SEQUENTIAL ORDERS OF ADJUNCTION SPACES

JI-CHENG HOU

Let X, Y be two disjoint spaces, M be a closed subset of X, and $f : M \longrightarrow Y$ be a continuous map. In the direct sum $X \oplus Y$ of X and Y, define an equivalence relation \sim by $a \sim f(a)$ for each $a \in M$. The quotient space $X \oplus Y / \sim$, is denoted by $X \cup_f Y$, usually called the adjunction space determined by X, Y and f. In this paper we prove that for two sequential spaces X and Y, $so(X \cup_f Y) \leq so(X) + so(Y)$ and, if $so(X \cup_f Y) > \max\{so(X), so(Y)\}$ and $so(X) \leq \omega$, then there exists a special map $p: S_2 \hookrightarrow X \cup_f Y$, where so(X) denotes the sequential order of X and S_2 is the Arens' space. We also give an answer for a question of Kannan [4].

1. Introduction.

In [1], Arhangel'skii and Franklin constructed sequential spaces of its sequential order α for any $0 \le \alpha \le \omega_1$. It was done by attaching a sequential space to a sequential space by a continuous map. In Section 2, we give the relations between sequential orders of attaching space and original spaces. In Section 4, we answer a question of Kannan in [4].

Definition. Let X, Y be two disjoint spaces, M be a closed subset of X, and $f : M \longrightarrow Y$ be a continuous map. In the direct sum $X \oplus Y$ of X and Y,

Entrato in Redazione il 23 luglio 1997.

AMS Subject Classification: 54B17, 54C25, 54D55.

Key words: Sequential order, Adjunction space, Aren's space, Order of a map, Fréchet space, Sequential space.

define an equivalence relation \sim as follows: if f(a) = f(b) then a, b, f(b) are equivalent. The quotient space $X \oplus Y / \sim$, is denoted by $X \cup_f Y$, usually called the adjunction space determined by X, Y and f. If $a \in X \setminus M$, we denote by athe equivalent class of a when confusion does not occur. It is well-known that if X and Y are paracompact(normal), then $X \cup_f Y$ is also paracompact(normal). Nevertheless, a simple example shows that the Hausdorffness of X and Y does not imply that $X \cup_f Y$ is Hausdorff.

This indicates that the topological property what both of X and Y have, may not be transformed in $X \cup_f Y$.

Throughout this paper, we use q to denote the naturally quotient map from $X \oplus Y$ to $X \cup_f Y$, and N to denote the set of natural numbers. As a topological space, N has the discrete topology.

For a subset A of a topological space X, we denote by \overline{A}^X (resp. $[A]_X^{Seq}$) the closure (resp. sequential closure, i.e., the set of limits of convergent sequences consisting of points of A) of A in X. We shall write \overline{A} (resp. $[A]_X^{Seq}$) for \overline{A}^X (resp. $[A]_X^{Seq}$) when confusion does not occur. A space X is sequential if, whenever $A \subseteq X$ and A is not closed, there is a sequence from A converging to a point outside the set A, and X is *Fréchet* if, whenever $x \in \overline{A}$, there is a sequence from A converging to x.

Let A be a subset of a space X.

We define $[A]^X_{\alpha}$ by induction on $\alpha \in \omega_1 + 1$ as follows: $[A]^X_0 = A$, $[A]^X_{\alpha+1} = [[A]^X_{\alpha}]^{Seq}_X$ and $[A]^X_{\alpha} = \cup \{[A]^X_{\beta} : \beta < \alpha\}$ for a limit α . We shall write $[A]_{\alpha}$ for $[A]^X_{\alpha}$ when confusion does not occur. One can easily see that $[A]_{\omega_1+1} = [A]_{\omega_1}$, and that a space is sequential if and only if $\overline{A} = [A]_{\omega_1}$ for all subsets A of X. For a sequential space X we define so(X), the sequential order, by $so(X) = \min\{\alpha \in \omega_1 + 1 : \overline{A} = [A]_{\alpha}$ for every $A \subseteq X\}$. Obviously, if X is a Fréchet space, then $so(X) \leq 1$.

It is straightforward that if X and Y are both sequential spaces, then so is $X \cup_f Y$. Nevertheless, for two Fréchet spaces X and Y, $X \cup_f Y$ need not be Fréchet, but, as is shown in the sequel, $so(X \cup_f Y) \le 2$.

2. Main results.

We first recall a well-known fact about the space $X \cup_f Y$ (cf. Theorem 6.3 of [3]) which is frequently used in the sequel.

Theorem 2.0 ([2]). Let X, Y be two disjoint spaces. Then:

(1) *Y* is embedded as a closed set in $X \cup_f Y$, and the restriction of *q* to *Y* is a homeomorphism.

(2) $X \setminus A$ is embedded as open set in $X \cup_f Y$, and the restriction of q to $X \setminus A$ is a homeomorphism.

Theorem 2.1. Let X, Y be two disjoint sequential spaces. Then

$$so(X \cup_f Y) \leq so(X) + so(Y).$$

Corollary 2.2. Let X, Y be two disjoint Fréchet spaces. Then

$$so(X \cup_f Y) \leq 2.$$

Theorem 2.3. Let X, Y be two disjoint sequential spaces, M a closed subset of X, $f : M \longrightarrow Y$ a continuous mapping. If $f(\overline{A}^X \cap M)$ is closed in Y for every $A \subseteq X \setminus M$, then

$$so(X \cup_f Y) \le \max\{so(X), so(Y)\}.$$

Corollary 2.4. Let X, Y be two disjoint sequential spaces and let M be a closed subset of X. If M is countably compact, then $so(X \cup_f Y) \le \max\{so(X), so(Y)\}$.

Proof. From the countable compactness of A and sequentiality of Y, it follows that f is closed. According to Theorem 2.3, $so(X \cup_f Y) \le \max\{so(X), so(Y)\}$.

Corollary 2.5. Let X, Y be two disjoint Fréchet spaces, If X is countably compact, then $X \cup_f Y$ is also Fréchet.

Remark. Obviously, the converses of Theorem 2.3, Corollary 2.4 and 2.5 need not be true.

Theorem 2.6. Let X be a Hausdorff Fréchet space, Y be a Fréchet T_1 -space, M be a closed subset of X and let $f : M \longrightarrow Y$ be continuous. Then, $X \cup_f Y$ is Fréchet if and only if $f(\overline{A} \cap M)$ is closed in Y for every $A \subseteq X \setminus M$.

As we have showed above the sequential order of $X \cup_f Y$ is suppressed by the sum of so(X) and so(Y). On the other hand, by Theorem 2.3, if f is closed, then $so(X \cup_f Y) \leq \max\{so(X), so(Y)\}$. Therefore it is natural to ask when is $X \cup_f Y$ really large than both of so(X) and so(Y). The following theorem give a necessary condition for the question when $so(X) \leq \omega$. **Theorem 2.7.** Let X, Y be two disjoint Hausdorff sequential spaces, M be a closed subset of X, $f : M \longrightarrow Y$ be a continuous mapping and let $so(X) \le \omega$. If

$$so(X \cup_f Y) > \max\{so(X), so(Y)\},\$$

then there exists an embedding map $p: S_2 \hookrightarrow X \cup_f Y$ such that

$$\{p(t_n):n\in\mathbb{N}\}\subseteq q(M)$$

and

$${p(t_{nm}): n, m \in \mathbb{N}} \subseteq X \setminus M.$$

Recall the definition of S_2 (see also example 1.6.19 of [3]).

Let $T = \{t_n : n \in \mathbb{N}\}$ be a sequence converging to $t_0 \notin T$. Then S_2 is the space obtained by attaching the space $N \times \{t_n : n \in \omega\}$ to the space $T \cup \{t_0\}$ by the continuous map $f : \{(n, t_0) : n \in \mathbb{N}\} \longrightarrow \{t_n : n \in \mathbb{N}\}$ defined by $f((n, t_0)) = t_n$ for all $n \in \mathbb{N}$. For convenience, we write t_{nm} for (n, t_m) .

Corollary 2.8. Let X, Y be two disjoint Hausdorff Fréchet spaces, $M \subseteq X$ a closed subset and $f : M \longrightarrow Y$ a continuous map. Then the following conditions are equivalent:

(1)
$$so(X \cup_f Y) = 2;$$

(2) there exists an embedding map $p: S_2 \hookrightarrow X \cup_f Y$ such that

$$\{p(t_n):n\in\mathbb{N}\}\subseteq q(M)$$

and

$$\{p(t_{nm}): n, m \in \mathbb{N}\} \subseteq X \setminus M.$$

Question. (a) Let X, Y be two disjoint sequential spaces. Then, does

$$so(X \cup_f Y) \le so(Y) + so(X)$$

hold?

(b) In Theorem 2.7, whether the condition of $so(X) \le \omega$ can be removed?

3. The proofs of theorems.

Lemma 3.1. Let X, Y be two topological spaces. Let $f : X \longrightarrow Y$ be a continuous map. Then, for any $A \subseteq X$ and ordinal number α ,

$$f([A]_{\alpha}) \subseteq [f(A)]_{\alpha}$$

Proof. We show Lemma 3.1 by induction.

Suppose that $f([A]_{\beta}) \subseteq [f(A)]_{\beta}$ for all $\beta < \alpha$. If α is a limit, then

$$f([A]_{\alpha}) = \bigcup_{\beta < \alpha} f([A]_{\beta}) \subseteq \bigcup_{\beta < \alpha} [f(A)]_{\beta} = [f(A)]_{\alpha}$$

If α is not a limit, then $\alpha = \beta + 1$ for some $\beta < \alpha$. Fix $y \in f([A]_{\beta+1})$. Then y = f(x) for some $x \in [A]_{\beta+1}$. Thus there is a sequence $\{x_i : i < \omega\}$ in $[A]_{\beta}$ such that $x_i \longrightarrow x$ as $i \longrightarrow \infty$. Since f is continuous, $f(x_i) \longrightarrow f(x)$ as $i \longrightarrow \infty$. By the supposition, we have $\{f(x_i) : i < \omega\} \subseteq [f(A)]_{\beta}$. Therefore $f(x) \in [f(A)]_{\beta+1}$ which completes the proof.

Lemma 3.2. Let X, Y be two disjoint topological spaces. Also let $A \subseteq X \setminus M$. If $z = q(y) \in \overline{A}^{X \cup_f Y}$ for some $y \in Y$, then, $y \in \overline{f(\overline{A}^X \cap M)}^Y$.

Proof. Let V be a neighbourhood open in Y of y. To complete the proof, it suffices to show that $f^{-1}(V) \cap \overline{A}^X \neq \emptyset$. It is obvious that $V \cap f(M) \neq \emptyset$. Therefore, $f^{-1}(V) \neq \emptyset$. Suppose $f^{-1}(V) \cap \overline{A}^X = \emptyset$. Then there is an open subset U' of X containing $f^{-1}(V)$ such that $U' \cap A = \emptyset$.

On the other hand, since f is continuous, there is an open subset U'' of X such that $f^{-1}(V) = U'' \cap M$. Let $U = U' \cap U''$ and $W = q(U \cup V)$. It is easy to see that $W \cap A = \emptyset$. If we can show that W is an open neighbourhood of z in $X \cup_f Y$, then this completes the proof of Lemma 3.2, because it contradicts $z \in \overline{A}^{X \cup_f Y}$. Obviously, $z \in W$. Notice that if $x \in M \setminus U$ and $q(x) \in W$, then $f(x) \in V$. In fact, there is $w \in U \cup V$ such that q(w) = q(x). If $w \in U$, then $w \in M$. Since $f^{-1}(V) = M \cap U$, it follows that $w \in f^{-1}(V)$. So $x \in f^{-1}(V)$. Hence, $q^{-1}(W) = U \cup V$.

The proof of Theorem 2.1. Let $so(X) = \alpha$ and $so(Y) = \beta$. We will show that $so(X \cup_f Y) \le \alpha + \beta$. Let $k = q|_Y$ and $j = q|_X$ be the restrictions of q to X and Y respectively. Now let us fix $A \subseteq X \cup_f Y$ and $z \in \overline{A}^{X \cup_f Y}$. It is easy to see that $z \in \overline{A \cap (X \setminus M)}^{X \cup_f Y} \cup \overline{A \cap k(Y)}^{X \cup_f Y}$. Now we prove that $z \in [A]_{\alpha+\beta}$.

Case 1. $z \in \overline{A \cap k(Y)}^{X \cup_f Y}$. By Theorem 2.0, k(Y) is a closed subset of $X \cup_f Y$. Therefore, $z \in$ $\overline{A \cap k(Y)}^{k(Y)}$. By the facts that k(Y) and Y are homeomorphic (Theorem 2.0) and that $so(Y) = \beta$, one has

$$z \in [A \cap k(Y)]_{\beta}^{k(Y)} \subseteq [A]_{\beta}^{X \cup_{f} Y} \subseteq [A]_{\alpha+\beta}^{X \cup_{f} Y}$$

Case 2. $z \in \overline{A \cap (X \setminus M)}^{X \cup_f Y}$.

If $z \in X \setminus M$, then $z \in \overline{A \cap (X \setminus M)}^{X \setminus M}$ because $X \setminus M$ is embedded in $X \cup_f Y$ as an open subspace, and so $z \in \overline{A \cap (X \setminus M)}^X$. Since $so(X) = \alpha$, we have $z \in [A \cap (X \setminus M)]_{\alpha}$, and so, by Lemma 3.1,

$$z \in [A \cap (X \setminus M)]^{X \cup_f Y}_{\alpha} \subseteq [A]^{X \cup_f Y}_{\alpha+\beta}$$

If $z \notin X \setminus M$, then z = k(y) for some $y \in Y$. Thus,

$$z = q(y) \in q(\overline{f(\overline{A} \cap (X \setminus M)^{X} \cap M)}^{Y}) \text{ (by Lemma 3.2)}$$

$$= q([f(\overline{A} \cap (X \setminus M)^{X} \cap M)]_{\beta}^{Y})$$

$$\subseteq [q(f(\overline{A} \cap (X \setminus M)^{X} \cap M))]_{\beta}^{X \cup_{f} Y} \text{ (by Lemma 3.1)}$$

$$= [q(\overline{A} \cap (X \setminus M)^{X} \cap M)]_{\beta}^{X \cup_{f} Y} \text{ (by the definition of } q)$$

$$\subseteq [q(\overline{A} \cap (X \setminus M)^{X})]_{\beta}^{X \cup_{f} Y}$$

$$= [q([A \cap (X \setminus M)]_{\alpha}^{X})]_{\beta}^{X \cup_{f} Y} \text{ (by Lemma 3.1)}$$

$$= [[A \cap (X \setminus M)]_{\alpha}^{X \cup_{f} Y}]_{\beta}^{X \cup_{f} Y} \text{ (by Lemma 3.1)}$$

$$= [[A \cap (X \setminus M)]_{\alpha}^{X \cup_{f} Y}]_{\beta}^{X \cup_{f} Y}$$

$$\subseteq [A \cap (X \setminus M)]_{\alpha + \beta}^{X \cup_{f} Y}$$

This completes the proof of Theorem 2.1.

Lemma 3.3. Let X and Y be two topological spaces, M be a closed subset of X and let $f : M \longrightarrow Y$ be continuous. Also, let $A \subseteq X \setminus M$ be such that $f(\overline{A} \cap M)$ is closed in Y. Then, $q(\overline{A}^X) = \overline{A}^{X \cup_f Y}$.

Proof. Let $z \in \overline{A}^{X \cup_f Y}$. If $z \in X \setminus M$, then by Theorem 2.0, $z \in \overline{A}^{X \setminus M} \subseteq \overline{A}^X$. Thus $z = q(z) \in q(\overline{A}^X)$. If $z = q(y) \in \overline{A}^{X \cup_f Y} \cap q(Y)$ where $y \in Y$, by Lemma 3.2, $y \in \overline{f(\overline{A} \cap M)}^Y$. Since $f(\overline{A} \cap M)$ is closed in Y, there exists $x \in \overline{A} \cap M$ such that f(x) = y, hence $z \in q(\overline{A}^X)$.

The proof of Theorem 2.3. Take $B \subseteq X \cup_f Y$. Then

$$[B]_{so(X\cup_{f}Y)}^{X\cup_{f}Y} = \overline{B}^{X\cup_{f}Y}$$

$$= \overline{B\cap (X\setminus M)}^{X\cup_{f}Y} \cup \overline{B\cap q(Y)}^{X\cup_{f}Y}$$

$$= q(\overline{B\cap (X\setminus M)}^{X}) \cup \overline{B\cap q(Y)}^{q(Y)} \text{ (by Lemma 3.3)}$$

$$= q([B\cap (X\setminus M)]_{so(X)}^{X}) \cup [B\cap q(Y)]_{so(Y)}^{q(Y)}$$

$$\subseteq [B\cap (X\setminus M)]_{so(X)}^{X\cup_{f}Y} \cup [B\cap q(Y)]_{so(Y)}^{X\cup_{f}Y} \text{ (by Lemma 3.1)}$$

$$\subseteq [B]_{so(X)}^{X\cup_{f}Y} \cup [B]_{so(Y)}^{X\cup_{f}Y}$$

$$= [B]_{max\{so(X), so(Y)\}}^{X\cup_{f}Y}.$$

Lemma 3.4. Let X be a Hausdorff space, Y be a T_1 -space, M be a closed subset of X and let $f : M \longrightarrow Y$ is continuous. Suppose that $\{x_n : n \in \mathbb{N}\} \subseteq X \setminus M$ is a sequence which is convergent in $X \cap_f Y$ to a point q(y) where $y \in Y$. Then there is $x \in \overline{\{x_n : n \in \mathbb{N}\}}^X \cap M$ such that y = f(x).

Proof. By Lemma 3.2, $\{x_n : n \in \mathbb{N}\}$ is not a closed subset of X. Therefore, in particular, $[\{x_n : n \in \mathbb{N}\}]_1^X \setminus \{x_n : n \in \mathbb{N}\} \neq \emptyset$, because X is sequential. As X is T_1 , there exists a point $x \in [\{x_n : n \in \mathbb{N}\}]_1^X \setminus \{x_n : n \in \mathbb{N}\}$ and a subsequence $\{x_{k_n} : n \in \mathbb{N}\}$ of $\{x_n : n \in \mathbb{N}\}$ such that $x_{k_n} \longrightarrow x$ as $n \longrightarrow \infty$. Since X is Hausdorff, we have $\overline{\{x_{k_n} : n \in \mathbb{N}\}}^X = \{x_{k_n} : n \in \mathbb{N}\} \cup \{x\}$. Note now that $q(y) \in \overline{\{x_{k_n} : n \in \mathbb{N}\}}^{X \cup_f Y}$. Hence, by Lemma 3.2, $y \in \overline{f(\overline{\{x_{k_n} : n \in \mathbb{N}\}}^X \cap M)} = \overline{\{f(x)\}}^Y$. Since Y is T_1 , it follows that y = f(x).

The proof of Theorem 2.6. By Theorem 2.3, we only need to show the necessary.

Let $A \subseteq X \setminus M$. Suppose $\overline{A}^X \cap M \neq \emptyset$, and let $y \in \overline{f(\overline{A}^X \cap M)}^Y$. Therefore,

$$q(y) \in \overline{q(f(\overline{A}^X \cap M))}^{X \cup_f Y}$$

$$\subseteq \overline{q(\overline{A}^X)}^{X \cup_f Y} \text{ (by the definition of } q)$$

$$\subseteq \overline{\overline{q(A)}}^{X \cup_f Y}^{X \cup_f Y} \text{ (by the continuity of } q)$$

$$= \overline{A}^{X \cup_f Y}.$$

Since $X \cup_f Y$ is Fréchet, there exists a sequence $\{x_n : n \in \mathbb{N}\}$ from A such that $\{x_n : n \in \mathbb{N}\}$ is convergent in $X \cup_f Y$ to the point q(y). By Lemma 3.4, this implies that $y \in f(\overline{A} \cap M)$.

Lemma 3.5. Let X be a Hausdorff space, Y be a T_1 -sequential space, M be a closed subset of X and let $f : M \longrightarrow Y$ is continuous. Also let $A \subseteq X \setminus M$. If

 $\alpha = \min\{\beta : [A]_{\beta}^{X \cup_{f} Y} \cap q(Y) \text{ is not closed in } q(Y)\},\$

then $[A]^{X \cup_f Y}_{\alpha} \cap q(Y) \subseteq q(M)$.

Proof. Take a point $q(y) \in [A]^{X \cup_f Y}_{\alpha} \cap q(Y)$ where $y \in Y$. Since $y \notin A$, the following ordinal is well-defined:

$$\beta(y) = \min\{\beta : q(y) \in [A]_{\beta+1}^{X \cup_f Y} \setminus [A]_{\beta}^{X \cup_f Y}\}.$$

Now, $q(y) \in [A]_{\beta(y)+1}^{X \cup_f Y} \setminus [A]_{\beta(y)}^{X \cup_f Y}$ implies the existence of a sequence $\{x_n : n \in \mathbb{N}\}$ from $[A]_{\beta(y)}^{X \cup_f Y}$ which is convergent in $X \cup_f Y$ to the point q(y). In the case, the set $\{n : x_n \notin X \setminus M\}$ is finite. Indeed, otherwise we can find a subsequence $\{x_{k_n} : n \in \mathbb{N}\}$ of $\{x_n : n \in \mathbb{N}\} \cap q(Y)$ such that $x_{k_n} \longrightarrow q(y)$ as $n \longrightarrow \infty$. However, this will finally imply that $q(y) \in [A]_{\beta(y)}^{X \cup_f Y}$ because, by construction, $\beta(y) < \alpha$ and $[A]_{\beta(y)}^{X \cup_f Y} \cap q(Y)$ is closed. So, there is $n_0 \in \mathbb{N}$ such that $\{x_n : n \ge n_0\} \subseteq X \setminus M$. By Lemma 3.4, it follows that $y \in f(\overline{A} \cap M)$.

The proof of Theorem 2.7. Let $\max\{so(X), so(Y)\} = \alpha$. Since $so(X \cup_f Y) > \alpha$, there exists $A \subseteq X \cup_f Y$ such that

$$\overline{A}^{X\cup_f Y} \setminus [A]^{X\cup_f Y}_{\alpha} \neq \emptyset.$$

We pick

$$z \in \overline{A}^{X \cup_f Y} \setminus [A]^{X \cup_f Y}_{\alpha}.$$

Since

$$\overline{A}^{X\cup_f Y} = \overline{A\cap q(Y)}^{X\cup_f Y} \cup \overline{A\cap (X\setminus M)}^{X\cup_f Y},$$

by Theorem 2.0 and the hypothesis of $\max\{so(X), so(Y)\} = \alpha$ we have

(*)
$$z = q(y) \in \overline{A \cap (X \setminus M)}^{X \cup_f Y} \setminus [A \cap (X \setminus M)]^{X \cup_f Y}_{\alpha}$$

where $y \in Y$. For the covenience, without loss of generality, we may write $A \cap (X \setminus M) = A$.

Claim 1. $[A]_{so(X)}^{X \cup_f Y} \cap q(Y)$ is not closed in q(Y).

Since $X \cup_f Y$ is sequential, by (*), there exists a sequence $\{z_n : n \in \mathbb{N}\}$ from $[A]_{so(X)}^{X \cup_f Y}$ converging to a point z' = q(y) outside $[A]_{so(X)}^{X \cup_f Y}$ where $y \in Y$. If $\{z_n : n \in \mathbb{N}\} \cap (X \setminus M)$ is infinite, then, by Lemma 3.4, there is a subsequence $\{z_{k_n} : n \in \mathbb{N}\}$ of $\{z_n : n \in \mathbb{N}\}$ and $x \in X$ such that $x \in \overline{\{z_{k_n} : n \in \mathbb{N}\}}^X$ and y = f(x).

On the other hand, for each $n \in \mathbb{N}$, $z_{k_n} \in [A]_{so(X)}^{X \cup_f Y} \cap (X \setminus M) = [A]_{so(X)}^{X \setminus M} \subseteq [A]_{so(X)}^X = \overline{A}^X$. Therefore, $x \in [A]_{so(X)}^X$. Thus, by Lemma 3.1, $q(y) = q(x) \in [A]_{so(X)}^{X \cup_f Y}$ which is a contradiction. So, $\{z_n : n \in \mathbb{N}\} \cap q(Y)$ is infinite, this completes the proof of Claim 1.

Now let us define

$$\beta = \min\{\alpha : [A]_{\alpha}^{X \cup_f Y} \cap q(Y) \text{ is not closed in } q(Y)\}.$$

By Lemma 3.5, $[A]^{X \cup_f Y}_{\alpha} \cap q(Y) \subseteq q(M)$.

On the other hand, since $X \cup_f Y$ is sequential, we can choose

$$z_0 \in \left[\left[A \right]_{\beta}^{X \cup_f Y} \cap q(Y) \right]_1^{X \cup_f Y} \setminus \left[A \right]_{\beta}^{X \cup_f Y} \cap q(Y)$$

There is a sequence $\{z_n : n \in \mathbb{N}\}$ from $[A]_{\beta}^{X \cup_f Y} \cap q(Y) (\subseteq q(M))$ converging to z_0 . Since X and Y are T_1 , so is $X \cup_f Y$. Hence $\{z_n : n \in \mathbb{N}\}$ is a infinite subset. As Y is Hausdorff, there exists a subsequence $\{z_{k_n} : n \in \mathbb{N}\}$ of $\{z_n : n \in \mathbb{N}\}$ and a family $\{V_n : n \in \mathbb{N}\}$ of pairwise disjoint open subsets of $X \cup_f Y$ such that $z_{k_n} \in V_n$. Let

$$\beta_n = \min\{\gamma : z_{k_n} \in [A]_{\gamma}^{X \cup_f Y} \cap q(Y)\}.$$

Obviously, for every $n \in \mathbb{N}$, there is an ordinal number α_n such that $\beta_n = \alpha_n + 1$ and

$$z_{k_n} \in [A]_{\alpha_n+1}^{X \cup_f Y} \setminus [A]_{\alpha_n}^{X \cup_f Y}.$$

Therefore, for each $n \in \mathbb{N}$, there is a sequence $\{z_{nm} : j \in \mathbb{N}\}$ from $[A]_{\alpha_n}^{X \cup_f Y}$ converging to z_{k_n} . Since $X \cup_f Y$ is T_1 , $\{z_{nm} : j \in \mathbb{N}\}$ is infinite for each $n \in \mathbb{N}$. By the definition of β and the fact that $\alpha_n < \alpha_n + 1 = \beta_n \leq \beta$, it follows that $|\{z_{nm} : m \in \mathbb{N}\} \cap q(Y)| < \aleph_0$ for each $n \in \mathbb{N}$. For convenience, we still denote by $\{z_{nm} : m \in \mathbb{N}\}$, the intersection of $\{z_{nm} : m \in \mathbb{N}\}$ and $X \setminus M$.

Claim 2. No there is a sequence from $\{z_{nm} : n, m \in \mathbb{N}\}$ converging to z_0 .

In fact, if $\beta = so(X)$ and if there is a sequence from $\{z_{nm} : n, m \in \mathbb{N}\}$ converging to z_0 , then, by Lemmas 3.1 and 3.4, we have $z_0 \in [A]_{\beta}^{X \cup_f Y} \cap q(Y)$ which is a contradiction.

If $\beta < so(X)$, since $so(X) \le \omega$, so β is not limit. Rest of the proof of Claim 2 is evident.

Since $X \setminus M$ is embedding in $X \cup_f Y$ as an open subset, therefore if we define map

$$p: S_2 \longrightarrow X \cup_f Y$$

by $p(t_n) = z_{k_n}$, $p(t_{nm}) = z_{nm}$ and $p(t_0) = z_0$, then it is not difficult to verify that the map p satisfies all of conditions required in the statement.

4. Incidental observation.

Definition 4.0. Let X, Y be two topological spaces. Let $f : X \longrightarrow Y$ be a mapping. Let α be an ordinal number and C a subset of Y. We define C_f^{α} as follows:

$$C_{f}^{\alpha} = C \qquad \text{if} \quad \alpha = 0,$$

$$C_{f}^{\alpha} = f(\overline{f^{-1}(C_{f}^{\beta})}) \qquad \text{if} \quad \alpha = \beta + 1,$$

$$C_{f}^{\alpha} = \bigcup_{\beta < \alpha} C_{f}^{\beta} \qquad \text{if} \quad \text{if} \alpha \text{ is a limit ordinal number.}$$

In [4], Kannan asked that if $f : X \longrightarrow Y$ is a quotient mapping, A and B are both open subsets of Y, and $A \cup B = Y$, then for any $C \subseteq Y$, does

$$C_f^{\alpha} = (A \cap C)_{f_A}^{\alpha} \cup (B \cap C)_{f_B}^{\alpha}$$

holds? Where f_A and f_B are the restrictions of f to $f^{-1}(A)$ and $f^{-1}(B)$ respectively. The following theorem completely answers the question above in positive.

Theorem 4.1. If $f : X \longrightarrow Y$ is a quotient mapping, A and B are both open subsets of Y, and $A \cup B = Y$, then for any $C \subseteq Y$, $C_f^{\alpha} = (A \cap C)_{f_A}^{\alpha} \cup (B \cap C)_{f_B}^{\alpha}$ where f_A and f_B are the restrictions of f to $f^{-1}(A)$ and $f^{-1}(B)$ respectively.

To prepare for the proof of Theorem 4.1, we first introduce a lemma.

Lemma 4.2. If $f : X \longrightarrow Y$ is a quotient mapping, B is an open subsets of Y, then, for any $C \subseteq Y$ and any ordinal number α , $(B \cap C)_{f_B}^{\alpha} = B \cap C_f^{\alpha}$ where f_B means the restriction of f to $f^{-1}(B)$.

Proof. We first show that $(B \cap C)_{f_B}^{\alpha} \subseteq B \cap C_f^{\alpha}$.

Suppose that $(B \cap C)_{f_B}^{\beta} \subseteq C_f^{\beta}$ for all $\beta < \alpha$. If $\alpha = \beta + 1$, then

$$(B \cap C)_{f_B}^{\alpha} = (B \cap C)_{f_B}^{\beta+1}$$

$$= f_B(\overline{f_B^{-1}((B \cap C)_{f_B}^{\beta})}^{f^{-1}(B)})$$

$$= f(f^{-1}(B) \cap \overline{f^{-}((B \cap C)_{f_B}^{\beta})})$$

$$\subseteq f(\overline{f^{-1}(C_f^{\beta})})$$

$$= C_f^{\beta+1}.$$

If α is a limit, then $(B \cap C)_{f_B}^{\alpha} = \bigcup_{\beta < \alpha} (B \cap C)_{f_B}^{\beta} \subseteq \bigcup_{\beta < \alpha} C_f^{\beta} = C_f^{\alpha}$. Next, we show that $B \cap C_f^{\alpha} \supseteq (B \cap C)_{f_B}^{\alpha}$.

Suppose that $B \cap C_f^{\beta} \subseteq (B \cap C)_f^{\beta}$ for all $\beta < \alpha$. If $\alpha = \beta + 1$, we will show that $B \cap C_f^{\beta+1} \subseteq (B \cap C)_{f_B}^{\beta+1}$.

If $y \in B \cap C_f^{\beta+1} \setminus (B \cap C)_{f_B}^{\beta+1}$, then $f^{-1}(y) \cap \overline{f^{-1}(C_f^{\beta})} \neq \emptyset$ and $f^{-1}(y) \cap \overline{f_B^{-1}((B \cap C)_{f_B}^{\beta})}^{f^{-1}(B)} = \emptyset$. By the soppostion of induction, it follows that $f^{-1}(y) \cap f^{-1}(B) \cap f^{-1}(C_f^{\alpha}) = \emptyset$. Since $f^{-1}(B)$ is open and $f^{-1}(y) \subseteq f^{-1}(B)$, one has $f^{-1}(y) \cap \overline{f^{-1}(C_f^{\beta})} = \emptyset$, which is a contradiction. Therefore $B \cap C_f^{\beta+1} \subseteq (B \cap C)_{f_B}^{\beta+1}$

If α is a limit, then $B \cap C_f^{\alpha} = B \cap (\bigcup_{\beta < \alpha}) C_f^{\beta} = \bigcap_{\beta < \alpha} (B \cap C_f^{\beta}) \subseteq \bigcup_{\beta < \alpha} (B \cap C)_{f_B}^{\beta} = (B \cap C)_{f_B}^{\alpha}$, which completes the proof of Lemma 4.2.

The proof of Theorem 4.1. Suppose that $C_f^{\beta} = (A \cap C)_{f_A}^{\beta} \cup (B \cap C)_{f_B}^{\beta}$ for all

$$\beta < \alpha. \text{ If } \alpha = \beta + 1, \text{ then } C_f^{\alpha} = C_f^{\beta+1} = f(f^{-1}(C_f^{\beta})) \text{ and}$$

$$(C \cap A)_{f_A}^{\alpha} = (C \cap A)_{f_A}^{\beta+1}$$

$$= f_A(\overline{f^{-1}((C \cap A)_{f_A}^{\beta})}^{f^{-1}(A)})$$

$$= f(f^{-1}(A) \cap \overline{f^{-1}((C \cap A)_{f_A}^{\beta})}).$$
Similarly, $(C \cap B)_{f_B}^{\alpha} = f(f^{-1}(B) \cap \overline{f^{-1}((C \cap B)_{f_B}^{\beta})}).$ Therefore

$$\begin{aligned} (C \cap A)_{f_A}^{\alpha} \cup (C \cap B)_{f_B}^{\alpha} &= (C \cap A)_{f_A}^{\beta+1} \cup (C \cap B)_{f_B}^{\beta+1} \\ &= f((f^{-1}(A) \cup \overline{f^{-1}(C \cap B)_{f_B}^{\beta}}) \cap (f^{-1}(B) \cup \overline{f^{-1}((C \cap A)_{f_A}^{\beta})}) \cap \overline{f^{-1}(C_f^{\beta})}) \\ &\subseteq f(\overline{f^{-1}(C_f^{\beta})}) = C_f^{\beta+1} = C_f^{\alpha}. \end{aligned}$$

On the other hand, if $y \in C_f^{\beta+1}$, then $f^{-1}(y) \cap \overline{f^{-1}(C_f^{\beta})} \neq \emptyset$. Next we show that

$$(**) y \in (C \cap A)_{f_A}^{\beta+1} \cup (C \cap B)_{f_B}^{\beta+1}.$$

If $y \in A \cap B$, then $f^{-1}(y) \subseteq f^{-1}(A) \cap f^{-1}(B)$ and so, by the supposition of induction, (**) follows. If $y \in B \setminus A$, then $f^{-1}(y) \cap \overline{f^{-1}((C \cap B)_{f_B}^{\beta})} \neq \emptyset$. Indeed, since $f^{-1}(y) \cap \overline{f^{-1}(C_f^{\beta})} \neq \emptyset$ and $f^{-1}(y) \subseteq f^{-1}(B)$, one has $f^{-1}(y) \cap \overline{f^{-1}(C_f^{\beta} \cap B)} \neq \emptyset$. $\overline{f^{-1}(C_f^{\beta})} \cap f^{-1}(B) \neq \emptyset$. Since $f^{-1}(B)$ is open, $f^{-1}(y) \cap \overline{f^{-1}(C_f^{\beta} \cap B)} \neq \emptyset$. By Lemma 4.2 and the supposition of induction, $f^{-1}(y) \cap \overline{f^{-1}((B \cap C)_{f_B}^{\beta})} \neq \emptyset$, and so $y \in (C \cap B)_{f_B}^{\beta+1}$. Similarly, we can show $y \in (C \cap A)_{f_A}^{\beta+1}$ in the case of $y \in A \setminus B$.

If α is a limite, then by the supposition of induction, $C_f^{\alpha} = \bigcup_{\beta < \alpha} C_f^{\beta} = \bigcup_{\beta < \alpha} ((A \cap C)_{f_A}^{\beta} \cup (B \cap C)_{f_B}^{\beta}) = (A \cap C)_{f_A}^{\alpha} \cup (B \cap C)_{f_B}^{\alpha}$, which completes the proof of Theorem 4.1.

Acknowledgment. The author is very grateful to Professor T. Nogura, under whose valuable guidance these results were obtained. He also thanks Professor V.G. Gutev for many valuable suggestions.

- [1] A.V. Arhangel'skii S.P. Franklin, *Ordinal invariants for topological spaces*, Michigan Math. J., 15 (1968), pp. 313–320.
- [2] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- [3] R. Engelking, General Topology, PWN, 1977.
- [4] V. Kannan, *Ordinal invariants in topological spaces*, Memoris of the American Mathematial Society, July 1981, Volume 32, Num. 245.
- [5] T. Nogura A. Shibakov, *Sequential order of product spaces*, Topology and its Applications, 65 (1995), pp. 271–285.

Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790 (JAPAN), e-mail: hou@apm3.math.sci.ehime-u.ac.jp