ds.

Proving our main result we will use the general theorem of Donsker and
Varadhan (see, for example, Deuschel and Stroock [4], p. 86).

Theorem 1 (Donsker, Varadhan). Let P be a centered Gaussian measure on a
separable Banach space X with norm || · ||X ; X

∗ is the dual space of X . Let us
de�ne the covariance operator K as

(3) (Kx∗, y∗) =

�

X

(x , x∗)(x , y∗) dP(x),

where x∗, y∗ ∈ X ∗; ||K|| being its norm. Then

lim
r→∞

1

r2
ln P(x : ||x ||X > r) = −

1

2||K||
.

Theorem 2. Let ξ be de�ned by (1). Then

lim
r→∞

1

r2
ln P(||ξ ||1 > r) = −24.
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Proof. It is well known that the dual space of L1 is L∞ . It is easy to see that the
operatorK de�ned by (3), in our case proves to be an integral operator mapping
L∞ into L1

(K f )(t) =

� 1

0

K (t, s) f (s) ds, f ∈ L∞,

where K is given by (2). In view of the Theorem 1, all that we have to do is
to show that ||K|| = 1

48
. The kernel K depends on the difference t − s only,

i.e. K (t, s) = H (t − s), where H (u) = 1
2
(u2 − |u| + 1

6
), so it is natural to

consider 1-periodic extension of the functions f and H . We will denote them

f and H as we did before. Obviously H ∈ C(R) and
� 1
0
H (u) du = 0. Hence

� 1
0 H (t − s) dt = 0 for each s ∈ R and therefore

y(t) = (K f )(t) =

� 1

0

K (t, s) f (s) ds =

� 1

0

H (t − s) f (s) ds

is a 1-periodic function having the zero mean value:

� 1

0

y(t) dt =

� 1

0

�� 1

0

H (t − s) dt

�

f (s) ds = 0.

By applying to the function y theorem about integral with parameter (see
for example [7], Theorem 115) we obtain that y is a smooth function and for
t ∈ [0, 1] its derivative is

y �(t) =
1

2

� 1

0

(2(t − s) − sign(t − s)) f (s) ds =

= t

� 1

0

f (s) ds −

� 1

0

s f (s) ds +
1

2

� 1

t

f (s) ds −
1

2

� t

0

f (s) ds.

Therefore y � is absolutely continuous so y �� exists almost everywhere and

y ��(t) =

� 1

0

f (s) ds − f (t).

As ||K|| = sup
� � 1

0 |y(t)| dt : | f (s)| ≤ 1 a.e.
�
, we need to �nd the

upper bound of the integral
� 1
0

|y(t)| dt . Its value will not change if we consider
f (s−τ) instead of f (s). This leads to replacement of function y(t) by y(t−τ),
and for every τ ∈ R

� 1

0

|y(t)| dt =

� 1

0

|y(t − τ)| dt .
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For further considerations it is convenient to let τ be equal to a root of y
(there exists at least one root because of continuity and the zero mean value
of y). Thus, without loss of generality we can assume that y(0) = 0 (and
hence y(1) = 0). Let us de�ne E+ = {t ∈ [0, 1] : y(t) > 0} and
E− = {t ∈ [0, 1] : y(t) < 0}. These sets are open for y is continuous and
y(1) = y(0) = 0 (the last condition implies E± ⊂ (0, 1)). The statement
� 1
0 y(t) dt = 0 is equivalent to

�

E+

y(t) dt =

�

E−

(−y(t)) dt,

thus � 1

0

|y(t)| dt = 2

�

E+

y(t) dt = 2

�

E−

(−y(t)) dt .

The set E+ may be decomposed as E+ = ∪k(ak, bk), where y(ak) =

y(bk) = 0. For the sake of concision let us denote γk = bk − ak and
yk(t) = y(t + ak). Using the equalities yk(0) = yk(γk) = 0 we get

� bk

ak

y(t) dt =

� γk

0

yk(t) d
�
t −

γk

2

�
= −

� γk

0

�
t −

γk

2

�
y �
k(t) dt =

= −
1

2

� γk

0

y �
k(t) d(t2 − γk t) =

1

2

� γk

0

y ��
k (t)(t

2 − γkt) dt .

To estimate the integral appeared, let us denote c0 =
� 1
0 f (t) dt and remark

that | f (t)| ≤ 1 implies |c0| ≤ 1 and |y ��(t) − c0| = | f (t)| ≤ 1 for almost every
t .

Thus
−y ��

k (t) = −y ��(t + ak) ≤ 1− c0

and
� bk

ak

y(t) dt =
1

2

� γk

0

(−y ��
k (t))t (γk − t) dt ≤

≤
1− c0

2

� γk

0

t (γk − t) dt =
1− c0

12
γk
3.

Therefore,
� 1

0

|y(t)| dt = 2

�

E+

y(t) dt ≤
1− c0

6

�

k

γk
3 ≤

≤
1− c0

6
(
�

k

γk)
3 =

1− c0

6
(mes E+)3.
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The proof of inequality
� 1

0

|y(t)| dt = 2

�

E−

(−y(t)) dt ≤
1+ c0

6
(mes E−)3

is similar to the previous one.
Consequently we have

� 1

0

|y(t)| dt ≤
1

6
min ((1− c0)(mes E+)3, (1+ c0)(mes E−)3) ≤

≤
1

6

�
(1− c0)(mes E+)3(1+ c0)(mes E−)3 ≤

≤

�
1− c20

6
(mes E+(1−mes E+))

3
2 .

Obviously, 0 ≤ mes E+ ≤ 1, hence mes E+(1 − mes E+) ≤ 1
4
. Conse-

quently,
� 1

0

|y(t)| dt ≤

�
1− c20

48
≤
1

48
.

To show that this bound is accurate, note that each inequality becomes an
equality if and only if






mes E+ = mes E− = 1
2

c0 = 0

|y ��(t)| = 1, a.e.
�

k γk
3 = (

�
k γk)

3.

The last condition is equivalent to the following: γk = 0 for each k except
possibly one, i.e. the set E+ consists of the only interval of the length 1

2
.

Similarly, E− should be an interval of the length
1
2
. It is easy to see that there

are only two smooth functions y+ and y−, such that y±(0) = 0, satisfying this
requirement:

y±(t) = ±






t

2
(
1

2
− t), t ∈

�
0,
1

2

�

1− t

2
(
1

2
− t), t ∈

�1

2
, 1

�
.

These functions correspond to f (t) = ± sign ( 1
2

− t), t ∈ [0, 1], because

f±(t) =

� 1

0

f (s) ds − y ��
±(t) = c0 − y ��

±(t) = −y ��
±(t) = ± sign

�

t −
1

2

�

.

�
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Remark. We have also proved that the extremal functions f0 (| f0(s)| ≤ 1
a.e.), i.e. ||K f0||1 = 1

48
, will remain extremal under the shift transformation

f0(s) −→ f0(s − τ). Provided additionally 0 = y(0) = (K f )(0), we
necessarily have f0(s) = ± sign ( 1

2
− s), s ∈ [0, 1]. So we may conclude

that all the extremal functions can be obtained by a shift of ± sign ( 1
2

− {s})
({x}=fractional part of x). It is obvious that each of these two functions is
the shift of the other, when τ = 1

2
. Therefore the conditions ||K f ||1 =

1
48

, | f (s)| ≤ 1 for a.e. t are equivalent to existence of τ ∈ R such that

f0(s) = sign ( 1
2

− {s − τ }) a.e.

This remark can be usefull in searching for test statistics with the property
of local asymptotic optimality in the Bahadur sense, see Bahadur [1] and Nikitin
[6].
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