CERTAIN BANACH SPACES IN CONNECTION WITH BEST APPROXIMATIONS

ANTONIO MARTINÓN - F. PÉREZ ACOSTA

Given an increasing sequence $X_0 \subset X_1 \subset ... \subset X_k \subset ...$ of subspaces of a Banach space X, for $x \in X$ we consider the series

$$|x| = \sum_{k=0}^{\infty} \operatorname{dist}(x, X_k).$$

Certain subspaces Z of X are Banach spaces with the norm $|\cdot|$. In order to prove this, a notion of equiconvergence of a family of numerical series is introduced.

1. Introduction.

Let $(X, \|\cdot\|)$ be a (real or complex) Banach space. Let $P \subset X$ a subspace of X. Given $x \in X$, if there exists $p \in P$ such that

$$||x - p|| = \text{dist}(x, P) = \inf\{||x - u|| : u \in P\},\$$

then p is called a best $\|\cdot\|$ -approximation to x from P. If for any $x \in X$ there exists a unique best $\|\cdot\|$ -approximation to x from P, then P is called a Chebyshev subspace.

Entrato in Redazione il 17 dicembre 1997.

AMS Subject Classification: 46B99, 41A99.

Key words: Banach spaces, Best approximations.

Let us consider an increasing sequence of Chebyshev subspaces of X,

$$X_0 \subset X_1 \subset \ldots \subset X_k \subset \ldots$$

For each $x \in X$ and each k = 0, 1, 2, ..., let us consider

$$||x||_k = \operatorname{dist}(x, X_k) = \inf\{||x - u|| : u \in X_k\}.$$

It is immediate to prove that $\|\cdot\|_k$ is a seminorm on X. Consider the series

$$|x| = \sum_{k=0}^{\infty} ||x||_k.$$

It is clear that the set

$$Y = \{x \in X : |x| < \infty\}$$

is a linear subspace of X and any X_k is contained in Y. Moreover $|\cdot|$ is a seminorm on Y and the kernel of the seminorm is X_0 . The associated notions to $\|\cdot\|$ and $|\cdot|$ are distinguished by means of those symbols: $\|\cdot\|$ -limit, $|\cdot|$ -Cauchy, etc.

In Section 2 we relate the best $\|\cdot\|$ -approximation with the best $\|\cdot\|$ -approximations, and we prove that the difference belongs to X_0 .

In Section 3, given a $\|\cdot\|$ -closed subspace $M \subset X$, if $Z = M \cap Y$ satisfies certain conditions, then $|\cdot|$ is a norm on Z and Z is a Banach space. For this purpose we consider a notion of equiconvergence of a family of numerical series.

Finally, in Section 4, we give some examples.

2. Best approximations.

In this section we prove that the difference between the best $\|\cdot\|$ -approximation and a best $\|\cdot\|$ -approximation and a best $\|\cdot\|$ -approximation to elements of Y from X_k belongs to X_0 . For this purpose several simple results are necessary, the proofs of which are straightforward and so omitted.

Lemma 1.

- (1) If $x \in X$, $k \ge n \ge 0$ and $u \in X_n$, then $||x u||_k = ||x||_k$.
- (2) If $x \in X$, $n \ge k \ge 0$ and $u \in X_n$, then $||x u||_k \ge ||x||_n$.
- (3) If $x \in X$, $n \ge k \ge 0$ and if p_n is the best $\|\cdot\|$ -approximation to x from X_n , then $\|x p_n\|_k = \|x\|_n$.

(4) If $y \in Y$, $n \ge 1$ and $u \in X_n$, then

$$|y - u| = \sum_{k=0}^{n-1} ||y - u||_k + \sum_{k=n}^{\infty} ||y||_k.$$

(5) If $y \in Y$ and $n \ge 1$, and if p_n is the best $\|\cdot\|$ -approximation to y from X_n , then

$$|y - p_n| = |y| + n||y||_n - \sum_{k=0}^{n-1} ||y||_k = n||y||_n + \sum_{k=n}^{\infty} ||y||_k.$$

Theorem 2. If p_n is the unique best $\|\cdot\|$ -approximation to $y \in Y$ from X_n , then

$$p_n + X_0 = \{p_n + w : w \in X_0\}$$

is the set of all the best $|\cdot|$ -approximations to y from X_n .

Proof. Let $w \in X_0$. We prove that $p_n + w$ is an best $|\cdot|$ -approximation to y from X_n . Applying the Lemma 1 (4) and (2), for any $u \in X_n$, result

$$|y - u| = \sum_{k=0}^{n-1} \|y - u\|_k + \sum_{k=n}^{\infty} \|y\|_k \ge n \|y\|_n + \sum_{k=n}^{\infty} \|y\|_k.$$

On the other hand, by Lemma 1 (1), we obtain

$$|y - p_n - w| = \sum_{k=0}^{\infty} ||y - p_n - w||_k =$$

$$= \sum_{k=0}^{n-1} ||y - p_n - w||_k + \sum_{k=n}^{\infty} ||y - p_n - w||_k = n||y||_n + \sum_{k=n}^{\infty} ||y||_k.$$

Then $|y - u| \ge |y - p_n - w|$, for every $u \in X_n$; that is, $p_n + w$ is a best $|\cdot|$ -approximation to y from X_n .

Conversely, let q_n be a best $|\cdot|$ -approximation to y from X_n . Taking into account that p_n is also a best $|\cdot|$ -approximation as really we have proved in the first part of this proof, and by Lemma 1 (4) and 1 (5), we have that

$$|y - q_n| = \sum_{k=0}^{n-1} \|y - q_n\|_k + \sum_{k=n}^{\infty} \|y\|_k = n\|y\|_n + \sum_{k=n}^{\infty} \|y\|_k = |y - p_n|.$$

Hence

$$\sum_{k=0}^{n-1} \|y - q_n\|_k = n \|y\|_n.$$

On the other hand

$$\|y - q_n\|_0 \ge \|y - q_n\|_1 \ge \ldots \ge \|y - q_n\|_k \ge \|y - q_n\|_{n-1} \ge \|y\|_n$$

hence $||y - q_n||_k = ||y||_n$ (k = 0, 1, ..., n - 1). Consequently

$$||y - q_n||_0 = ||y||_n = ||y - p_n||.$$

Then, there exists $w \in X_0$ such that

$$||y - q_n||_0 = ||y - q_n - w|| = ||y - p_n||.$$

Since p_n is the unique best $\|\cdot\|$ -approximation to y from X_n , we obtain $q_n + w = p_n$; that is $q_n \in p_n + X_0$.

Proposition 3. The linear subspace $\bigcup_{k=0}^{\infty} X_k$ is $|\cdot|$ -dense in Y.

Proof. From Lemma 1 (5),

$$(2.1) |y - p_n| = |y| + n||y||_n - \sum_{k=0}^{n-1} ||y||_k.$$

Since $X_n \subset X_{n+1}$, the sequence $(|y-p_n|)$ is decreasing, hence is convergent to a certain $\lambda \geq 0$. From (2.1) taking into account that $\sum_{k=0}^{n-1} \|y\|_k$ is a partial sum of |y|, $\lambda = \lim_{n \to \infty} n \|y\|_n$. Since $\sum_{n=0}^{\infty} \|y\|_n$ is a convergent series and the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then $\lambda = 0$.

Corollary 4. Let $y \in Y$. Let q_n be a best $|\cdot|$ -approximation to y from X_n , for each n = 0, 1, 2, ... Then

$$y = |\cdot| - \lim q_n$$
.

Proof. Taking into account that $|y - p_n| = |y - q_n|$, where p_n is the best $\|\cdot\|$ -approximation to y from X_n and $\lim |y - p_n| = 0$.

3. Certain Banach spaces.

Through this section, M is a closed subspace of X and $Z = M \cap Y$. Moreover, we shall use the following two conditions on Z:

- (*) there exist $\alpha > 0$ such that, for every $z \in Z$, $\alpha ||z|| \le ||z||_0$;
- (**) given $z_1 \in Z$ and k = 0, 1, 2, ..., there exists $\gamma_k > 0$, depending on z_1 , such that,

for every $z_2 \in Z$, $||p_k^1 - p_k^2|| \le \gamma_k ||z_1 - z_2||$, where p_k^i is the best $||\cdot||$ -approximation to z_i from X_k .

The hypothesis (*) implies, for every $z \in Z$,

$$\alpha \|z\| \leq \|z\|_0 \leq |z|.$$

Note that this condition implies that $Z \cap X_0 = M \cap X_0 = \{0\}$. Hence $|\cdot|$ is a norm on Z.

The notion of equiconvergence of numerical series plays an important role in the characterization of the $|\cdot|$ -convergent sequences and $|\cdot|$ -Cauchy sequences.

Definition 5. Let $(S_i)_{i \in J}$ be a family of convergent numerical series

$$S_j = \sum_{k=0}^{\infty} a_{kj} .$$

We say that this family is *equiconvergent* if for each $\varepsilon > 0$, there exist $k_{\varepsilon} \in \mathbb{N}$ such that, for every $j \in J$,

$$\sum_{k=k}^{\infty} a_{kj} < \varepsilon.$$

Lemma 6. Let $(y_n)_{n\in\mathbb{N}}\subset Y$ and $y\in Y$. The following families of series are at same time equiconvergent

- (1) $(|y_n|)_{n\in\mathbb{N}}$,
- (2) $(|y_n y|)_{n \in \mathbb{N}}$,
- $(3) (|y_n y_m|)_{(n,m) \in \mathbb{N} \times \mathbb{N}}.$

Proof. (1) \Rightarrow (2) Let $\varepsilon > 0$. By hypothesis there exist $k_1 \in \mathbb{N}$ such that, for every $n \in \mathbb{N}$,

$$\sum_{k=k_1}^{\infty} \|y_n\|_k < \frac{\varepsilon}{2}.$$

On the other hand, $|y| < \infty$ implies that there exists $k_2 \in \mathbb{N}$ such that

$$\sum_{k=k_2}^{\infty} \|y\|_k < \frac{\varepsilon}{2}.$$

Let $k_{\varepsilon} = \max\{k_1, k_2\}$. Then, for every $n \in \mathbb{N}$,

$$\sum_{k=k_{\varepsilon}}^{\infty} \|y_n - y\|_k \le \sum_{k=k_{\varepsilon}}^{\infty} \|y_n\|_k + \sum_{k=k_{\varepsilon}}^{\infty} \|y\|_k < \varepsilon.$$

(2) \Rightarrow (3) Let $\varepsilon > 0$. Since $(|y_n - y|)$ is equiconvergent, there exists $k_{\varepsilon} \in \mathbb{N}$ such that, for any $n \in \mathbb{N}$,

$$\sum_{k=k_0}^{\infty} \|y_n - y\|_k < \frac{\varepsilon}{2}.$$

For every $m, n \in \mathbb{N}$, we obtain

$$\sum_{k=k_{\varepsilon}}^{\infty} \|y_m - y_n\|_k \le \sum_{k=k_{\varepsilon}}^{\infty} \|y_m - y\|_k + \sum_{k=k_{\varepsilon}}^{\infty} \|y_n - y\|_k < \varepsilon.$$

(3) \Rightarrow (1) Since the family $(|y_m - y_n|)$ is equiconvergent, we have that $(|y_m - y_1|)$ is equiconvergent. From the implication (1) \Rightarrow (2) results $(|y_n|)$ is equiconvergent. \square

Proposition 7. Assume that the hypothesis (*) holds. Then a sequence $(z_n) \subset Z$ is $|\cdot|$ -Cauchy if and only if the two following conditions are satisfied:

- (1) (z_n) is $\|\cdot\|$ -Cauchy,
- (2) the sequence of series $(|z_n|)$ is equiconvergent.

Proof. Assume that (z_n) is a $|\cdot|$ -Cauchy sequence.

(1) By the hypothesis (*), there exists $\alpha > 0$ such that

$$\alpha ||z_m - z_n|| \le ||z_m - z_n||_0 \le |z_m - z_n|.$$

Hence it is clear that (z_n) is $\|\cdot\|$ -Cauchy.

(2) Let $\varepsilon > 0$. Then there exists $n_{\varepsilon} \in \mathbb{N}$ such that, for every $n \geq n_{\varepsilon}$,

$$|z_n - z_{n_{\varepsilon}}| = \sum_{k=0}^{\infty} ||z_n - z_{n_{\varepsilon}}||_k < \varepsilon.$$

On the other hand, for each $n=1,2,\ldots,n_{\varepsilon}-1$, we have that $|z_n-z_{n_{\varepsilon}}|_k<\infty$. Then there exists $k_{\varepsilon}\in\mathbb{N}$ such that

$$\sum_{k=k_{\varepsilon}}^{\infty} \|z_n - z_{n_{\varepsilon}}\|_k < \varepsilon,$$

for all $n \in \mathbb{N}$. That is, $(|z_n - z_{n_{\varepsilon}}|)$ is equiconvergent. Thus from Lemma 6 $(|z_n|)$ is equiconvergent.

Conversely, assume that $(|z_n|)$ satisfies (1) and (2). Note that, for any h = 0, 1, 2

$$|z_n - z_m| \le h ||z_n - z_m|| + \sum_{k=h}^{\infty} ||z_n - z_m||_k.$$

Let $\varepsilon > 0$. Since $(|z_n|)$ is equiconvergent $(|z_n - z_m|)$ is equiconvergent (Lemma 6). Hence there exists $k_{\varepsilon} \in \mathbb{N}$ such that

$$\sum_{k=k}^{\infty} \|z_n - z_m\|_k < \frac{\varepsilon}{2},$$

for every $m, n \in \mathbb{N}$. On the other hand, since $(\|z_n\|)$ is a $\|\cdot\|$ -Cauchy sequence, there exists $n_{\varepsilon} \in \mathbb{N}$ such that, for $m, n \geq n_{\varepsilon}$, we have that

$$||z_n-z_m||<\frac{\varepsilon}{2k_{\varepsilon}}.$$

Then, for $m, n \ge n_{\varepsilon}$, we obtain

$$|z_n-z_m| \leq k_{\varepsilon} ||z_n-z_m|| + \sum_{k=k_{\varepsilon}}^{\infty} ||z_n-z_m||_k < \varepsilon.$$

Thus (z_n) is a $|\cdot|$ -Cauchy sequence.

Proposition 8. Assume that the hypothesis (*) holds. Then a sequence $(z_n) \subset Z$ is $|\cdot|$ -convergent to $z \in Z$, $z = |\cdot|$ - $\lim z_n$, if and only if

- (1) $z = \|\cdot\| \lim z_n$,
- (2) the sequence of series $(|z_n|)$ is equiconvergent.

Proof. Assume $z = |\cdot|$ - $\lim z_n$. By the hypothesis (*), there exists $\alpha > 0$ such that, for any $n \in \mathbb{N}$,

$$\alpha ||z-z_n|| \leq ||z-z_n||_0 \leq |z-z_n|.$$

It is clear that $z = \|\cdot\| - \lim z_n$. Also, applying Proposition 7, $(|z_n|)$ is equiconvergent.

Conversely, assume that (1) and (2) hold. By a similar argument to the second part of the proof of Proposition 7, we obtain $z = |\cdot|$ -lim z_n .

Theorem 9. Under the hypotheses (*) and (**), let $(z_n) \subset Z$ be a $|\cdot|$ -bounded sequence; that is, for a certain β and for every n, $|z_n| \leq \beta$. If (z_n) is $||\cdot||$ -convergent to $z \in X$, then $|z| \leq \beta$; hence $z \in Z$.

Proof. Denote by p_k^n and p_k the best $\|.\|$ -approximation to z_n and z, respectively, from X_k . Applying the condition (**), we obtain

$$||z||_k = ||z - p_k|| \le ||z - z_n|| + ||z_n - p_k^n|| + ||p_k^n - p_k|| \le$$

$$\le (1 + \gamma_k)||z - z_n|| + ||z_n||_k.$$

Given $\varepsilon > 0$, we choose

$$n_0 \leq n_1 \leq \ldots \leq n_k \leq \ldots$$

such that, for every $n \ge n_k$,

$$||z-z_n||<\frac{\varepsilon}{2^{k+1}(1+\gamma_k)}.$$

Consequently, for $n \geq n_k$,

$$||z||_k < \frac{\varepsilon}{2^{k+1}} + ||z_n||_k.$$

Given $h \in \mathbb{N}$, for any $n > n_h$, we have that

$$\sum_{k=0}^{h} \|z\|_{k} \le \sum_{k=0}^{h} \|z_{n}\|_{k} + \sum_{k=0}^{h} \frac{\varepsilon}{2^{k+1}} \le |z_{n}| + \varepsilon \le \beta + \varepsilon,$$

for every $\varepsilon > 0$. Hence, for any h,

$$\sum_{k=0}^n \|z\|_k \le \beta.$$

Consequently $|z| < \beta$.

Theorem 10. *If the hypotheses* (*) *and* (**) *hold, then the subspace* Z *with the norm* $|\cdot|$ *is a Banach space.*

Proof. Let $(z_n) \subset Z$ a $|\cdot|$ -Cauchy sequence. Applying Proposition 7 results that $(|z_n|)$ is an equiconvergent sequence of series and (z_n) is a $\|\cdot\|$ -Cauchy sequence. Since M is $\|\cdot\|$ -closed, there exists $z \in M$ such that $z = \|\cdot\|$ -lim z_n . Because (z_n) is a $|\cdot|$ -bounded sequence, from Theorem 9 we obtain $z \in Z$. By Proposition 8, results $z = |\cdot|$ -lim z_n .

4. Examples.

1. Let X = C[a, b] with the uniform norm $\|\cdot\|_{\infty}$. Let X_k be the subspace of all polynomials of degree k at most. For each $f \in C[a, b]$ the so called *minimaxes* $\|f\|_k$ and the so called *minimax series* |f| are considered (see [2] and [4]).

The subspaces X_k are Chebyshev subspaces ([3], Theorem 6.3-5); consequently, the best polynomial approximations q_n to a function $f \in Y$ with the norm $|\cdot|$ agree with the best approximation p_n with the uniform norm unless an additive constant

$$q_n \in p_n + X_0 = \{p_n + c : c \in \mathbb{C}\}.$$

If t_0 is a fixed point of [a, b] we define $M = \{f \in X : f(t_0) = 0\}$ and

$$Z = \{ f \in X : f(t_0) = 0 \text{ and } |f| < \infty \}.$$

The fundamental hypothesis (*) holds:

$$\frac{\|f\|_{\infty}}{2} \le \|f\|_{0} \le \|f\|_{\infty},$$

for every $f \in Z$. Moreover, the condition (**) is the well known Freud Theorem [1; p. 82]. Consequently, Z is a Banach space with the norm $\|\cdot\|$. The space $(Z, |\cdot|)$ has been considered in a previous paper of the second author et al. [4]. In this sense this paper is a generalization of [4].

2. Let
$$X = \ell^1 = \{(\alpha_i) \subset \mathbb{R} : \sum_{i=0}^{\infty} |\alpha_i| < \infty\}$$
. We consider the subspaces

$$X_k = \{(\alpha_i) \in \ell^1 : i \ge k \text{ implies } \alpha_i = 0\},$$

for $k=0,1,2,\ldots$ Take M=X. Since $X_0=\{0\}$, the fundamental hypothesis (*) holds. The condition (**) is satisfied for $\gamma_k=1$. Note that if $x=(\alpha_i)\in X$ then $\|x\|_k=\sum_{i=k}^\infty |\alpha_i|$. Then, for $x\in Y$,

$$|x| = \sum_{k=0}^{\infty} (k+1)|\alpha_k|.$$

Consequently

$$Y = Z = \left\{ x = (\alpha_k) \in \ell^1 : \sum_{k=1}^{\infty} k |\alpha_k| < \infty \right\}$$

is a Banach space with the norm $|\cdot|$.

3. Let X be a Hilbert space. The inner product is denoted by $\langle \cdot, \cdot \rangle$. Assume that the subspaces X_k have dimension k, hence they are Chebyshev subspaces and the condition (*) is satisfied. Since in Hilbert spaces the nearest point mapping of a subspace coincides with the orthogonal projection to the subspace (and this projection is linear of norm 1), we have immediately

$$||p_k^x - p_k^y|| \le ||x - y||.$$

This means that (**) holds with $\gamma_k = 1$. Moreover if $\{y_1^k, y_2^k, \dots, y_k^k\}$ is an orthogonal basis of X_k , then

$$Y = \left\{ x \in H : \sum_{k=1}^{\infty} \|x - \sum_{i=1}^{k} \langle x, y_i^k \rangle y_i^k \| < \infty \right\}.$$

REFERENCES

- [1] E.W. Cheney, Introduction to Approximation Theory, MacGraw-Hill, 1966.
- [2] N. Hayek F. Pérez Acosta, *Boundedness of the minimax series of some special functions*, Rev. Acad. Canaria Ciencias, 6-1 (1994), pp. 119–127.
- [3] E. Kreyszing, Introductory functional Analysis with application, Wiley, 1989.
- [4] F. Pérez Acosta P. González Vera, *Approximation and convergence with the norm induced by the minimax series*, Rend. Sem. Mat. Univ. Polit. Torino, to appear.

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife) (SPAIN)