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CERTAIN BANACH SPACES IN CONNECTION

WITH BEST APPROXIMATIONS

ANTONIO MARTINÓN - F. PÉREZ ACOSTA

Given an increasing sequence X0 ⊂ X1 ⊂ . . . ⊂ Xk ⊂ . . . of subspaces
of a Banach space X , for x ∈ X we consider the series

|x| =

∞�

k=0

dist (x, Xk).

Certain subspaces Z of X are Banach spaces with the norm | · |. In order
to prove this, a notion of equiconvergence of a family of numerical series is
introduced.

1. Introduction.

Let (X, � · �) be a (real or complex) Banach space. Let P ⊂ X a subspace
of X . Given x ∈ X , if there exists p ∈ P such that

�x − p� = dist (x , P) = inf{�x − u� : u ∈ P},

then p is called a best � · �-approximation to x from P . If for any x ∈ X
there exists a unique best � · �-approximation to x from P , then P is called a
Chebyshev subspace.
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Let us consider an increasing sequence of Chebyshev subspaces of X ,

X0 ⊂ X1 ⊂ . . . ⊂ Xk ⊂ . . .

For each x ∈ X and each k = 0, 1, 2, . . ., let us consider

�x�k = dist (x , Xk) = inf{�x − u� : u ∈ Xk}.

It is immediate to prove that � · �k is a seminorm on X . Consider the series

|x | =

∞�

k=0

�x�k.

It is clear that the set
Y = {x ∈ X : |x | < ∞}

is a linear subspace of X and any Xk is contained in Y . Moreover | · | is a
seminorm on Y and the kernel of the seminorm is X0. The associated notions to
�·� and | · | are distinguished by means of those symbols: �·�-limit, | · |-Cauchy,
etc.

In Section 2 we relate the best � · �-approximation with the best | · |-
approximations, and we prove that the difference belongs to X0.

In Section 3, given a � · �-closed subspace M ⊂ X , if Z = M ∩Y satis�es
certain conditions, then | · | is a norm on Z and Z is a Banach space. For
this purpose we consider a notion of equiconvergence of a family of numerical
series.

Finally, in Section 4, we give some examples.

2. Best approximations.

In this section we prove that the difference between the best � · �-
approximation and a best | · |-approximation and a best | · |-approximation to
elements of Y from Xk belongs to X0. For this purpose several simple results
are necessary, the proofs of which are straightforward and so omitted.

Lemma 1.
(1) If x ∈ X, k ≥ n ≥ 0 and u ∈ Xn, then �x − u�k = �x�k .

(2) If x ∈ X, n ≥ k ≥ 0 and u ∈ Xn, then �x − u�k ≥ �x�n.

(3) If x ∈ X, n ≥ k ≥ 0 and if pn is the best � · �-approximation to x from Xn ,
then �x − pn�k = �x�n.
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(4) If y ∈ Y , n ≥ 1 and u ∈ Xn, then

|y − u| =

n−1�

k=0

�y − u�k +

∞�

k=n

�y�k.

(5) If y ∈ Y and n ≥ 1, and if pn is the best � · �-approximation to y from Xn ,
then

|y − pn | = |y| + n�y�n −

n−1�

k=0

�y�k = n�y�n +

∞�

k=n

�y�k.

Theorem 2. If pn is the unique best � · �-approximation to y ∈ Y from Xn , then

pn + X0 = {pn + w : w ∈ X0}

is the set of all the best | · |-approximations to y from Xn .

Proof. Let w ∈ X0. We prove that pn + w is an best | · |-approximation to y
from Xn . Applying the Lemma 1 (4) and (2), for any u ∈ Xn, result

|y − u| =

n−1�

k=0

�y − u�k +

∞�

k=n

�y�k ≥ n�y�n +

∞�

k=n

�y�k.

On the other hand, by Lemma 1 (1), we obtain

|y − pn − w| =

∞�

k=0

�y − pn − w�k =

=

n−1�

k=0

�y − pn − w�k +

∞�

k=n

�y − pn − w�k = n�y�n +

∞�

k=n

�y�k.

Then |y − u| ≥ |y − pn − w|, for every u ∈ Xn ; that is, pn + w is a best
| · |-approximation to y from Xn .

Conversely, let qn be a best | · |-approximation to y from Xn . Taking into
account that pn is also a best | · |-approximation as really we have proved in the
�rst part of this proof, and by Lemma 1 (4) and 1 (5), we have that

|y − qn| =

n−1�

k=0

�y − qn�k +

∞�

k=n

�y�k = n�y�n +

∞�

k=n

�y�k = |y − pn |.
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Hence
n−1�

k=0

�y − qn�k = n�y�n.

On the other hand

�y − qn�0 ≥ �y − qn�1 ≥ . . . ≥ �y − qn�k ≥ �y − qn�n−1 ≥ �y�n,

hence �y − qn�k = �y�n (k = 0, 1, . . . , n − 1). Consequently

�y − qn�0 = �y�n = �y − pn�.

Then, there exists w ∈ X0 such that

�y − qn�0 = �y − qn − w� = �y − pn�.

Since pn is the unique best � · �-approximation to y from Xn , we obtain
qn + w = pn ; that is qn ∈ pn + X0. �

Proposition 3. The linear subspace
∞�

k=0

Xk is | · |-dense in Y .

Proof. From Lemma 1 (5),

(2.1) |y − pn | = |y| + n�y�n −

n−1�

k=0

�y�k.

Since Xn ⊂ Xn+1 , the sequence (|y− pn |) is decreasing, hence is convergent to

a certain λ ≥ 0. From (2.1) taking into account that
n−1�

k=0

�y�k is a partial sum of

|y|, λ = lim n�y|n. Since
�∞

n=0 �y�n is a convergent series and the harmonic
series

�∞

n=1
1
n

diverges, then λ = 0. �

Corollary 4. Let y ∈ Y . Let qn be a best | · |-approximation to y from Xn , for
each n = 0, 1, 2, . . .. Then

y = | · | − limqn .

Proof. Taking into account that |y − pn | = |y − qn |, where pn is the best
� · �-approximation to y from Xn and lim |y − pn | = 0. �
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3. Certain Banach spaces.

Through this section, M is a closed subspace of X and Z = M ∩ Y .
Moreover, we shall use the following two conditions on Z :

(∗) there exist α > 0 such that, for every z ∈ Z , α�z� ≤ �z�0 ;

(∗∗) given z1 ∈ Z and k = 0, 1, 2, . . ., there exists γk > 0, depending on z1 ,
such that,

for every z2 ∈ Z , �p1
k − p2

k� ≤ γk�z1 − z2�, where pik is the best � · �-
approximation to zi from Xk .

The hypothesis (∗) implies, for every z ∈ Z ,

α�z� ≤ �z�0 ≤ |z|.

Note that this condition implies that Z ∩ X0 = M ∩ X0 = {0}. Hence | · | is a
norm on Z .

The notion of equiconvergence of numerical series plays an important
role in the characterization of the | · |-convergent sequences and | · |-Cauchy
sequences.

De�nition 5. Let (Sj )j∈J be a family of convergent numerical series

Sj =

∞�

k=0

akj .

We say that this family is equiconvergent if for each ε > 0, there exist kε ∈ N

such that, for every j ∈ J ,
∞�

k=kε

akj < ε.

Lemma 6. Let (yn)n∈N ⊂ Y and y ∈ Y . The following families of series are at
same time equiconvergent

(1) (|yn|)n∈N ,

(2) (|yn − y|)n∈N ,

(3) (|yn − ym |)(n,m)∈NxN.
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Proof. (1) ⇒ (2) Let ε > 0. By hypothesis there exist k1 ∈ N such that, for
every n ∈ N,

∞�

k=k1

�yn�k <
ε

2
.

On the other hand, |y| < ∞ implies that there exists k2 ∈ N such that

∞�

k=k2

�y�k <
ε

2
.

Let kε = max{k1, k2}. Then, for every n ∈ N,

∞�

k=kε

�yn − y�k ≤

∞�

k=kε

�yn�k +

∞�

k=kε

�y�k < ε.

(2) ⇒ (3) Let ε > 0. Since (|yn − y|) is equiconvergent, there exists kε ∈ N

such that, for any n ∈ N,
∞�

k=kε

�yn − y�k <
ε

2
.

For every m, n ∈ N, we obtain

∞�

k=kε

�ym − yn�k ≤

∞�

k=kε

�ym − y�k +

∞�

k=kε

�yn − y�k < ε.

(3) ⇒ (1) Since the family (|ym − yn|) is equiconvergent, we have that (|ym −

y1�) is equiconvergent. From the implication (1) ⇒ (2) results (|yn|) is
equiconvergent. �

Proposition 7. Assume that the hypothesis (*) holds. Then a sequence (zn ) ⊂

Z is | · |-Cauchy if and only if the two following conditions are satis�ed:

(1) (zn ) is � · �-Cauchy,

(2) the sequence of series (|zn |) is equiconvergent.

Proof. Assume that (zn ) is a | · |-Cauchy sequence.
(1) By the hypothesis (∗), there exists α > 0 such that

α�zm − zn� ≤ �zm − zn�0 ≤ |zm − zn |.

Hence it is clear that (zn ) is � · �-Cauchy.
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(2) Let ε > 0. Then there exists nε ∈ N such that, for every n ≥ nε ,

|zn − znε
| =

∞�

k=0

�zn − znε
�k < ε.

On the other hand, for each n = 1, 2, . . . , nε −1, we have that |zn − znε
|k < ∞.

Then there exists kε ∈ N such that

∞�

k=kε

�zn − znε
�k < ε,

for all n ∈ N. That is, (|zn − znε
|) is equiconvergent. Thus from Lemma 6 (|zn |)

is equiconvergent.
Conversely, assume that (|zn |) satis�es (1) and (2). Note that, for any

h = 0, 1, 2, . . .,

|zn − zm | ≤ h�zn − zm� +

∞�

k=h

�zn − zm�k .

Let ε > 0. Since (|zn |) is equiconvergent (|zn − zm |) is equiconvergent
(Lemma 6). Hence there exists kε ∈ N such that

∞�

k=kε

�zn − zm�k <
ε

2
,

for every m, n ∈ N. On the other hand, since (�zn�) is a � · �-Cauchy sequence,
there exists nε ∈ N such that, for m, n ≥ nε , we have that

�zn − zm� <
ε

2kε

.

Then, for m, n ≥ nε , we obtain

|zn − zm | ≤ kε�zn − zm� +

∞�

k=kε

�zn − zm�k < ε.

Thus (zn ) is a | · |-Cauchy sequence. �

Proposition 8. Assume that the hypothesis (∗) holds. Then a sequence (zn ) ⊂

Z is | · |-convergent to z ∈ Z , z = | · |-lim zn , if and only if

(1) z = � · �-lim zn ,

(2) the sequence of series (|zn |) is equiconvergent.
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Proof. Assume z = | · |-lim zn . By the hypothesis (∗), there exists α > 0 such
that, for any n ∈ N,

α�z − zn� ≤ �z − zn�0 ≤ |z − zn |.

It is clear that z = � · �-lim zn . Also, applying Proposition 7, (|zn |) is
equiconvergent.

Conversely, assume that (1) and (2) hold. By a similar argument to the
second part of the proof of Proposition 7, we obtain z = | · |-lim zn . �

Theorem 9. Under the hypotheses (∗) and (∗∗), let (zn ) ⊂ Z be a | · |-bounded
sequence; that is, for a certain β and for every n, |zn | ≤ β . If (zn) is � · �-
convergent to z ∈ X , then |z| ≤ β ; hence z ∈ Z .

Proof. Denote by pnk and pk the best �. �-approximation to zn and z, respec-
tively, from Xk . Applying the condition (∗∗), we obtain

�z�k = �z − pk� ≤ �z − zn� + �zn − pnk � + �pnk − pk� ≤

≤ (1 + γk)�z − zn� + �zn�k .

Given ε > 0, we choose

n0 ≤ n1 ≤ . . . ≤ nk ≤ . . .

such that, for every n ≥ nk ,

�z − zn� <
ε

2k+1(1 + γk)
.

Consequently, for n ≥ nk ,

�z�k <
ε

2k+1
+ �zn�k .

Given h ∈ N, for any n ≥ nh , we have that

h�

k=0

�z�k ≤

h�

k=0

�zn�k +

h�

k=0

ε

2k+1
≤ |zn | + ε ≤ β + ε,

for every ε > 0. Hence, for any h,

h�

k=0

�z�k ≤ β.

Consequently |z| ≤ β . �

Theorem 10. If the hypotheses (∗) and (∗∗) hold, then the subspace Z with
the norm | · | is a Banach space.
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Proof. Let (zn ) ⊂ Z a | · |-Cauchy sequence. Applying Proposition 7 results
that (|zn |) is an equiconvergent sequence of series and (zn ) is a � · �-Cauchy
sequence. Since M is � · �-closed, there exists z ∈ M such that z = � · �-lim zn .
Because (zn ) is a | · |-bounded sequence, from Theorem 9 we obtain z ∈ Z . By
Proposition 8, results z = | · |-lim zn . �

4. Examples.

1. Let X = C[a, b] with the uniform norm � · �∞. Let Xk be the subspace
of all polynomials of degree k at most. For each f ∈ C[a, b] the so called
minimaxes � f �k and the so called minimax series | f | are considered (see [2]
and [4]).
The subspaces Xk are Chebyshev subspaces ([3], Theorem 6.3-5); consequently,
the best polynomial approximations qn to a function f ∈ Y with the norm | · |

agree with the best approximation pn with the uniform norm unless an additive
constant

qn ∈ pn + X0 = {pn + c : c ∈ C}.

If t0 is a �xed point of [a, b] we de�ne M = { f ∈ X : f (t0) = 0} and

Z = { f ∈ X : f (t0) = 0 and | f | < ∞}.

The fundamental hypothesis (∗) holds:

� f �∞

2
≤ � f �0 ≤ � f �∞,

for every f ∈ Z . Moreover, the condition (∗∗) is the well knownFreud Theorem
[1; p. 82]. Consequently, Z is a Banach space with the norm � · �. The space
(Z , | · |) has been considered in a previous paper of the second author et al. [4].
In this sense this paper is a generalization of [4].

2. Let X = �1 = {(αi ) ⊂ R :
∞�

i=0

|αi | < ∞}. We consider the subspaces

Xk = {(αi ) ∈ �1 : i ≥ k implies αi = 0},

for k = 0, 1, 2, . . .. Take M = X . Since X0 = {0}, the fundamental hypothesis
(∗) holds. The condition (∗∗) is satis�ed for γk = 1. Note that if x = (αi ) ∈ X

then �x�k =
∞�

i=k

|αi |. Then, for x ∈ Y ,

|x | =

∞�

k=0

(k + 1)|αk |.
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Consequently

Y = Z =

�
x = (αk) ∈ �1 :

∞�

k=1

k|αk | < ∞

�

is a Banach space with the norm | · |.

3. Let X be a Hilbert space. The inner product is denoted by < ·, · >.
Assume that the subspaces Xk have dimension k, hence they are Chebyshev
subspaces and the condition (∗) is satis�ed. Since in Hilbert spaces the nearest
point mapping of a subspace coincides with the orthogonal projection to the
subspace (and this projection is linear of norm 1), we have immediately

�pxk − p
y
k � ≤ �x − y�.

This means that (∗∗) holds with γk = 1. Moreover if {yk1, y
k
2 , . . . , ykk } is

an orthogonal basis of Xk , then

Y =

�
x ∈ H :

∞�

k=1

�x −

k�

i=1

< x , yki > yki � < ∞

�
.
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