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ALGEBRAIC AND GEOMETRIC

AUTOMORPHISMS OF HYPERGROUPOIDS

GIUSEPPE GENTILE

Two concepts of automorphism of a hypergroupoid are introduced; the
�rst one preserve the algebraic structure of a hypergroupoid, the second
one preserve the geometric structure that one can associate naturally to a
hypergroupoid. The groups of such automorphisms are studied, in particular
in the case that the geometric space associated to a hypergroupoid is a Steiner
system.

1. De�nitions and notations.

De�nition 1.1. A hypergroupoid (H, ◦) is a non-empty set H equipped with a
hyperoperation ◦, that is an application ◦ : H × H → P

∗(H ), where P
∗(H )

is the set of non-empty subsets of H . If x , y ∈ H , we will denote by x ◦ y the
hyperproduct of x and y.

De�nition 1.2. A geometric space is a pair (H, B), where H is a non-empty
set, which elements are called points, andB is a family of non-empty subsets of
H , called blocks.
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If (H, ◦) is a hypergroupoid, we say that the geometric space (H, B) is as-
sociated to (H, ◦) if and only if the elements ofB are exactly the hyperproducts
of two elements of H , that is:

B = {x ◦ y}x,y∈H .

Conversely, if (H, B) is a geometric space, many hypergroupoids (H, ◦) exist
such that the set of all hyperproducts x ◦ y is exactly B; each one of these
hypergroupoids is said to be associated to (H, B).

We recall the following

De�nition 1.3. An automorphism of the geometric space (H, B) is a bijective
application ϕ : H → H such that:

∀B ∈ B, ϕ(B) ∈ B.

Now we can introduce the following notion

De�nition 1.4. Let (H, ◦) be a hypergroupoid. We say that ϕ : H → H is
a geometric automorphism of (H, ◦) if it is an automorphism of the geometric
space (H, B) associated to (H, ◦), that is:

∀x , y ∈ H, ∃u, v ∈ H : ϕ(x ◦ y) = ϕ(u) ◦ ϕ(v).

We will denote by AutG(H, ◦) (or simply AutGH ) the group of all geometric
automorphisms of (H, ◦).

De�nition 1.5. An automorphism of a hypergroupoid (H, ◦) is a bijective
application f : H → H such that:

∀x , y ∈ H , f (x ◦ y) = f (x) ◦ f (y).

We will call these automorphisms, algebraic automorphisms of (H, ◦) and
we will denote by AutA(H, ◦) (or simply AutAH ) the group of all algebraic
automorphisms of (H, ◦).

Remark 1.1. From the previous de�nitions it follows immediately that for any
hypergroupoid (H, ◦) we have that:

AutAH ≤ AutGH,

that is AutAH is a subgroup of AutGH .
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In general AutAH is proper a subgroup of AutGH in fact we have the
following

Example 1.1. Let (H, ◦) be the hypergroupoid de�ned by:

◦ 1 2 3

1 1, 2 1, 3 1, 3

2 1, 2 1, 3 1, 3

3 2, 3 1, 2 1, 2

The geometric space associated to (H, ◦) is (H, B), where:

B = {{1, 2}, {1, 3}, {2, 3}}.

Clearly, any permutation on the set H is a geometric automorphism, that
is:

AutGH = S3;

while:
AutAH = {1H }.

In fact we have that:

f1 ≡ (23) /∈ AutAH , since f1(1 ◦ 1) = {1, 3} �= {1, 2} = f1(1) ◦ f1(1);

f2 ≡ (13) /∈ AutAH , since f2(1 ◦ 1) = {2, 3} �= {1, 2} = f2(1) ◦ f2(1);

f3 ≡ (12) /∈ AutAH , since f3(1 ◦ 1) = {1, 2} �= {1, 3} = f3(1) ◦ f3(1);

f4 ≡ (123) /∈ AutAH , since f4(1 ◦ 1) = {2, 3} �= {1, 3} = f4(1) ◦ f4(1);

f5 ≡ (132) /∈ AutAH , since f5(1 ◦ 1) = {1, 3} �= {1, 2} = f5(1) ◦ f5(1).

Remark 1.2. Let (H, B) and (H, B
�) be two geometric structures such that

B
� do not contains singletons and B = B

� ∪ S where S is the set of all
singletons of H . In [3] is proved that (H, B) and (H, B

�) have the same
group of automorphisms and so they are geometrically equivalent. If B

� do
not contains singletons then we say that (H, B

�) is the canonical representation
of all structures (H, B) geometrically equivalent to (H, B

�) obtained from
(H, B

�) by union of singletons.
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2. Steiner systems, Steiner hypergroupoids and quasi-Steiner hypergrou-
poids.

In this section we study the k-Steiner systems, that is those geometric
spaces (H, L), where H is a non-empty set, which elements are called points,
and L is a family of non-empty subsets of H , which elements are called lines,
such that every line has k points and any two distinct points are contained in a
unique line.

In [6] the following notion was introduced:

De�nition 2.1. A hypergroupoid (H, ◦) is said to be a k-Steiner hypergroupoid
(k ≥ 2) (or simply Steiner hypergroupoid), if and only if the following condi-
tions are satis�ed:

1) ∀x , y ∈ H , {x , y} ⊆ x ◦ y;

2) ∀x , y ∈ H , |x ◦ y| =

�
1 if x = y
k if x �= y

;

3) the associativity holds for any triple of points not all distinct.

If (H, L) is a k-Steiner system, then one can de�ne a hyperoperation on
H in the following way:

∀x , y ∈ H, x ◦ y =

�
lxy if x �= y
{x} if x = y

where lxy denote the unique line trough x and y . In [6] it was proved that (H, ◦)

is a k-Steiner hypergroupoid, that we will call associated to (H, L).
Conversely, if (H, ◦) is a k-Steiner hypergroupoid and if (H, L

�) is the ge-
ometric structure associated to (H, ◦), then the canonical representation (H, L)

of (H, L
�) is a k-Steiner system. So, the notions of k-Steiner hypergroupoid and

k-Steiner system are equivalent.
Now we introduce the following

De�nition 2.2. A hypergroupoid (H, ◦) is said to be a k-quasi-Steiner hyper-
groupoid (k ≥ 2) (or simply quasi-Steiner hypergroupoid), if and only if the
following conditions are satis�ed:

1) ∀x , y ∈ H , x �= y, {x , y} ⊆ x ◦ y;
2) ∀x , y ∈ H , |x ◦ y| = k;
3) ∀x , y, z, t ∈ H , |x ◦ y ∩ z ◦ t | > 1 ⇒ x ◦ y = z ◦ t .

Remark 2.1. The geometric structure associated to a k-quasi-Steiner hyper-
groupoid is always canonically represented.
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Theorem 2.1. If (H, ◦) is a k-quasi-Steiner hypergroupoid, then we have:

∀x ∈ H, ∃ (u, v) ∈ H 2, u �= v : x ◦ x = u ◦ v.

Proof. Let x ∈ H ; by 2) it follows that:

|x ◦ x | = k ≥ 2

and therefore
∃u, v ∈ x ◦ x , u �= v.

By 1) we have that:
{u, v} ⊆ u ◦ v;

and so:
|x ◦ x ∩ u ◦ v| ⊇ {u, v};

by 3), it follows now that:
x ◦ x = u ◦ v. �

Theorem 2.2. Any quasi-Steiner hypergroupoid (H, ◦) is commutative.

Proof. By 1) it follows that:

∀x , y ∈ H, x �= y, y ◦ x ⊇ {x , y} ⊆ x ◦ y;

and therefore, by 3), we have that:

x ◦ y = y ◦ x . �

Let (H, L) be a k-Steiner system; we de�ne on H a hyperoperation by
setting:

∀x , y ∈ H, x ◦ y =

�
lxy if x �= y
lx if x = y

where lxy denote the unique line trough x and y and lx is an arbitrary line ofL.
Clearly, (H, ◦) is a k-quasi-Steiner hypergroupoid that we will call associated
to (H, L).

Conversely, if (H, ◦) is a k-quasi-Steiner hypergroupoid and if we consider
the family:

L = {x ◦ y}(x,y)∈H×H ,

then (H, L) is a k-Steiner system. In fact, from 2) it follows that every element
of L has cardinality k; from 1) it follows that any pair of distinct points are
contained in a line; from 3) it follows that any pair of distinct points are
contained in one and only one line. So, the notions of k-Steiner system and
k-quasi-Steiner hypergroupoid are equivalent.
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Remark 2.2. If (H, L) is a Steiner system, with |H | = v, |L| = b, then the
number of quasi-Steiner hypergroupoids associated to (H, L) is bv .

3. Remarkable groups of automorphisms in a Steiner system.

We already know that, if (H, ◦) is a hypergroupoid, then AutAH is a
subgroup ofAutGH and, in general, a proper subgroup; but in some cases these
groups are coincident; in fact we have

Theorem 3.1. Let (H, L) be a Steiner system, (H, ◦) be the associated Steiner
hypergroupoid. Then we have:

AutAH = AutGH.

Proof. We must show that:

AutGH ⊆ AutAH.

Let ϕ ∈ AutGH , (x , y) ∈ H 2. By de�nition of Steiner hypergroupoid it follows
that:

{x , y} ⊆ x ◦ y;

since ϕ preserve the incidences, we have that:

(3.1) ϕ(x) ∈ ϕ(x ◦ y) � ϕ(y).

On the other hand, by de�nition of Steiner hypergroupoid, we have that:

(3.2) ϕ(x) ∈ ϕ(x) ◦ ϕ(y) � ϕ(y).

Finally, we have that:
if x = y , then:

ϕ(x ◦ x) = ϕ(x) = ϕ(x) ◦ ϕ(x);

if x �= y , then from (3.1) e (3.2) it follows that:

(ϕ(x ◦ y)) ⊇ {ϕ(x), ϕ(y)} ⊆ (ϕ(x) ◦ ϕ(y)),

that is ϕ(x ◦ y) and ϕ(x) ◦ ϕ(y) are two lines in a Steiner system that meet in at
least two points, and so they must to be equal, that is:

ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y).

This shows that ϕ ∈ AutGH . �

Now we will prove that, unlike Steiner hypergroupoids, the group AutAH
of all algebraic automorphisms of an arbitrary quasi-Steiner hypergroupoid
(H, ◦) is a proper subgroup of AutGH .
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Theorem 3.2. Let (H, L) be a Steiner system, (H, ◦) be a quasi-Steiner
hypergroupoid associated to (H, L); then we have:

AutAH �= AutGH.

Proof. We suppose that AutAH = AutGH . We put L
� = {x ◦ x}x∈H . First of

all we note that, in this case:

(3.3) L
� = L,

in fact, if ∃ l ∈ L \ L
�, then:

∀x ∈ H, x ◦ x �= l,

and so the geometric automorphisms that send a line of L
� in the line l are not

algebraic and so AutAH �= AutGH .
From (3.3) it follows that, if we put v = |H |, b = |L|, we have that:

b ≤ v.

On the other hand, in a Steiner system we have always that v ≤ b, and so:

b = v,

and consequently:

(3.4) ∀x , y ∈ H, x �= y ⇔ x ◦ x �= y ◦ y.

Now let z ∈ H and f ∈ AutAH such that the line z ◦ z is �xed by f ; we have
that:

f (z) ◦ f (z) = f (z ◦ z) = z ◦ z,

and therefore from (3.4) it follows that f (z) = z; so, if an algebraic automor-
phism �xes the line z ◦ z, then it must �xe the point z. So, the geometric auto-
morphisms that �xe the line z ◦ z, but do not �xe the point z are not algebraic,
that is absurd. �

Theorem 3.3. Let (H, L) be a Steiner system, (H, ◦) be a quasi-Steiner
hypergroupoid associated to (H, L). Then we have that:

AutAH = {ϕ ∈ AutGH : ϕ(x ◦ x) = ϕ(x) ◦ ϕ(x), ∀x ∈ H }.
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Proof. It is enough to observe that, as in Theorem 3.1, we have that:

∀ϕ ∈ AutGH, ∀x , y ∈ H, x �= y ⇒ ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y),

but, in general, we have that:

ϕ(x ◦ x) �= ϕ(x) ◦ ϕ(x). �

Corollary 3.4. Let (H, L) be a Steiner system and l ∈ L. Let (H, ◦l) be the
quasi-Steiner hypergroupoid de�ned by:

∀x ∈ H, x ◦l x = l.

Then we have:
AutAH = {ϕ ∈ AutGH : ϕ(l) = l}

that is AutAH is the subgroup of AutGH that �xes the line l .

Proof. It suf�ces to observe that:

∀x ∈ H,

�
ϕ(x ◦l x) = ϕ(l)
ϕ(x) ◦l ϕ(x) = l

.

The corollary follows now from the previous theorem. �

Corollary 3.5. Let A = AG(2, q), P = PG(2, q); let l be a line in PG(2, q).
Let (A, ◦), (P, ◦l) be respectively the Steiner hypergroupoid associated to
AG(2, q) and the quasi-Steiner hypergroupoid associated to PG(2, q), where
◦l is de�ned as in the previous corollary. Then we have:

AutAA ∼= AutA P.

Proof. It is enough to observe that:

AutA A = AutG A,

by Theorem 3.1;
AutG A ∼= (AutG P)l,

where (AutG P)l is the subgroup of AutG P that �xe the line l , since the
automorphisms of an af�ne plane are (up to isomorphisms) those geometric
ones that �xe a line in the projective plane in which it is imbedded;

(AutG P)l = AutA P,
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by the previous corollary. �

Example 3.1. Let A ≡ AG(2, 2) and P ≡ PG(2, 2). We consider the Steiner
hypergroupoid (A, ◦) associated to AG(2, 2), that is:

◦ 1 2 3 4

1 1 1, 2 1, 3 1, 4

2 1, 2 2 2, 3 2, 4

3 1, 3 2, 3 3 3, 4

4 1, 4 2, 4 3, 4 4

and the quasi-Steiner hypergroupoid (P, ◦l) associated to PG(2, 2), that is:

◦l 1 2 3 4 5 6 7

1 1, 2, 3 1, 2, 3 1, 2, 3 1, 4, 7 1, 5, 6 1, 5, 6 1, 4, 7

2 1, 2, 3 1, 2, 3 1, 2, 3 2, 4, 6 2, 5, 7 2, 4, 6 2, 5, 7

3 1, 2, 3 1, 2, 3 1, 2, 3 3, 4, 5 3, 4, 5 3, 6, 7 3, 6, 7

4 1, 4, 7 2, 4, 6 3, 4, 5 1, 2, 3 3, 4, 5 2, 4, 6 1, 4, 7

5 1, 5, 6 2, 5, 7 3, 4, 5 3, 4, 5 1, 2, 3 1, 5, 6 2, 5, 7

6 1, 5, 6 2, 4, 6 3, 6, 7 2, 4, 6 1, 5, 6 1, 2, 3 3, 6, 7

7 1, 4, 7 2, 5, 7 3, 6, 7 1, 4, 7 2, 5, 7 3, 6, 7 1, 2, 3

where l = {1, 2, 3}; from the last corollary it follows that:

AutAA ∼= AutA P.

Theorem 3.6. Let (H, L) be a (non-degenerated) Steiner system; let l ∈ L,
p ∈ l ; let (H, ◦) be a quasi-Steiner hypergroupoid associated to (H, L) such
that: �

x ◦ x = l, ∀x ∈ (H \ l) ∪ {p};
x ◦ x �= l, otherwise.
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Then we have:
AutAH ≤ (AutGH )l,p,

where (AutGH )l,p denote the subgroup of AutGH that �xes l and p.

Proof. Let f ∈ AutAH ; �rst of all we observe that, because the Steiner system
is not degenerated, then:

|(H \ l) ∪ {p}| >
|H |

2
.

So, since f is bijective, we have that:

∃ x , y ∈ (H \ l) ∪ {p} : f (x) = y.

We have that:

f (x ◦ x) = f (l);

f (x) ◦ f (x) = y ◦ y = l;

and by Theorem 2.3:

(3.5) f (l) = l.

Now we prove that f (p) = p. By hypothesis we have that:

f (p ◦ p) = f (l),

and from (3.5) it follows that:

f (p ◦ p) = l.

By Theorem 2.3, we have that:

f (p) ◦ f (p) = l,

and therefore, from the hypothesis on ◦, it follows that:

f (p) ∈ (H \ l) ∪ {p}.

But f (l) = l is equivalent to f (H \ l) = H \ l , and therefore:

f (p) /∈ H \ l,

that is:
f (p) = p. �

In general if a quasi-Steiner hypergroupoid satis�es the conditions of the
previous theorem, then AutAH is not equal to (AutGH )l,p, as we can see in
the following
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Example 3.2. Let (H, L) ≡ AG(2, 3). Let (H, ◦) be the quasi-Steiner
hypergroupoid associated to AG(2, 3), de�ned by the following table:

◦ 1 2 3 4 5 6 7 8 9

1 1, 2, 3 1, 2, 3 1, 2, 3 1, 4, 7 1, 5, 9 1, 6, 8 1, 4, 7 1, 6, 8 1, 5, 9

2 1, 2, 3 4, 5, 6 1, 2, 3 2, 4, 9 2, 5, 8 2, 6, 7 2, 6, 7 2, 5, 8 2, 4, 9

3 1, 2, 3 1, 2, 3 7, 8, 9 3, 4, 8 3, 5, 7 3, 6, 9 3, 5, 7 3, 4, 8 3, 6, 9

4 1, 4, 7 2, 4, 9 3, 4, 8 1, 2, 3 4, 5, 6 4, 5, 6 1, 4, 7 3, 4, 8 2, 4, 9

5 1, 5, 9 2, 5, 8 3, 5, 7 4, 5, 6 1, 2, 3 4, 5, 6 3, 5, 7 2, 5, 8 1, 5, 9

6 1, 6, 8 2, 6, 7 3, 6, 9 4, 5, 6 4, 5, 6 1, 2, 3 2, 6, 7 1, 6, 8 3, 6, 9

7 1, 4, 7 2, 6, 7 3, 5, 7 1, 4, 7 3, 5, 7 2, 6, 7 1, 2, 3 7, 8, 9 7, 8, 9

8 1, 6, 8 2, 5, 8 3, 4, 8 3, 4, 8 2, 5, 8 1, 6, 8 7, 8, 9 1, 2, 3 7, 8, 9

9 1, 5, 9 2, 4, 9 3, 6, 9 2, 4, 9 1, 5, 9 3, 6, 9 7, 8, 9 7, 8, 9 1, 2, 3

Such hypergroupoid satis�es all conditions of the previous theorem with l =

{1, 2, 3}, p = 1; we have that AutAH �= (AutGH )l,p ; more precisely, we have
that:

AutAH =

�
1H , (456)(798), (465)(789),

(32)(47)(59)(68), (32)(485769), (32)(496758)

�

.

Theorem 3.7. Let (H, L) ≡
�
q be a projective plane of order q; let l ∈ L,

p /∈ l ; let (H, ◦) be a quasi-Steiner hypergroupoid associated to
�
q such that:

�
x ◦ x = l, ∀x ∈ l ∪ {p};
x ◦ x �= l, otherwise.

Then we have that:

AutAH ≤ (AutGH )l,p,

where (AutGH )l,p denote the subgroup of AutGH �xing l and p.
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Proof. Let f ∈ AutAH and l = {b1, b2, . . . , bq+1}; �rst of all we prove that:

(3.6) ∃ x , y∈ l ∪ {p} : f (x) = y.

We suppose that:
∀x , y ∈ l ∪ {p}, f (x) �= y

that is:
∀x ∈ l ∪ {p}, f (x) /∈ l ∪ {p}.

So, by de�nition of ◦, it follows that:

∀x ∈ l ∪ {p}, f (x) ◦ f (x) = f (x ◦ x) = f (l);

but:
f (x) /∈ l ∪ {p} ⇒ f (x) ◦ f (x) �= l.

So, it follows that:

(3.7) f (l) �= l.

But f is also a geometric automorphism; therefore we have that f (l) ∈ L; let
f (l) = {c1, c2, . . . , cq+1}. Now l ∩ f (l) �= ∅ because (H, L) is a projective
plane. This means that:

∃ i, j ∈ {1, 2, . . . , q + 1} : bi = cj .

From this we obtain:

(3.8) cj ◦ cj = bi ◦ bi = l.

On the other hand, from cj ∈ f (l) it follows that:

∃bk ∈ l : cj = f (bk);

therefore we have that:

cj ◦ cj = f (bk) ◦ f (bk) = f (bk ◦ bk) = f (l),

and so, from (3.8), we have that:

f (l) = l,
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that is absurd, by (3.7); this shows that (3.6) is true.
So, we have that:

f (x ◦ x) = f (l);

f (x) ◦ f (x) = y ◦ y = l;

and therefore, by Theorem 2.3, it follows that:

f (l) = l.

We observe now that:

f (p) ◦ f (p) = f (p ◦ p) = f (l) = l;

so, by de�nition of ◦, we have that:

f (p) ∈ l ∪ {p};

but from f (l) = l , it follows necessarily:

f (p) /∈ l,

that is:
f (p) = p. �

Example 3.3. Let (H, L) ≡ PG(2.2). We consider the quasi-Steiner hyper-
groupoid (H, ◦) associated to PG(2, 2), de�ned by the following table:

◦ 1 2 3 4 5 6 7

1 1, 2, 3 1, 2, 3 1, 2, 3 1, 4, 7 1, 5, 6 1, 5, 6 1, 4, 7

2 1, 2, 3 1, 2, 3 1, 2, 3 2, 4, 6 2, 5, 7 2, 4, 6 2, 5, 7

3 1, 2, 3 1, 2, 3 1, 2, 3 3, 4, 5 3, 4, 5 3, 6, 7 3, 6, 7

4 1, 4, 7 2, 4, 6 3, 4, 5 2, 5, 7 3, 4, 5 2, 4, 6 1, 4, 7

5 1, 5, 6 2, 5, 7 3, 4, 5 3, 4, 5 1, 4, 7 1, 5, 6 2, 5, 7

6 1, 5, 6 2, 4, 6 3, 6, 7 2, 4, 6 1, 5, 6 1, 2, 3 3, 6, 7

7 1, 4, 7 2, 5, 7 3, 6, 7 1, 4, 7 2, 5, 7 3, 6, 7 3, 4, 5
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Such hypergroupoid satis�es all conditions of the previous theorem with l =

{1, 2, 3} and p = 6; in such case we have that:

AutAH = (AutGH )l,p.

In fact any geometric automorphism �xing the line {1, 2, 3} and the point 6 is
also algebraic. To prove this, it is enough to show that if f ∈ (AutGH )l,p , then:

∀x /∈ l ∪ {p}, f (x ◦ x) = f (x) ◦ f (x),

because for x ∈ l ∪ {p} the preceding equality holds, since for these x we have
x ◦ x = l and f �xes l ∪ {p}. In other words, we must show that:

f (x ◦ x) = f (x) ◦ f (x), ∀x ∈ {4, 5, 7}.

First of all we observe that:
�
�(AutGH )l,p

�
� = 6.

We have that:
f1 ≡ (23) (47) ∈ AutAH

because:
f1(4 ◦ 4) = f1{2, 5, 7} = {3, 4, 5} = 7 ◦ 7 = f1(4) ◦ f1(4);

f1(5 ◦ 5) = f1{1, 4, 7} = {1, 4, 7} = 5 ◦ 5 = f1(5) ◦ f1(5);

f1(7 ◦ 7) = f1{3, 4, 5} = {2, 5, 7} = 4 ◦ 4 = f1(7) ◦ f1(7).

Moreover we have:
f2 ≡ (13) (57) ∈ AutAH

because:
f2(4 ◦ 4) = f2{2, 5, 7} = {2, 5, 7} = 4 ◦ 4 = f2(4) ◦ f2(4);

f2(5 ◦ 5) = f2{1, 4, 7} = {3, 4, 5} = 7 ◦ 7 = f2(5) ◦ f2(5);

f2(7 ◦ 7) = f2{3, 4, 5} = {1, 4, 7} = 5 ◦ 5 = f2(7) ◦ f2(7).

Finally we have:
f3 ≡ (12) (45) ∈ AutAH

because:
f3(4 ◦ 4) = f3{2, 5, 7} = {1, 4, 7} = 5 ◦ 5 = f3(4) ◦ f3(4);

f3(5 ◦ 5) = f3{1, 4, 7} = {2, 5, 7} = 4 ◦ 4 = f3(5) ◦ f3(5);

f3(7 ◦ 7) = f3{3, 4, 5} = {3, 4, 5} = 7 ◦ 7 = f3(7) ◦ f3(7).

Therefore, since 1H ∈ AutAH , we obtain that:

|AutAH | ≥ 4

and so:
AutAH = (AutGH )l,p.
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The following example shows that, if a quasi-Steiner hypergroupoid satis-
�es all conditions of the previous theorem, in general we have that AutAH is a
proper subgroup of (AutGH )l,p.

Example 3.4. Let (H, L) ≡ PG(2, 2). We consider the following quasi-
Steiner hypergroupoid (H, ◦) associated to PG(2, 2), de�ned by:

◦ 1 2 3 4 5 6 7

1 1, 2, 3 1, 2, 3 1, 2, 3 1, 4, 7 1, 5, 6 1, 5, 6 1, 4, 7

2 1, 2, 3 1, 2, 3 1, 2, 3 2, 4, 6 2, 5, 7 2, 4, 6 2, 5, 7

3 1, 2, 3 1, 2, 3 1, 2, 3 3, 4, 5 3, 4, 5 3, 6, 7 3, 6, 7

4 1, 4, 7 2, 4, 6 3, 4, 5 3, 4, 5 3, 4, 5 2, 4, 6 1, 4, 7

5 1, 5, 6 2, 5, 7 3, 4, 5 3, 4, 5 2, 5, 7 1, 5, 6 2, 5, 7

6 1, 5, 6 2, 4, 6 3, 6, 7 2, 4, 6 1, 5, 6 1, 2, 3 3, 6, 7

7 1, 4, 7 2, 5, 7 3, 6, 7 1, 4, 7 2, 5, 7 3, 6, 7 1, 4, 7

As in the previous example (H, ◦) is a quasi-Steiner hypergroupoid associated
to PG(2, 2) satisfying the conditions of the theorem, with l = {1, 2, 3}, p = 6;
but in this case g ≡ (12)(45) is a geometric automorphism �xing l and p that
is not algebraic. So, in this case:

AutAH �= (AutGH )l,p.

Theorem 3.8. Let (H, L) be a projective plane (�nite of order q �= 2h, ∀h ∈ N

or in�nite); let � be a conic in (H, L), (H, ◦�) the quasi-Steiner hypergroupoid
de�ned by:

∀x ∈ H, x ◦� x = lx,�,

where lx,� denote the polar line of x in respect to the conic �. Then we have:

AutAH = { f ∈ AutGH : f (lx,�) = l f (x),�, ∀x ∈ H }.
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Proof. This follows immediately from Theorem 2.3, since in this case we have:

f (x ◦� x) = f (lx,�)

f (x) ◦� f (x) = l f (x),�. �

Theorem 3.9. Let (H, L) be a projective plane (�nite of order q �= 2h, ∀h ∈ N

or in�nite); let � be a conic, (H, ◦�) the quasi-Steiner hypergroupoid de�ned
by:

∀x ∈ H, x ◦� x = lx,�,

where lx,� denote the polar line of x in respect to the conic �. Then we have:

AutAH = (AutGH )�,

where (AutGH )� denote the group of all geometric automorphisms �xing the
conic �.

Proof. First of all we observe that, from the geometric properties of the polar
line, it follows that:

(3.9) ∀x ∈ H, x ∈ x ◦� x ⇔ x ∈ � ⇔ x ◦� x ∩ � = {x};

(3.10) ∀x , y ∈ H, x ∈ y ◦� y ⇔ y ∈ x ◦� x .

Let f ∈ AutAH ; we suppose that f /∈ (AutGH )� , that is:

∃ x ∈ �, ∃ y /∈ � : f (x) = y.

From x ∈ �, it follows that x ∈ x ◦� x ; and so:

y = f (x) ∈ f (x ◦� x).

From y /∈ �, it follows that y /∈ y ◦� y , that is:

y /∈ f (x) ◦� f (x).

So, we have that:
f (x ◦� x) �= f (x) ◦� f (x),

that is absurd.



ALGEBRAIC AND GEOMETRIC. . . 101

Now let f ∈ (AutGH )� , that is f (�) = �; by the previous theorem, it
suf�ces to show that:

∀x ∈ H, f (x ◦� x) = f (x) ◦� f (x).

If x ∈ � then it is easily proved that:

f (x ◦� x) ∩ � = { f (x)}.

So, from (3.9), it follows that f (x ◦� x) is the polar line of f (x), that is:

f (x ◦� x) = f (x) ◦� f (x).

If x /∈ � we distinguish two cases:

a) (x ◦� x) ∩ � �= ∅;

b) (x ◦� x) ∩ � = ∅.

In case a), since |(x ◦� x) ∩ �| = 2, we can set (x ◦� x) ∩ � = {px , qx}; so, it
follows that:

x ◦� x = px ◦� qx

and therefore:

(3.11) f (x ◦� x) = f (px ◦� qx).

Recalling the proof of Theorem 2.3, we have that:

(3.12) f (px ◦� qx) = f (px) ◦� f (qx).

Now, since {px , qx} ⊆ x ◦� x , from (3.10) it follows that:

x ∈ px ◦� px ∩ qx ◦� qx ;

and therefore:
f (x) ∈ f (px ◦� px) ∩ f (qx ◦� qx).

Moreover, since {px , qx} ⊆ �, it follows that f (px), f (qx) ∈ �, and so, by the
�rst case, it follows that:

f (px ◦� px) = f (px) ◦� f (px) and f (qx ◦� qx) = f (qx) ◦� f (qx);
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and therefore:

f (x) ∈ f (px) ◦� f (px) and f (x) ∈ f (qx) ◦� f (qx);

and so:

f (px), f (qx) ∈ f (x) ◦� f (x) with f (px) �= f (qx).

Therefore:

(3.13) f (px) ◦� f (qx) = f (x) ◦� f (x).

Finally, from (3.11), (3.12) and (3.13), it follows now that:

f (x ◦� x) = f (x) ◦� f (x).

In case b) let px ∈ �, since (H, L) is a projective plane, then we can set:

(3.14) p�
x = (px ◦� px) ∩ (x ◦� x).

From px ∈ p�
x ◦� p

�
x , it follows that:

(p�
x ◦� p

�
x) ∩ � �= ∅;

and so, by case a), it follows that:

(3.15) f (p�
x ◦� p

�
x) = f (p�

x) ◦� f (p
�
x).

On the other hand, from x ∈ p�
x ◦� p

�
x it follows that:

f (x) ∈ f (p�
x ◦� p

�
x ) = f (p�

x) ◦� f (p
�
x).

and so:

(3.16) f (p�
x ) ∈ f (x) ◦� f (x).

Now we choose another point qx ∈ �, and analogously we set:

q �
x = (qx ◦� qx) ∩ (x ◦� x).

We can suppose p�
x �= q �

x . So, we have that:

(3.17) f (q �
x) ∈ f (x) ◦� f (x).
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Consequently, from (3.16) and (3.17), we have that:

(3.18) f (x) ◦� f (x) = f (p�
x) ◦� f (q

�
x).

On the other hand we have that:

p�
x , q

�
x ∈ x ◦� x

and so:
x ◦� x = p�

x ◦� q
�
x .

Therefore:
f (x ◦� x) = f (p�

x ◦� q
�
x);

so, since p�
x �= q �

x , we have:

f (p�
x ◦� q

�
x) = f (p�

x) ◦� f (q
�
x)

and so:
f (x ◦� x) = f (p�

x) ◦� f (q
�
x).

Comparing this equality with (3.18), we have that:

f (x ◦� x) = f (x) ◦� f (x).

The proof is now complete. �

4. A general result about algebraic automorphisms.

Theorem 4.1. Let (H, ◦) be a hypergroupoid associated to a geometric space
(H, B) and let ϕ ∈ AutG(H, ◦); let • be the hyperoperation on H de�ned by:

∀x , y ∈ H, x • y = ϕ(x ◦ y).

Then we have:

AutA(H, ◦) = AutA(H, •) ⇔ ϕ ∈ CAutG(H,◦)(AutA(H, ◦)),

where CAutG (H,◦)(AutA(H, ◦)) denote the centralizer of AutA(H, ◦) in
AutG(H, ◦).
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Proof. ⇐) Let f ∈ AutA(H, ◦); by de�nition of • it follows immediately that:

(4.1)

�
f (x • y) = f (ϕ(x ◦ y))
f (x) • f (y) = ϕ( f (x) ◦ f (y)) = ϕ( f (x ◦ y)).

Then, since ϕ ∈ CAutG(H,◦)(AutA(H, ◦)), we have that:

∀ z ∈ H, f (ϕ(z)) = ϕ( f (z))

and, from (4.1), it follows that:

∀x , y ∈ H, f (x • y) = f (x) • f (y)

that is:
f ∈ AutA(H, •).

So, we have that:
AutA(H, ◦) ⊆ AutA(H, •).

Now let g ∈ AutA(H, •); from (4.1) it follows that:

∀x , y ∈ H, g(ϕ(x ◦ y)) = ϕ(g(x ◦ y)).

Such property holds for ϕ−1; in fact, we have:

∀x , y ∈ H, ϕ−1(g(x ◦ y)) = ϕ−1(gϕϕ−1(x ◦ y)) =

= ϕ−1(ϕgϕ−1(x ◦ y)) = ϕ−1ϕ(gϕ−1(x ◦ y)) = g(ϕ−1(x ◦ y)).

From this it follows now that:

�
g(x ◦ y) = g(ϕ−1(x • y))
g(x) ◦ g(y) = ϕ−1(g(x) • g(y)) = ϕ−1(g(x • y))

that is:
g ∈ AutA(H, ◦).

So, we have that
AutA(H, •) ⊆ AutA(H, ◦).

⇒) We will show that:

ϕ /∈ CAutG (H,◦)(AutA(H, ◦)) ⇒ AutA(H, ◦) �= AutA(H, •).
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Since ϕ /∈ CAutG (H,◦)(AutA(H, ◦)), we have that:

∃h ∈ AutA(H, ◦) : hϕ �= ϕh

that is:
∃v ∈ H : hϕ(v) �= ϕh(v).

Since ϕ is a geometric automorphism, we have that:

∃ B ∈ B : hϕ(B) �= ϕh(B),

and therefore, since (H, ◦) is associated to (H, B) :

∃ x , y∈ H : hϕ(x ◦ y) �= ϕh(x ◦ y).

So, from (4.1) it follows that:

h(x • y) �= h(x) • h(y)

that is:
h /∈ AutA(H, •). �

REFERENCES

[1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Udine, 1993.

[2] G. Gentile - R. Migliorato, Feebly associative hypergroupoids, Giornate di Geo-
metrie Combinatorie, Atti del Convegno Scienti�co Internazionale, Perugia, 1993,
pp. 259�268.

[3] R. Migliorato, Finite hypergroups and combinatoric spaces, Proc. of the Fourth
International Congress on Algebraic Hyperstructures and Applications, Xanthi,
Greece, 1990, World Scienti�c, pp. 67�79.

[4] R. Migliorato, Some topics on the feebly associative hypergroupoids, Algebraic
Hyperstructures and Applications, Proceedings of the Congress, Iasi, 1993, Ha-
dronic Press, Palm Harbor, FL, pp. 133�142.

[5] R. Migliorato, Non associative hypergroupoids, in printing.

[6] G. Tallini, Ipergruppoidi di Steiner e Geometrie Combinatorie, Atti del Con-
vegno su Sistemi Binari e Applicazioni, Taormina, 1978.

Department of Mathematics,
University of Messina,

Contrada Papardo, Salita Sperone 31,
98166 Messina (ITALY),

e-mail: gentile@dipmat.unime.it


