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SEQUENTIAL ORDERS OF ADJUNCTION SPACES

JI-CHENG HOU

Let X , Y be two disjoint spaces, M be a closed subset of X , and
f : M −→ Y be a continuous map. In the direct sum X ⊕ Y of X
and Y , de�ne an equivalence relation ∼ by a ∼ f (a) for each a ∈ M .
The quotient space X ⊕ Y/ ∼, is denoted by X ∪ f Y , usually called the
adjunction space determined by X , Y and f . In this paper we prove that
for two sequential spaces X and Y , so(X ∪ f Y ) ≤ so(X) + so(Y ) and, if
so(X∪ f Y ) > max{so(X), so(Y )} and so(X) ≤ ω, then there exists a special
map p : S2 �→ X ∪ f Y , where so(X) denotes the sequential order of X and
S2 is the Arens� space. We also give an answer for a question of Kannan [4].

1. Introduction.

In [1], Arhangel�skii and Franklin constructed sequential spaces of its
sequential order α for any 0 ≤ α ≤ ω1. It was done by attaching a sequential
space to a sequential space by a continuous map. In Section 2, we give the
relations between sequential orders of attaching space and original spaces. In
Section 4, we answer a question of Kannan in [4].

De�nition. Let X , Y be two disjoint spaces, M be a closed subset of X , and
f : M −→ Y be a continuous map. In the direct sum X ⊕ Y of X and Y ,
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de�ne an equivalence relation ∼ as follows: if f (a) = f (b) then a, b, f (b) are
equivalent. The quotient space X ⊕ Y/ ∼, is denoted by X ∪ f Y , usually called
the adjunction space determined by X , Y and f . If a ∈ X \ M , we denote by a
the equivalent class of a when confusion does not occur. It is well-known that if
X and Y are paracompact(normal), then X ∪ f Y is also paracompact(normal).
Nevertheless, a simple example shows that the Hausdorffness of X and Y does
not imply that X ∪ f Y is Hausdorff.

This indicates that the topological property what both of X and Y have,
may not be transformed in X ∪ f Y .

Throughout this paper, we use q to denote the naturally quotient map from
X ⊕ Y to X ∪ f Y , and N to denote the set of natural numbers. As a topological
space, N has the discrete topology.

For a subset A of a topological space X , we denote by A
X
(resp. [A]

Seq
X )

the closure (resp. sequential closure, i.e., the set of limits of convergent
sequences consisting of points of A) of A in X . We shall write A (resp. [A]Seq )

for A
X
(resp.[A]

Seq
X ) when confusion does not occur. A space X is sequential

if, whenever A ⊆ X and A is not closed, there is a sequence from A converging
to a point outside the set A, and X is Fréchet if, whenever x ∈ A, there is a
sequence from A converging to x .

Let A be a subset of a space X .
We de�ne [A]Xα by induction on α ∈ ω1 + 1 as follows: [A]X0 = A,

[A]Xα+1 = [[A]Xα ]
Seq
X and [A]Xα = ∪{[A]Xβ : β < α} for a limit α. We shall

write [A]α for [A]
X
α when confusion does not occur. One can easily see that

[A]ω1+1 = [A]ω1 , and that a space is sequential if and only if A = [A]ω1 for
all subsets A of X . For a sequential space X we de�ne so(X ), the sequential
order, by so(X ) = min{α ∈ ω1 + 1 : A = [A]α for every A ⊆ X }. Obviously,
if X is a Fréchet space, then so(X ) ≤ 1.

It is straightforward that if X and Y are both sequential spaces, then so is
X ∪ f Y . Nevertheless, for two Fréchet spaces X and Y , X ∪ f Y need not be
Fréchet, but, as is shown in the sequel, so(X ∪ f Y ) ≤ 2.

2. Main results.

We �rst recall a well-known fact about the space X ∪ f Y (cf. Theorem 6.3
of [3]) which is frequently used in the sequel.

Theorem 2.0 ([2]). Let X , Y be two disjoint spaces. Then:

(1) Y is embedded as a closed set in X ∪ f Y , and the restriction of q to Y
is a homeomorphism.
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(2) X \ A is embedded as open set in X ∪f Y , and the restriction of q to
X \ A is a homeomorphism.

Theorem 2.1. Let X , Y be two disjoint sequential spaces. Then

so(X ∪ f Y ) ≤ so(X ) + so(Y ).

Corollary 2.2. Let X , Y be two disjoint Fréchet spaces. Then

so(X ∪ f Y ) ≤ 2.

Theorem 2.3. Let X , Y be two disjoint sequential spaces, M a closed subset

of X , f : M −→ Y a continuous mapping. If f (A
X

∩ M) is closed in Y for
every A ⊆ X \ M, then

so(X ∪ f Y ) ≤ max{so(X ), so(Y )}.

Corollary 2.4. Let X , Y be two disjoint sequential spaces and let M be a closed
subset of X . If M is countably compact, then so(X∪ f Y ) ≤ max{so(X ), so(Y )}.

Proof. From the countable compactness of A and sequentiality of Y , it follows
that f is closed. According to Theorem 2.3, so(X ∪f Y ) ≤ max{so(X ), so(Y )}.

Corollary 2.5. Let X , Y be two disjoint Fréchet spaces, If X is countably
compact, then X ∪ f Y is also Fréchet.

Remark. Obviously, the converses of Theorem 2.3, Corollary 2.4 and 2.5 need
not be true.

Theorem 2.6. Let X be a Hausdorff Fréchet space, Y be a Fréchet T1-space,
M be a closed subset of X and let f : M −→ Y be continuous. Then, X ∪ f Y
is Fréchet if and only if f (A ∩ M) is closed in Y for every A ⊆ X \ M.

As we have showed above the sequential order of X ∪ f Y is suppressed by
the sum of so(X ) and so(Y ). On the other hand, by Theorem 2.3, if f is closed,
then so(X ∪ f Y ) ≤ max{so(X ), so(Y )}. Therefore it is natural to ask when is
X ∪ f Y really large than both of so(X ) and so(Y ). The following theorem give
a necessary condition for the question when so(X ) ≤ ω.
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Theorem 2.7. Let X, Y be two disjoint Hausdorff sequential spaces, M be a
closed subset of X , f : M −→ Y be a continuous mapping and let so(X ) ≤ ω.
If

so(X ∪ f Y ) > max{so(X ), so(Y )},

then there exists an embedding map p : S2 �→ X ∪ f Y such that

{p(tn) : n ∈ N} ⊆ q(M)

and

{p(tnm) : n,m ∈ N} ⊆ X \ M.

Recall the de�nition of S2 (see also example 1.6.19 of [3]).

Let T = {tn : n ∈ N} be a sequence converging to t0 /∈ T . Then S2 is the
space obtained by attaching the space N × {tn : n ∈ ω} to the space T ∪ {t0}
by the continuous map f : {(n, t0) : n ∈ N} −→ {tn : n ∈ N} de�ned by
f ((n, t0)) = tn for all n ∈ N. For convenience, we write tnm for (n, tm).

Corollary 2.8. Let X, Y be two disjoint Hausdorff Fréchet spaces, M ⊆ X
a closed subset and f : M −→ Y a continuous map. Then the following
conditions are equivalent:

(1) so(X ∪ f Y ) = 2;

(2) there exists an embedding map p : S2 �→ X ∪ f Y such that

{p(tn) : n ∈ N} ⊆ q(M)

and

{p(tnm) : n,m ∈ N} ⊆ X \ M.

Question. (a) Let X , Y be two disjoint sequential spaces. Then, does

so(X ∪ f Y ) ≤ so(Y ) + so(X )

hold?

(b) In Theorem 2.7, whether the condition of so(X ) ≤ ω can be removed?
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3. The proofs of theorems.

Lemma 3.1. Let X, Y be two topological spaces. Let f : X −→ Y be a
continuous map. Then, for any A ⊆ X and ordinal number α,

f ([A]α) ⊆ [ f (A)]α .

Proof. We show Lemma 3.1 by induction.
Suppose that f ([A]β ) ⊆ [ f (A)]β for all β < α.
If α is a limit, then

f ([A]α) = ∪β<α f ([A]β ) ⊆ ∪β<α[ f (A)]β = [ f (A)]α .

If α is not a limit, then α = β + 1 for some β < α. Fix y ∈ f ([A]β+1).
Then y = f (x) for some x ∈ [A]β+1 . Thus there is a sequence {xi : i < ω} in
[A]β such that xi −→ x as i −→ ∞. Since f is continuous, f (xi) −→ f (x) as
i −→ ∞. By the supposition, we have { f (xi ) : i < ω} ⊆ [ f (A)]β . Therefore
f (x) ∈ [ f (A)]β+1 which completes the proof.

Lemma 3.2. Let X, Y be two disjoint topological spaces. Also let A ⊆ X \ M.

If z = q(y) ∈ A
X∪ f Y

for some y ∈ Y , then, y ∈ f (A
X

∩ M)
Y

.

Proof. Let V be a neighbourhood open in Y of y . To complete the proof, it

suf�ces to show that f −1(V ) ∩ A
X

�= ∅. It is obvious that V ∩ f (M) �= ∅.

Therefore, f −1(V ) �= ∅. Suppose f −1(V ) ∩ A
X

= ∅. Then there is an open
subset U � of X containing f −1(V ) such that U � ∩ A = ∅.

On the other hand, since f is continuous, there is an open subset U �� of X
such that f −1(V ) = U �� ∩ M . Let U = U � ∩U �� and W = q(U ∪ V ). It is easy
to see that W ∩ A = ∅. If we can show that W is an open neighbourhood of z
in X ∪f Y , then this completes the proof of Lemma 3.2, because it contradicts

z ∈ A
X∪ f Y

. Obviously, z ∈ W . Notice that if x ∈ M \ U and q(x) ∈ W , then
f (x) ∈ V . In fact, there is w ∈U ∪ V such that q(w) = q(x). If w ∈U , then
w ∈ M . Since f −1(V ) = M ∩U , it follows that w ∈ f −1(V ). So x ∈ f −1(V ).
Hence, q−1(W ) = U ∪ V .

The proof of Theorem 2.1. Let so(X ) = α and so(Y ) = β . We will show that
so(X ∪ f Y ) ≤ α + β . Let k = q|Y and j = q|X be the restrictions of q to X

and Y respectively. Now let us �x A ⊆ X ∪ f Y and z ∈ A
X∪ f Y

. It is easy to see

that z ∈ A ∩ (X \ M)
X∪ f Y

∪ A ∩ k(Y )
X∪ f Y

. Now we prove that z ∈ [A]α+β .
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Case 1. z ∈ A ∩ k(Y )
X∪ f Y

.
By Theorem 2.0, k(Y ) is a closed subset of X ∪ f Y . Therefore, z ∈

A ∩ k(Y )
k(Y )

. By the facts that k(Y ) and Y are homeomorphic (Theorem 2.0)
and that so(Y ) = β , one has

z ∈ [A ∩ k(Y )]
k(Y )
β ⊆ [A]

X∪ f Y
β ⊆ [A]

X∪ f Y
α+β .

Case 2. z ∈ A ∩ (X \ M)
X∪ f Y

.

If z ∈ X \ M , then z ∈ A ∩ (X \ M)
X\M

because X \ M is embedded in

X ∪f Y as an open subspace, and so z ∈ A ∩ (X \ M)
X
. Since so(X ) = α, we

have z ∈ [A ∩ (X \ M)]α , and so, by Lemma 3.1,

z ∈ [A ∩ (X \ M)]
X∪ f Y
α ⊆ [A]

X∪ f Y
α+β .

If z /∈ X \ M , then z = k(y) for some y ∈ Y . Thus,

z = q(y)∈ q( f (A ∩ (X \ M)
X

∩ M)
Y

) (by Lemma 3.2)

= q([ f (A ∩ (X \ M)
X

∩ M)]Yβ )

⊆ [q( f (A ∩ (X \ M)
X

∩ M))]
X∪ f Y
β (by Lemma 3.1)

= [q(A ∩ (X \ M)
X

∩ M)]
X∪ f Y
β (by the de�nition of q)

⊆ [q(A ∩ (X \ M)
X
)]
X∪ f Y
β

= [q([A ∩ (X \ M)]Xα )]
X∪ f Y
β

⊆ [[q(A ∩ (X \ M))]
X∪ f Y
α ]

X∪ f Y
β (by Lemma 3.1)

= [[A ∩ (X \ M)]
X∪ f Y
α ]

X∪f Y
β

= [A ∩ (X \ M)]
X∪ f Y
α+β

⊆ [A]
X∪ f Y
α+β .

This completes the proof of Theorem 2.1.

Lemma 3.3. Let X and Y be two topological spaces, M be a closed subset of
X and let f : M −→ Y be continuous. Also, let A ⊆ X \ M be such that

f (A ∩ M) is closed in Y . Then, q(A
X
) = A

X∪ f Y
.
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Proof. Let z ∈ A
X∪ f Y

. If z ∈ X \ M , then by Theorem 2.0, z ∈ A
X\M

⊆ A
X
.

Thus z = q(z) ∈ q(A
X
). If z = q(y) ∈ A

X∪ f Y
∩ q(Y ) where y ∈ Y , by

Lemma 3.2, y ∈ f (A ∩ M)
Y
. Since f (A ∩ M) is closed in Y , there exists

x ∈ A ∩ M such that f (x) = y , hence z ∈ q(A
X
).

The proof of Theorem 2.3. Take B ⊆ X ∪f Y . Then

[B]
X∪ f Y

so(X∪ f Y ) = B
X∪f Y

= B ∩ (X \ M)
X∪ f Y

∪ B ∩ q(Y )
X∪ f Y

= q(B ∩ (X \ M)
X
) ∪ B ∩ q(Y )

q(Y )
(by Lemma 3.3)

= q([B ∩ (X \ M)]Xso(X )) ∪ [B ∩ q(Y )]
q(Y )

so(Y )

⊆ [B ∩ (X \ M)]
X∪ f Y

so(X ) ∪ [B ∩ q(Y )]
X∪ f Y

so(Y ) (by Lemma 3.1)

⊆ [B]
X∪ f Y
so(X ) ∪ [B]

X∪ f Y
so(Y )

= [B]
X∪ f Y

max{so(X ),so(Y )}.

Lemma 3.4. Let X be a Hausdorff space, Y be a T1-space, M be a closed
subset of X and let f : M −→ Y is continuous. Suppose that {xn : n ∈ N} ⊆

X \M is a sequence which is convergent in X ∩ f Y to a point q(y) where y ∈ Y .

Then there is x ∈ {xn : n ∈ N}
X

∩ M such that y = f (x).

Proof. By Lemma 3.2, {xn : n ∈ N} is not a closed subset of X . Therefore, in
particular, [{xn : n ∈ N}]X1 \ {xn : n ∈ N} �= ∅, because X is sequential. As X
is T1, there exists a point x ∈ [{xn : n ∈ N}]X1 \ {xn : n ∈ N} and a subsequence
{xkn : n ∈ N} of {xn : n ∈ N} such that xkn −→ x as n −→ ∞. Since X is

Hausdorff, we have {xkn : n ∈ N}
X

= {xkn : n ∈ N} ∪ {x}. Note now that q(y)∈

{xkn : n ∈ N}
X∪ f Y

. Hence, by Lemma 3.2, y ∈ f ({xkn : n ∈ N}
X

∩ M)
Y

=

{ f (x)}
Y
. Since Y is T1, it follows that y = f (x).

The proof of Theorem 2.6. By Theorem 2.3, we only need to show the necessary.
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Let A ⊆ X \ M . Suppose A
X

∩ M �= ∅, and let y ∈ f (A
X

∩ M)
Y

. Therefore,

q(y)∈ q( f (A
X

∩ M))
X∪ f Y

⊆ q(A
X
)
X∪ f Y

(by the de�nition of q)

⊆ q(A)
X∪ f Y

X∪ f Y

(by the continuity of q)

= A
X∪ f Y

.

Since X ∪f Y is Fréchet, there exists a sequence {xn : n ∈ N} from A such that
{xn : n ∈ N} is convergent in X ∪ f Y to the point q(y). By Lemma 3.4, this
implies that y ∈ f (A ∩ M).

Lemma 3.5. Let X be a Hausdorff space, Y be a T1-sequential space, M be a
closed subset of X and let f : M −→ Y is continuous. Also let A ⊆ X \ M. If

α = min{β : [A]
X∪ f Y
β ∩ q(Y ) is not closed in q(Y )},

then [A]
X∪ f Y
α ∩ q(Y ) ⊆ q(M).

Proof. Take a point q(y) ∈ [A]
X∪ f Y
α ∩ q(Y ) where y ∈ Y . Since y /∈ A, the

following ordinal is well-de�ned:

β(y) = min{β : q(y) ∈ [A]
X∪f Y
β+1 \ [A]

X∪ f Y
β }.

Now, q(y) ∈ [A]
X∪ f Y
β(y)+1\[A]

X∪ f Y
β(y) implies the existence of a sequence {xn : n ∈ N}

from [A]
X∪ f Y

β(y) which is convergent in X ∪ f Y to the point q(y). In the case, the
set {n : xn /∈ X \ M} is �nite. Indeed, otherwise we can �nd a subsequence
{xkn : n ∈ N} of {xn : n ∈ N} ∩ q(Y ) such that xkn −→ q(y) as n −→ ∞.

However, this will �nally imply that q(y) ∈ [A]
X∪ f Y

β(y) because, by construction,

β(y) < α and [A]
X∪ f Y

β(y) ∩ q(Y ) is closed. So, there is n0 ∈ N such that

{xn : n ≥ n0} ⊆ X \ M . By Lemma 3.4, it follows that y ∈ f (A ∩ M).

The proof of Theorem 2.7. Let max{so(X ), so(Y )} = α. Since so(X∪f Y ) > α,
there exists A ⊆ X ∪ f Y such that

A
X∪ f Y

\ [A]
X∪ f Y
α �= ∅.
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We pick

z ∈ A
X∪f Y

\ [A]
X∪ f Y
α .

Since

A
X∪ f Y

= A ∩ q(Y )
X∪f Y

∪ A ∩ (X \ M)
X∪ f Y

,

by Theorem 2.0 and the hypothesis of max{so(X ), so(Y )} = α we have

(∗) z = q(y) ∈ A ∩ (X \ M)
X∪ f Y

\ [A ∩ (X \ M)]
X∪f Y
α

where y ∈ Y . For the covenience, without loss of generality, we may write
A ∩ (X \ M) = A.

Claim 1. [A]
X∪ f Y
so(X ) ∩ q(Y ) is not closed in q(Y ).

Since X ∪ f Y is sequential, by (∗), there exists a sequence {zn : n ∈ N}

from [A]
X∪ f Y

so(X ) converging to a point z
� = q(y) outside [A]

X∪ f Y

so(X ) where y ∈Y . If
{zn : n ∈ N} ∩ (X \ M) is in�nite, then, by Lemma 3.4, there is a subsequence

{zkn : n ∈ N} of {zn : n ∈ N} and x ∈ X such that x ∈ {zkn : n ∈ N}
X
and

y = f (x).

On the other hand, for each n ∈ N, zkn ∈ [A]
X∪ f Y

so(X ) ∩ (X \ M) = [A]
X\M
so(X ) ⊆

[A]Xso(X ) = A
X
. Therefore, x ∈ [A]Xso(X ) . Thus, by Lemma 3.1, q(y) = q(x) ∈

[A]
X∪ f Y
so(X ) which is a contradiction. So, {zn : n ∈ N} ∩ q(Y ) is in�nite, this

completes the proof of Claim 1.
Now let us de�ne

β = min{α : [A]
X∪ f Y
α ∩ q(Y ) is not closed in q(Y )}.

By Lemma 3.5, [A]
X∪ f Y
α ∩ q(Y ) ⊆ q(M).

On the other hand, since X ∪ f Y is sequential, we can choose

z0 ∈ [[A]
X∪ f Y
β ∩ q(Y )]

X∪ f Y
1 \ [A]

X∪ f Y
β ∩ q(Y ).

There is a sequence {zn : n ∈ N} from [A]
X∪ f Y
β ∩ q(Y )(⊆ q(M)) converging to

z0 . Since X and Y are T1, so is X ∪ f Y . Hence {zn : n ∈ N} is a in�nite subset.
As Y is Hausdorff, there exists a subsequence {zkn : n ∈ N} of {zn : n ∈ N} and
a family {Vn : n ∈ N} of pairwise disjoint open subsets of X ∪ f Y such that
zkn ∈ Vn. Let

βn = min{γ : zkn ∈ [A]
X∪ f Y
γ ∩ q(Y )}.



30 JI-CHENG HOU

Obviously, for every n ∈ N, there is an ordinal number αn such that βn = αn +1
and

zkn ∈ [A]
X∪ f Y

αn+1
\ [A]

X∪ f Y
αn .

Therefore, for each n ∈ N, there is a sequence {znm : j ∈ N} from [A]
X∪ f Y
αn

converging to zkn . Since X ∪ f Y is T1, {znm : j ∈ N} is in�nite for each n ∈ N.
By the de�nition of β and the fact that αn < αn + 1 = βn ≤ β , it follows that
|{znm : m ∈ N} ∩ q(Y )| < ℵ0 for each n ∈ N. For convenience, we still denote
by {znm : m ∈ N}, the intersection of {znm : m ∈ N} and X \ M .

Claim 2. No there is a sequence from {znm : n,m ∈ N} converging to z0 .

In fact, if β = so(X ) and if there is a sequence from {znm : n,m ∈ N}

converging to z0 , then, by Lemmas 3.1 and 3.4, we have z0 ∈ [A]
X∪ f Y
β ∩ q(Y )

which is a contradiction.
If β < so(X ), since so(X ) ≤ ω, so β is not limit. Rest of the proof of

Claim 2 is evident.
Since X \ M is embedding in X ∪ f Y as an open subset, therefore if we

de�ne map
p : S2 −→ X ∪ f Y

by p(tn) = zkn , p(tnm) = znm and p(t0) = z0 , then it is not dif�cult to verify
that the map p satis�es all of conditions required in the statement.

4. Incidental observation.

De�nition 4.0. Let X, Y be two topological spaces. Let f : X −→ Y be a
mapping. Let α be an ordinal number and C a subset of Y . We de�ne Cα

f as
follows:

Cα
f = C if α = 0,

Cα
f = f ( f −1(C

β

f )) if α = β + 1,

Cα
f = ∪β<αC

β

f if if α is a limit ordinal number.

In [4], Kannan asked that if f : X −→ Y is a quotient mapping, A and B
are both open subsets of Y , and A ∪ B = Y , then for any C ⊆ Y , does

Cα
f = (A ∩ C)αfA ∪ (B ∩ C)αfB

holds? Where fA and fB are the restrictions of f to f −1(A) and f −1(B)

respectively. The following theorem completely answers the question above
in positive.



SEQUENTIAL ORDERS OF ADJUNCTION SPACES 31

Theorem 4.1. If f : X −→ Y is a quotient mapping, A and B are both open
subsets of Y , and A∪ B = Y , then for any C ⊆ Y , Cα

f = (A∩C)αfA ∪ (B ∩C)αfB
where fA and fB are the restrictions of f to f −1(A) and f −1(B) respectively.

To prepare for the proof of Theorem 4.1, we �rst introduce a lemma.

Lemma 4.2. If f : X −→ Y is a quotient mapping, B is an open subsets of Y ,
then, for any C ⊆ Y and any ordinal number α, (B ∩C)αfB = B ∩Cα

f where fB
means the restriction of f to f −1(B).

Proof. We �rst show that (B ∩ C)αfB ⊆ B ∩ Cα
f .

Suppose that (B ∩ C)
β

fB
⊆ C

β

f for all β < α. If α = β + 1, then

(B ∩ C)αfB = (B ∩ C)
β+1
fB

= fB ( f −1
B ((B ∩ C)

β

fB
)
f −1(B)

)

= f ( f −1(B) ∩ f −((B ∩ C)
β

fB
))

⊆ f ( f −1(C
β

f ))

= C
β+1
f .

If α is a limit, then (B ∩ C)αfB = ∪β<α(B ∩ C)
β

fB
⊆ ∪β<αC

β

f = Cα
f .

Next, we show that B ∩ Cα
f ⊇ (B ∩ C)αfB .

Suppose that B ∩ C
β

f ⊆ (B ∩ C)
β

f for all β < α. If α = β + 1, we will

show that B ∩ C
β+1
f ⊆ (B ∩ C)

β+1
fB
.

If y ∈ B ∩ C
β+1
f \ (B ∩ C)

β+1
fB
, then f −1(y) ∩ f −1(C

β

f ) �= ∅ and

f −1(y) ∩ f −1
B ((B ∩ C)

β

fB
)
f −1(B)

= ∅. By the soppostion of induction, it

follows that f −1(y) ∩ f −1(B) ∩ f −1(Cα
f ) = ∅. Since f −1(B) is open and

f −1(y) ⊆ f −1(B), one has f −1(y) ∩ f −1(C
β

f ) = ∅, which is a contradiction.

Therefore B ∩ C
β+1
f ⊆ (B ∩ C)

β+1
fB

If α is a limit, then B ∩ Cα
f = B ∩ (∪β<α)C

β

f = ∩β<α(B ∩ C
β

f ) ⊆

∪β<α(B ∩ C)
β

fB
= (B ∩ C)αfB , which completes the proof of Lemma 4.2.

The proof of Theorem 4.1. Suppose that C
β

f = (A ∩ C)
β

fA
∪ (B ∩ C)

β

fB
for all
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β < α. If α = β + 1, then Cα
f = C

β+1
f = f ( f −1(C

β

f )) and

(C ∩ A)αfA = (C ∩ A)
β+1
fA

= fA( f −1((C ∩ A)
β

fA
)
f −1(A)

)

= f ( f −1(A) ∩ f −1((C ∩ A)
β

fA
)).

Similarly, (C ∩ B)αfB = f ( f −1(B) ∩ f −1((C ∩ B)
β

fB
)). Therefore

(C ∩ A)αfA ∪ (C ∩ B)αfB = (C ∩ A)
β+1
fA

∪ (C ∩ B)
β+1
fB

= f (( f −1(A) ∪ f −1(C ∩ B)
β

fB
) ∩ ( f −1(B) ∪ f −1((C ∩ A)

β

fA
)) ∩ f −1(C

β

f ))

⊆ f ( f −1(C
β

f )) = C
β+1
f = Cα

f .

On the other hand, if y ∈ C
β+1
f , then f −1(y) ∩ f −1(C

β

f ) �= ∅. Next we show
that

(∗∗) y ∈ (C ∩ A)
β+1
fA

∪ (C ∩ B)
β+1
fB

.

If y ∈ A ∩ B , then f −1(y) ⊆ f −1(A) ∩ f −1(B) and so, by the supposition

of induction, (∗∗) follows. If y ∈ B \ A, then f −1(y) ∩ f −1((C ∩ B)
β

fB
) �= ∅.

Indeed, since f −1(y)∩ f −1(C
β

f ) �= ∅ and f −1(y) ⊆ f −1(B), one has f −1(y)∩

f −1(C
β

f ) ∩ f −1(B) �= ∅. Since f −1(B) is open, f −1(y) ∩ f −1(C
β

f ∩ B) �= ∅.

By Lemma 4.2 and the suppositionof induction, f −1(y)∩ f −1((B ∩ C)
β

fB
) �= ∅,

and so y ∈ (C ∩ B)
β+1
fB
. Similarly, we can show y ∈ (C ∩ A)

β+1
fA

in the case of
y ∈ A \ B .

If α is a limite, then by the supposition of induction, Cα
f = ∪β<αC

β

f =

∪β<α((A ∩ C)
β

fA
∪ (B ∩ C)

β

fB
) = (A ∩ C)αfA ∪ (B ∩ C)αfB , which completes the

proof of Theorem 4.1.
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