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A NOTE ON THE FABER-KRAHN INEQUALITY

TILAK BHATTACHARYA

In this work we study the well known Faber-Krahn inequality for planar
domains. Let u > 0 be the �rst eigenfunction of the Laplacian on a bounded
domain and λ1 be the �rst eigenvalue. Let λ∗

1 be the �rst eigenvalue for

the symmetrized domain. We prove that a certain weighted L1 integral
of the isoperimetric de�ciencies of the level sets of u may be bounded by
the quantity λ1 − λ∗

1 . This leads to a sharper version of the Faber-Krahn
inequality. It can be easily shown that this result also holds for more general
divergence type equations.

1. Introduction.

This note is a continuation of [2], where we derived estimates on the
symmetrized �rst eigenfunction of the Laplacian on bounded planar domains.
We introduced a method for obtaining maximal solutions to the well known
Talenti�s inequality for the �rst eigenfunction [4], and derived upper bounds
for the symmetrized eigenfunctions by studying the corresponding maximal
solution. Our effort in this work will be to employ methods of [2] and quantify
the Faber-Krahn inequality in terms of the perimeter of the level sets. Our basic
conclusion is that the closer the �rst eigenvalue is to that of the disk of the same
area the smaller the isoperimetric de�ciency is in a weighted L1 sense.

Let � ⊂ R
2 be a bounded domain and let ∂� be the boundary of �. Let u

solve

(1.1) �u + λ1u = 0 in �, and u|∂� = 0,
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where λ1 = λ1(�) > 0 is the �rst eigenvalue of the Laplacian. We refer to u
as the �rst eigenfunction. It is well known that λ1 is simple and u has one sign.
From hereon, we will assume that u > 0 and sup u = 1. For 0 ≤ t ≤ 1 we let

(1.2) �t = {x ∈ � : u(x) > t},

(1.3) µ(t) = |�t |,

where |S| denotes the area of a set S ⊂ R
2. Also let �∗ be the disc centered

at the origin with area equal to that of �. Let (x , y) denote the Cartesian
coordinates of a point in �∗ . De�ne

u#(a) = inf{t > 0 : µ(t) < a}, and(1.4)

u∗(x , y) = u#(π(x 2 + y2)).

The function u∗ is called the Schwarz nonincreasing radial rearrangement of u.
In this work, we take |�| = 1; also set λ∗

1 = λ1(�
∗).

We will now provide a formal derivation of Talenti�s inequality for the
positive solution of (1.1) (see Sections 4 and 5 in [4]. Also see [1]). This will
make explicit the questions we will be studying in this work. Recall that u is
locally analytic and thus by Sard�s Theorem and the Coarea formula we have
for 0 < t < 1

(1.5)

��

∂�t

1

�2

≤

�

∂�t

|Du|

�

∂�t

1

|Du|
.

Let L(∂�t ) denote the length (1-dimensional Hausdorff measure) of ∂�t .
An application of the divergence theorem on (1.1), the classical isoperimetric
inequality and (1.5) yield that for a. e. t

4πµ(t) ≤ L(∂�t )
2 ≤

�

∂�t

|Du|

�

∂�t

1

|Du|
=(1.6)

= λ1

�

∂�t

1

|Du|

�

�t

u = −λ1µ
�(t)

�

�t

u, for a. e. t,

where µ�(t) = dµ/dt . Thus we have that

(1.7) 4πµ(t) ≤ −λ1µ
�(t)

�� 1

t

µ(s)ds + tµ(t)

�

, for a. e. t,
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µ(0) = 1 and µ(1) = 0.

In [2], a detailed study of (1.7) was carried out and a maximal solution
Z ≥ µ was constructed which lead to a better understanding of µ. In particular,
we obtained estimates for u∗ in terms of λ1 and λ∗

1. In this work we derive a
sharper version of the well known Faber-Krahn isoperimetric inequality, which
says that λ1 ≥ λ∗

1 and λ1 = λ∗
1 if and only if � = �∗ . Prompted by (1.6) and

(1.7), we de�ne the following two quantities. Let s(t) and σ(t) be such that

4π{1 + σ(t)}µ(t) =(1.8)

= L(∂�t )
2 and 4π{1 + s(t)}µ(t) =

�

∂�t

|Du|

�

∂�t

1

|Du|
,

for all t �s at which (1.7) is well de�ned. Clearly, 0 ≤ σ(t) ≤ s(t) and �t is a
disc whenever σ(t) = 0 (or s(t) = 0). We refer to the quantity 4πσ(t) as the
isoperimetric de�ciency. Our effort will be to try to quantify the Faber-Krahn
inequality in terms of σ(t) and s(t). More precisely,

Theorem 1. Let � ⊂ R
2 be a bounded domain with |�| = 1. Let λ1 be the

�rst eigenvalue of� and let λ∗
1 be the �rst eigenvalue of�

∗ . Suppose u satis�es
(1.1) with 0 < u ≤ 1 and sup u = 1. De�ne µ, σ and s by (1.3) and (1.8).
Then there exists an absolute positive constant C such that

(1.9) 0 ≤

� 1

0

σ(t)µ(t)dt ≤

� 1

0

s(t)µ(t)dt ≤ C(λ1 − λ∗
1).

Remark 1.1. Theorem 1 holds for more general uniformly elliptic p.d.e�s.
Consider the eigenvalue problem,

−
� ∂

∂xi

�

ai j (x)
∂u

∂xj

�

+ c(x)u = λ1u, in �, u ∈W 1,2
0 (�).

Here ai j (x) and c(x) ∈ L∞(�). We require c(x) ≥ 0 and

ai j (x)ξiξj ≥ |ξ |2, ∀x ∈ �, ∀ξ ∈ R
2.

Let λ1 be the �rst eigenvalue. It is well known that λ1 > 0 and the �rst
eigenfunction does not change sign. From [4], one sees that (1.7) continues
to hold.
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Remark 1.2. It is not clear whether or not the exponent 1 on the term (λ1 −λ∗
1)

in (1.9), is sharp. We are also unable to determine whether a lower bound, in
terms of (λ1 − λ∗

1), holds. It also seems to be unknown whether an estimate of
the type (1.9) holds for the �rst eigenvalue for the p-Laplacian.

The proof of Theorem 1 is achieved by adapting the methods employed in
[2].

We have divided our work as follows. Section 2 contains some preliminary
results and the proof of Theorem 1 appears in Section 3.

We thank the referee for making several useful suggestions.

2. Preliminary Results.

We will �rst present a short proof of the Faber-Krahn inequality based on
our previous study of Talenti�s inequality in [2]. In order to prove the Faber-
Krahn inequality we �rst prove that λ1 ≥ λ∗

1 (see Theorem 3.3 in [2] and the
related Lemma 2.1 in this work). To prove that � is a disc when λ1 = λ∗

1, we
proceed as follows. We recall the de�nition of the maximal solution Z for (1.7).
For any given λ1 > 0, the function Z solves

4π

λ1

Z (t) = −Z �(t)

�� 1

t

Z (s)ds + t Z (t)

�

, for 0 < t < 1,(2.1)

Z (0) = 1.

As was shown in Theorem 1.1 in [2], µ(t) ≤ Z (t) in [0,1] (also see (2.13)),
and the value of Z (1) played a central role in obtaining estimates on µ and
consequently for u∗ . If λ1 = λ∗

1 then Corollary 3.1 in [2] implies that Z (1) = 0.
Now µ�(t) exists outside a set of zero measure. Thus from (2.1), (1.7) and the
fact that µ ≤ Z , for a. e. t,

µ�(t)/µ(t) ≤ −
4π

λ∗
1

�� 1

t

µ(s)ds + tµ(t)

�−1

≤(2.2)

≤ −
4π

λ∗
1

�� 1

t

Z (s)ds + t Z (t)

�−1

= Z �(t)/Z (t).

Note that − log µ(t) is nondecreasing and continuous in [0,1). Thus (2.2) yields,

log{µ(t)/µ(s)} ≤

� t

s

µ�(τ )/µ(τ) dτ ≤

� t

s

Z �(τ )/Z (τ ) dτ = log{Z (t)/Z (s)}.
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Clearly then,

(2.3) 1 ≤ Z (s)/µ(s) ≤ Z (t)/µ(t), 0 ≤ s ≤ t < 1.

Employing that −µ is increasing and Z is absolutely continuous, we see that

(2.4) Z (t) = −

� 1

t

Z �(τ ) dτ and µ(t) ≥ −

� 1

t

µ�(τ ) dτ.

Now using (2.4), (2.1), (1.7) and the fact that both Z and µ are non-increasing,
we obtain that

Z (t)

µ(t)
≤

� 1

t
−Z �(τ ) dτ

� 1
t −µ�(τ ) dτ

≤(2.5)

≤

�� 1

t

Z (τ )
� 1

τ
Z (θ) dθ + τ Z (τ )

dτ

���� 1

t

µ(τ)
� 1

τ
µ(θ) dθ + τµ(τ)

dτ

�

≤

�� 1

t

Z (τ )

τ Z (τ )
dτ

���� 1

t

1 dτ

�

=
log(1/t)

1 − t
→ 1 as t → 1.

From (2.3) we see that Z (t) = µ(t), ∀ t ∈ [0, 1]. Thus equality holds in (1.7),
∀ t ∈ [0, 1], and hence in the classical isoperimetric inequality in (1.6). Thus �t
is a disc for all t . Since � = ∪t>0�t , and �t increases to � as t decreases to
0, it is clear that � is a disc. �

In order to prove Theorem 1, we will use inequality (1.7) as follows. Recall
the de�nition of σ(t) from (1.8); thus µ satis�es,

(2.6)
4π

λ1
{1 + σ(t)}µ(t) ≤ −µ�(t)

�� 1

t

µ(τ)dτ + tµ(t)

�

, for a.e. t .

If we use s(t) instead, we get

(2.7)
4π

λ1

{1 + s(t)}µ(t) = −µ�(t)

�� 1

t

µ(τ)dτ + tµ(t)

�

, for a.e. t .

In either case, µ(0) = 1 and µ(1) = 0. We now derive an easy weighted

L1 estimate for s(t). Observe that F(t) =
�� 1

t
µ(s)ds + tµ(t)

�
=

��
�t
u
�

is continuous and decreasing in t . Thus F(t)µ(t) is also continuous and
decreasing. Hence,

F(1)µ(1) − F(0)µ(0) ≤

� 1

0

(F(t)µ(t))� dt ≤ 0.
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Simplifying, we obtain

0 ≤ −

� 1

0

µ�(t)F(t) dt −

� 1

0

µ(t)F �(t) dt ≤ F(0) =

� 1

0

µ(t) dt ≤ 1.

Combining this with (2.7) yields

(2.8)
4π

λ1

� 1

0

{1 + s(t)}µ(t) dt ≤

� 1

0

µ(t) dt ≤ 1.

Also noting that − logµ(t) is nondecreasing, continuous and

µ�(t)/µ(t) = −
4π

λ1
(1 + s(t))

�� 1

t

µ(τ)dτ + tµ(t)

�−1

for a.e. t,

we obtain that for t ∈ (0, 1),

(2.9) 0 < µ(t) ≤ exp

�

−
4π

λ1

� t

0

1 + s(τ )
� 1
τ

µ(θ)dθ + τµ(τ)
dτ

�

≤ 1.

We now construct a maximal solution G(t) to (2.9) as follows (see proof of
Theorem 1.1 in [2]). For n = 1, 2, . . ., set

(2.10) Gn(t) = exp

�

−
4π

λ1

� t

0

1 + s(τ )
� 1

τ
Gn−1(θ) dθ + τGn−1(τ )

dτ

�

,

where G0(t) = 1 on [0,1]. Now Gn(0) = 1, ∀n = 1, 2 . . .. Using (2.9), (2.10)
and µ ≤ 1, we have

G1(t) = exp

�

−
4π

λ1

� t

0

(1 + s(τ )) dτ

�

≥ µ(t).

If Gn(t) ≥ µ(t) for some n, then (2.9) and (2.10) imply that Gn+1(t) ≥ µ(t).
Again G1(t) ≤ G0(t), and if Gn(t) ≤ Gn−1(t), for some n, then (2.10)
implies that Gn+1(t) ≤ Gn(t). Thus, arguing by induction, we see {Gn(t)}
is a decreasing sequence of decreasing functions, bounded below by µ(t)
and bounded above by 1. Thus taking limits in (2.10) and setting G(t) =
limn→∞ Gn(t), we obtain

0 < µ(t) ≤ G(t) = exp

�

−
4π

λ1

� t

0

1 + s(τ )
� 1

τ
G(θ) dθ + τG(τ )

dτ

�

≤ 1,(2.11)

G(0) = 1.
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Furthermore, G(t) is absolutely continuous on [0, a], ∀a < 1. By differentiat-
ing (2.11), we see that for a. e. t ,

4π

λ1
{1 + s(t)}G(t) = −G �(t)

�� 1

t

G(τ ) dτ + tG(t)

�

,(2.12)

G(0) = 1.

By taking σ(t) in (2.10), in place of s(t), we would generate a maximal solution,
say Ḡ(t) ≥ µ(t), to (2.6), i. e.,

4π

λ1
{1 + σ(t)}Ḡ(t) = −Ḡ �(t)

�� 1

t

Ḡ(τ ) dτ + t Ḡ(t)

�

.

Dropping the term s(t) entirely, in (2.10), we would get back the maximal
solution Z (t) to (1.7). By comparing the iterates Zn,Gn , Ḡn and µ(t) (e. g.
µ(t) ≤ G1(t) ≤ Ḡ1(t) ≤ Z1(t)) and employing an argument, similar to the one
used above in the proof of the existence of G(t), we �nd that

(2.13) 0 ≤ µ(t) ≤ G(t) ≤ Ḡ(t) ≤ Z (t) ≤ 1, ∀ t ∈ [0, 1].

We now prove an identity for G(t) which will help us in deriving the estimate
in Theorem 1 (see Theorem 3.1 in [2]).

Lemma 2.1. Let G(t) be as in (2.11). Then the following identity holds,
namely,

G(1)J2

��
λ1G(1)

π

�

+

�
4π

λ1

� 1

0

s(t)
�
G(t)J1

��
λ1G(t)

π

�

dt =

= −J0

��
λ1

π

�� 1

0

G(t) dt,

where J0, J1 and J2 are the Bessel functions of order 0, 1 and 2 respectively.

Proof. For m = 0, 1, 2, . . ., multiply (2.12) by G(t)m and integrate the right
side by parts to obtain

4π

λ1

� 1

0

{1 + s(t)}G(t)m+1 dt =(2.14)

= −
1

m + 1

� 1

0

(G(t)m+1)�
�� 1

t

G(τ )dτ + tG(t)

�

dt =
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= −
1

m + 1

�

G(t)m+1

�� 1

t

G(τ ) dτ + tG(t)

��
�
�
�

1

0

−

� 1

0

tG �(t)G(t)m+1 dt

�

=

= −
1

m + 1

�

G(1)m+2 −

� 1

0

G(t) dt −

−
1

m + 2

�

tG(t)m+2

�
�
�
�

1

0

−

� 1

0

G(t)m+2 dt

��

=

= −
1

m + 1

�
m + 1

m + 2
G(1)m+2 −

� 1

0

G(t) dt +
1

m + 2

� 1

0

G(t)m+2 dt

�

.

Thus, taking m = 0 and m = 1 we get

4π

λ1

� 1

0

{1 + s(t)}G(t) dt = −
1

2
G(1)2 +

� 1

0

G(t) dt −
1

2

� 1

0

G(t)2 dt

and

4π

λ1

� 1

0

{1 + s(t)}G(t)2 dt = −
1

3
G(1)3 +

1

2

� 1

0

G(t) dt −
1

2 · 3

� 1

0

G(t)3 dt .

Combining the above equations we obtain that
�

1 −
λ1

4π
+

�
λ1

4π

�2 1

2 · 2

�� 1

0

G(t) dt +

� 1

0

s(t)

�

G(t) −
λ1

4π

1

2
G(t)2

�

dt =

=

�

−
λ1

4π

G(1)2

2
+

�
λ1

4π

�2 1

1 · 2 · 3
G(1)3

�

+

�
λ1

4π

�2 1

1 · 2 · 2 · 3

� 1

0

G(t)3 dt .

Assume that for some N > 0
�
N�

m=0

(−1)m
�

λ1

4π

�m �
1

m!

�2
�� 1

0

G(t) dt +(2.15)

+

� 1

0

s(t)

�
N−1�

m=0

(−1)m
�

λ1

4π

�m G(t)m+1

(m!)2(m + 1)

�

dt =

=

�
N�

m=1

(−1)m
�

λ1

4π

�m G(1)m+1

(m − 1!)2m(m + 1)

�

+

+ (−1)N
�

λ1

4π

�N 1

(N !)2(N + 1)

� 1

0

G(t)N+1 dt .
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We employ (2.14) with m = N to �nd that

� 1

0

G(t)N+1 dt = −
λ1

4π

G(1)N+2

N + 2
+

λ1

4π

1

N + 1

� 1

0

G(t) dt −

−

� 1

0

s(t)G(t)N+1 dt −
λ1

4π

1

(N + 1)(N + 2)

� 1

0

G(t)N+2 dt .

Substituting this formula in (2.15) we �nd that

�
N�

m=0

(−1)m
�

λ1

4π

�m �
1

m!

�2

+ (−1)N+1

�
λ1

4π

�N+1 �
1

N + 1!

�2
�

·

·

� 1

0

G(t) dt +

� 1

0

s(t)

�
N−1�

m=0

(−1)m
�

λ1

4π

�m G(1)m+1

(m!)2(m + 1)
+

+(−1)N
�

λ1

4π

�N G(t)N+1

(N !)2(N + 1)

�

dt =

=

�
N�

m=1

(−1)m
�

λ1

4π

�m G(1)m+1

(m − 1!)2m(m + 1)
+

+ (−1)N+1

�
λ1

4π

�N+1 G(1)N+2

(N !)2(N + 1)(N + 2)

�

+

+ (−1)N+1

�
λ1

4π

�N+1 1

(N + 1!)2(N + 2)

� 1

0

G(t)N+2 dt .

Clearly formula (2.15) holds for N = 1 and N = 2. Thus (2.15) holds for every
N = 1, 2, . . .. Observing that G(t) ≤ 1 and taking limits in (2.15) we obtain
that

�
∞�

m=0

(−1)m
�

λ1

4π

�m �
1

m!

�2
�� 1

0

G(t) dt +

+

� 1

0

s(t)

�
∞�

m=0

(−1)m
�

λ1

4π

�m G(t)m+1

(m!)2(m + 1)

�

dt =

=

∞�

m=1

(−1)m
�

λ1

4π

�m G(1)m+1

(m − 1!)2m(m + 1)
.
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Comparing formulas for J0, J1 and J2 [5], we see

J0

��
λ1

π

�� 1

0

G(t) dt +

�
4π

λ1

� 1

0

s(t)
�
G(t)J1

��
λ1G(t)

π

�

dt =

= −G(1)J2

��
λ1G(1)

π

�

.

Rewriting we get,

G(1)J2

��
λ1G(1)

π

�

+

�
4π

λ1

� 1

0

s(t)
�
G(t)J1

��
λ1G(t)

π

�

dt =(2.16)

= −J0

��
λ1

π

�� 1

0

G(t) dt .

Similarly we can show

Ḡ(1)J2





�

λ1Ḡ(1)

π



 +

�
4π

λ1

� 1

0

σ(t)

�

Ḡ(t)J1





�

λ1Ḡ(t)

π



 dt =

= −J0

��
λ1

π

�� 1

0

Ḡ(t) dt . �

Before getting to the proof of Theorem 1, we make an observation regarding the
Bessel function J1.

Proposition 2.1. Let ν0, α0 and β0 denote the smallest positive zeros of J0, J1
and J2. Let θ0 = (α0 + ν0)/2, then there exists an absolute positive constant K
such that

(2.17) 0 < K ≤
J1(θ)

θ
≤

1

2
, ∀θ ∈ (0, θ0].

Proof. We �rst recall the following formula [5]

d

dθ

�
J1(θ)

θ

�

= −
J2(θ)

θ
.

Then J1(θ)/θ is decreasing in (0, β0], and consequently J1(θ)/θ > 0 in (0, α0].
Since ν0 < θ0 < α0, we see that J1(θ0)/θ0 ≤ J1(θ)/θ , in (0, θ0]. It is easy to
verify that J1(θ)/θ → 1/2 as θ → 0+. Thus by setting K = J1(θ0)/θ0 we
obtain (2.17). �



A NOTE ON THE FABER-KRAHN INEQUALITY 81

3. Proof of Theorem 1.

Let ν0, α0 and β0 be as de�ned in the statement of Proposition 2.1.
By the interlacing property of the zeros of the Bessel functions, 0 < ν0 <

α0 < β0. Now λ1 ≥ λ∗
1 = ν2

0π . Assume that λ1 ≤ π ((ν0 + α0)/2)2.
Since 0 ≤ µ(t) ≤ G(t) ≤ Ḡ(t) ≤ Z (t) ≤ 1, for t ∈ [0, 1], it follows
that 0 ≤

√
λ1G(1)/π ≤ (ν0 + α0)/2 ≤ α0 ≤ β0, and consequently,

J2
�√

λ1G(1)/π
�

≥ 0 and J1
�√

λ1G(t)/π
�

> 0, ∀ t ∈ (0, 1). Thus

(3.1)

�
4π

λ1

� 1

0

s(t)
�
G(t)J1

��
λ1G(t)

π

�

dt ≤ −J0

��
λ1

π

�� 1

0

G(t) dt .

We now use the estimate in Proposition 2.1, Lemma 2.1 and (3.1). Recall that
G is nonincreasing and 0 ≤ G(t) ≤ 1. Hence

0 ≤

�
λ1G(t)

π
≤

�
λ1

π
≤

(α0 + ν0)

2
= θ0.

If K is as in (2.17), then

(3.2) K ≤ J1

��
λ1G(t)

π

���
λ1G(t)

π
≤

1

2
, t ∈ [0, 1].

Inserting (3.2) in (3.1), we �nd that

(3.3) 2K

� 1

0

s(t)G(t) dt ≤ −J0

��
λ1

π

�� 1

0

G(t) dt .

Now J0
�√

λ1/π
�

= J0
�√

λ1/π
�

− J0
��

λ∗
1/π

�
≤ C̄(λ1 − λ∗

1), where C̄ is
again an absolute positive constant. Thus, (3.3) yields

0 ≤

� 1

0

σ(t)µ(t) dt ≤

� 1

0

s(t)µ(t) dt ≤

� 1

0

s(t)G(t) dt ≤ C(λ1 − λ∗
1),

where C > 0 is absolute. �

Remark 3.1. A natural question, one could ask, is what happens when G(1) =
0. It can be easily shown from (2.13) that µ(t) = G(t). Thus equality holds in
the second inequality ( from the left) in (2.9). It is not clear to us whether or not
� has to be a disk.
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We now make a few brief remarks about the quantities s and σ .

Remark 3.2. If � is a disc then it is well known that the �rst eigenfunction
u, in (1.1), is radial and thus s(t) = σ(t) = 0. Conversley, if s(t) = 0 (or
σ(t) = 0) at some t ∈ (0, 1), then �t is a disk. One can then conclude from
Proposition 3.1, below, that � is a disk.

Proposition 3.1. Let � ⊂ R
n , n ≥ 2, be a bounded domain. Let u be the �rst

eigenfunction of (1.1) on �. Suppose that 0 < u ≤ 1 and sup u = 1. If �t is a
ball for some t ∈ (0, 1) then � is a ball.

Proof. Since �t ⊂ �, it follows that λ1(�t ) > λ1(�). Also, if BR(0), the
ball of radius R, is such that λ1(BR(0)) = λ1(�) then vol(BR(0)) > vol(�t ).
Let R̄ be such that vol(�t ) = ωn R̄

n , then R̄ < R. For each η ∈ R, set Jη to
be the Bessel function of order η. Let P ∈ �t be the center of ∂�t . Setting
r = |P − Q|, Q ∈ �t , de�ne

v(r) = t

�
R̄

r

�(n−2)/2
J(n−2)/2(

√
λ1r)

J(n−2)/2(
√

λ1 R̄)
.

Furthermore, if νn−2 is the �rst positive zero of J(n−2)/2 then λ1 = λ1(�) =
ν2
n−2/R

2. Now �v + λ1v = 0, in �t , v(R̄) = t and v(R) = 0. If w = u − v,
then �w + λ1w = 0, in �t , and w = 0 on ∂�t . Since λ1 < λ1(�t ), it follows
that w = 0 in �t . By unique continuation, u = v in � ∩ BR(0). We claim
� = BR(0). Suppose there are points of ∂BR(0) inside �, then u = v will
vanish somewhere in �. This contradicts that u > 0 in �. Similarly, one can
show that there are no points of ∂� inside BR(0). Hence the claim. �

Remark 3.3. Finally, if s(t) = σ(t) for some t , then we may again conclude
that � is a disc. First observe that (1.6) and (1.8) imply that |Du| = Ct on ∂�t ,
for some constant Ct > 0. A celebrated result of Serrin�s [3] then implies that
�t is a disc. This togetherwith Proposition 3.1 implies that � has to be a disc.
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