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ALGEBRAIC AND GEOMETRIC
AUTOMORPHISMS OF HYPERGROUPOIDS

GIUSEPPE GENTILE

Two concepts of automorphism of a hypergroupoid are introduced; the
first one preserve the algebraic structure of a hypergroupoid, the second
one preserve the geometric structure that one can associate naturally to a
hypergroupoid. The groups of such automorphisms are studied, in particular
in the case that the geometric space associated to a hypergroupoid is a Steiner
system.

1. Definitions and notations.

Definition 1.1. A hypergroupoid (H, o) is a non-empty set H equipped with a
hyperoperation o, that is an applicationo : H x H — P*(H), where P*(H)
is the set of non-empty subsets of H. If x,y € H, we will denote by x o y the
hyperproduct of x and y.

Definition 1.2. A geometric space is a pair (H, B), where H is a non-empty
set, which elements are called points, and 8B is a family of non-empty subsets of
H, called blocks.
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If (H, o) is a hypergroupoid, we say that the geometric space (H, B) is as-
sociated to (H, o) if and only if the elements of B are exactly the hyperproducts
of two elements of H, that is:

B={x Oy}x,yeH-

Conversely, if (H, 8B) is a geometric space, many hypergroupoids (H, o) exist
such that the set of all hyperproducts x o y is exactly &8; each one of these
hypergroupoids is said to be associated to (H, B).

We recall the following

Definition 1.3. An automorphism of the geometric space (H, B) is a bijective
application ¢ : H — H such that:

VBeB, ¢(B)eSB.

Now we can introduce the following notion

Definition 1.4. Let (H, o) be a hypergroupoid. We say that ¢ : H — H is
a geometric automorphism of (H, o) if it is an automorphism of the geometric
space (H, 8B) associated to (H, o), that is:

Vx,yeH, 3Fu,veH: ¢@xoy)=¢)oe().

We will denote by Autg(H, o) (or simply AutgH ) the group of all geometric
automorphisms of (H, o).

Definition 1.5. An automorphism of a hypergroupoid (H, o) is a bijective
application f : H — H such that:

Vx,yeH, f(xoy)= f(x)o f(y).

We will call these automorphisms, algebraic automorphisms of (H, o) and
we will denote by Auts(H, o) (or simply AutaH ) the group of all algebraic
automorphisms of (H, o).

Remark 1.1. From the previous definitions it follows immediately that for any
hypergroupoid (H, o) we have that:

AutaH < AutgH,

that is Aut4 H is a subgroup of AutcH .
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In general AutsH is proper a subgroup of AutsH in fact we have the
following

Example 1.1. Let (H, o) be the hypergroupoid defined by:

The geometric space associated to (H, o) is (H, 8B), where:

B = {{1, 2}, {1, 3}, {2, 3}}.

Clearly, any permutation on the set H is a geometric automorphism, that
is:
AutgH = S3;
while:
AutaH = {14}

In fact we have that:
fi = (23) ¢ AutaH, since fi(1ol) ={1,3}#{1,2} = fi(1) o fi(D);
f2 = (3) ¢ AutaH, since f(1o1) ={2,3} # {1, 2} = f2(1) o fo(1);
f3 = (12) ¢ AutaH, since f3(1o1) ={1,2} # {1, 3} = f3(1) o f3(1);
fa=(123) ¢ AutaH, since fu(1o1) = (2,3} # {1, 3} = fa(1) o fa(1);
fs =(132) ¢ AutgaH, since fs(101) ={1,3}# {1,2} = f5(1) o f5(1).

Remark 1.2. Let (H, B) and (H, 8’) be two geometric structures such that
B’ do not contains singletons and 8 = B U § where § is the set of all
singletons of H. In [3] is proved that (H, B) and (H, 8') have the same
group of automorphisms and so they are geometrically equivalent. If B’ do
not contains singletons then we say that (H, 8’) is the canonical representation
of all structures (H, 8) geometrically equivalent to (H, 8’) obtained from
(H, B’) by union of singletons.
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2. Steiner systems, Steiner hypergroupoids and quasi-Steiner hypergrou-
poids.

In this section we study the k-Steiner systems, that is those geometric
spaces (H, L), where H is a non-empty set, which elements are called points,
and £ is a family of non-empty subsets of H, which elements are called lines,
such that every line has k points and any two distinct points are contained in a
unique line.

In [6] the following notion was introduced:

Definition 2.1. A hypergroupoid (H, o) is said to be a k-Steiner hypergroupoid
(k > 2) (or simply Steiner hypergroupoid), if and only if the following condi-
tions are satisfied:

1) Vx,yeH, {x,y}Cxoy;
_J1 i x=y,
2) Vx,yeH, |xoy|—{k if x£y

3) the associativity holds for any triple of points not all distinct.

If (H, L) is a k-Steiner system, then one can define a hyperoperation on
H in the following way:

Vx,yeH, xoy:{l{);y} i iii
where [, denote the unique line trough x and y. In [6] it was proved that (H, o)
is a k-Steiner hypergroupoid, that we will call associated to (H, £).
Conversely, if (H, o) is a k-Steiner hypergroupoid and if (H, L) is the ge-
ometric structure associated to (H, o), then the canonical representation (H, .£)
of (H, L') is a k-Steiner system. So, the notions of k-Steiner hypergroupoid and
k-Steiner system are equivalent.
Now we introduce the following

Definition 2.2. A hypergroupoid (H, o) is said to be a k-quasi-Steiner hyper-
groupoid (k > 2) (or simply quasi-Steiner hypergroupoid), if and only if the
following conditions are satisfied:

1) Vx,yeH, x#y, {x,y}Cxoy;

2) Vx,yeH, |xoy|l=k;

3) Vx,y,z,teH, |xoyNzot|>1 = xoy=zot.

Remark 2.1. The geometric structure associated to a k-quasi-Steiner hyper-
groupoid is always canonically represented.
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Theorem 2.1. If (H, o) is a k-quasi-Steiner hypergroupoid, then we have:

VxeH, EI(u,v)eHZ, UFV:X0X=uUoON.

Proof. Let x € H; by 2) it follows that:
|X o Xl =k>2

and therefore
Ju,vexox, u#v.

By 1) we have that:
{u,v} Cuow;
and so:
[x ox Nuov| D {u, v}

by 3), it follows now that:
Xox =uouv. [l

Theorem 2.2. Any quasi-Steiner hypergroupoid (H, o) is commutative.
Proof. By 1) it follows that:

Vx,yeH, x#y, yox2{x,y}Sxoy;
and therefore, by 3), we have that:

Xoy=youx. (]

Let (H, L£) be a k-Steiner system; we define on H a hyperoperation by
setting:
Ly if x#y
Vx,yeH, xoy_{lx i x =y
where [, denote the unique line trough x and y and [, is an arbitrary line of .
Clearly, (H, o) is a k-quasi-Steiner hypergroupoid that we will call associated
to (H, L£).
Conversely, if (H, o) is a k-quasi-Steiner hypergroupoid and if we consider
the family:
L={xo y}(x,y)eHxHa

then (H, L) is a k-Steiner system. In fact, from 2) it follows that every element
of /£ has cardinality k; from 1) it follows that any pair of distinct points are
contained in a line; from 3) it follows that any pair of distinct points are
contained in one and only one line. So, the notions of k-Steiner system and
k-quasi-Steiner hypergroupoid are equivalent.
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Remark 2.2. If (H, £) is a Steiner system, with |H| = v, |£]| = b, then the
number of quasi-Steiner hypergroupoids associated to (H, L) is b*.

3. Remarkable groups of automorphisms in a Steiner system.

We already know that, if (H, o) is a hypergroupoid, then AutsH is a
subgroup of Auts H and, in general, a proper subgroup; but in some cases these
groups are coincident; in fact we have

Theorem 3.1. Let (H, L) be a Steiner system, (H, o) be the associated Steiner
hypergroupoid. Then we have:

AutsH = AutgH.

Proof. We must show that:
AutgH C Aut,H.

Let ¢ € AutgH, (x, y) € H?. By definition of Steiner hypergroupoid it follows
that:

{x.y}Sxoy;

since ¢ preserve the incidences, we have that:
(3.1) p(x) eplxoy)39(y).
On the other hand, by definition of Steiner hypergroupoid, we have that:
(3.2) p(x) € p(x)op(y) 3 @(y).
Finally, we have that:

if x = y, then:

pxox) =) = @(x) o p(x);
if x # y, then from (3.1) e (3.2) it follows that:
(p(x o y)) 2 {p(x), p(y)} S ((x) 0 9(¥)),

that is ¢ (x o y) and ¢(x) o ¢(y) are two lines in a Steiner system that meet in at
least two points, and so they must to be equal, that is:

pxoy) =) op(y).
This shows that ¢ € AutgH. U

Now we will prove that, unlike Steiner hypergroupoids, the group Auts H
of all algebraic automorphisms of an arbitrary quasi-Steiner hypergroupoid
(H, o) is a proper subgroup of AutgH.
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Theorem 3.2. Let (H, L) be a Steiner system, (H,o) be a quasi-Steiner
hypergroupoid associated to (H, L); then we have:

AutaH # AutgH.

Proof. We suppose that Auts H = AutgcH. We put L = {x o x},cp. First of
all we note that, in this case:

3.3) L =L,
in fact, if 3/ € L \ L', then:
VxeH, xox#lI,

and so the geometric automorphisms that send a line of £’ in the line [ are not
algebraic and so Auts H # AutgH.
From (3.3) it follows that, if we put v = |H|, b = |L]|, we have that:

b <.

On the other hand, in a Steiner system we have always that v < b, and so:
b=wv,

and consequently:

(3.4) Vx,yeH, x#y <& Xxox#yoy.

Now let z € H and f € Auts H such that the line z o z is fixed by f; we have
that:

f@of()=f(zoz) =zoz,

and therefore from (3.4) it follows that f(z) = z; so, if an algebraic automor-
phism fixes the line z o z, then it must fixe the point z. So, the geometric auto-
morphisms that fixe the line z o z, but do not fixe the point z are not algebraic,
that is absurd. ]

Theorem 3.3. Let (H, L) be a Steiner system, (H,o) be a quasi-Steiner
hypergroupoid associated to (H, L). Then we have that:

Auty,H = {¢p € AutgH : p(x ox) = p(x) o p(x),Vx e H}.
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Proof. 1t is enough to observe that, as in Theorem 3.1, we have that:
VoeAutgH, Vx,yeH, x#y = ¢xoy)=px)op(y),

but, in general, we have that:

pxox) #px)opx). U

Corollary 34. Let (H, L) be a Steiner system and |l € L. Let (H, o;) be the
quasi-Steiner hypergroupoid defined by:

VxeH, xox=I.

Then we have:
AutaH = {p € AutgH : o) =1}
that is AutaH is the subgroup of AutgH that fixes the line [.

Proof. 1t suffices to observe that:
p(x o x) = ()
VxeH, .
{ p(x) o p(x) =1

The corollary follows now from the previous theorem. (]

Corollary 3.5. Let A= AG(2,q), P = PG(2,q);letl bealinein PG(2, q).
Let (A, o), (P,o;) be respectively the Steiner hypergroupoid associated to
AG (2, q) and the quasi-Steiner hypergroupoid associated to PG (2, q), where
o; is defined as in the previous corollary. Then we have:

AUtgA = Auty P.

Proof. 1t is enough to observe that:
Autg A = AutgA,

by Theorem 3.1;
AutgA = (AutgP);,

where (AutgP); is the subgroup of Auts P that fixe the line /, since the
automorphisms of an affine plane are (up to isomorphisms) those geometric
ones that fixe a line in the projective plane in which it is imbedded;

(AutgP); = Aut, P,
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by the previous corollary. U

Example 3.1. Let A = AG(2,2) and P = PG(2, 2). We consider the Steiner
hypergroupoid (A, o) associated to AG (2, 2), that is:

21 1,2 2 2,3 | 2,4

) 1 2 3 4 5 6 7

1 1,2,3 1,2,3 1,2,3 1,4,7 1,5,6 1,5,6 1,4,7

2 1,2,3 1,2,3 1,2,3 | 2,4,6 | 2,5,7 | 2,4,6 | 2,5,7

3 1,2,3 1,2,3 1,2,3 | 3,4,5 | 3,45 ] 3,6,7 | 3,6,7

4 1,4,7 | 2,4,6 | 3,4,5 1,2,3 | 3,4,5 | 2,4,6 1,4,7

5 1,5,6 | 2,5,7 | 3,45 | 3,45 1,2,3 1,5,6 | 2,5,7

6 1,5,6 | 2,4,6 | 3,6,7 | 2,4,6 | 1,5,6 | 1,2,3 | 3,6,7

7 1,4,7 | 2,5,7 | 3,6,7 1,4,7 | 2,5,7 | 3,6,7 1,2,3

where [ = {1, 2, 3}; from the last corollary it follows that:

Auty, A = Auty P.

Theorem 3.6. Let (H, L) be a (non-degenerated) Steiner system; let | € L,
p €l; let (H, o) be a quasi-Steiner hypergroupoid associated to (H, L) such
that:
xox =1, Vxe(H\D)U{p};
{ xox #1, otherwise.
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Then we have:
AutaH < (:AM[GH)]’I,,

where (AutgH); , denote the subgroup of AutcH that fixes | and p.

Proof. Let f € AutsH; first of all we observe that, because the Steiner system
is not degenerated, then:

H
HADU PN > .

So, since f is bijective, we have that:

dx,ye(H\DU{p}: fx)=y.

‘We have that:
fxox) = f);

fX)ofx) = yoy=L

and by Theorem 2.3:
(3.5) f =1L
Now we prove that f(p) = p. By hypothesis we have that:

fpop)=f,
and from (3.5) it follows that:

f(pop)=L.

By Theorem 2.3, we have that:

fp)o f(p) =1,

and therefore, from the hypothesis on o, it follows that:

f(p)e(H\DU{p}.
But f(/) = [ isequivalentto f(H \[) = H \ [, and therefore:
f(p) ¢ H\I,
that is:
fpy=p. 0O

In general if a quasi-Steiner hypergroupoid satisfies the conditions of the
previous theorem, then AutsH is not equal to (AutgH), ,, as we can see in
the following
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Example 3.2. Let (H, L) = AG(2,3). Let (H,o) be the quasi-Steiner
hypergroupoid associated to AG (2, 3), defined by the following table:

Such hypergroupoid satisfies all conditions of the previous theorem with [ =
{1,2,3}, p = 1; we have that AutyH # (AutgH); ,; more precisely, we have
that:

At H — 1, (456)(798), (465)(789),
AT (32)(47)(59)(68), (32)(485769), (32)(496758) [ °

Theorem 3.7. Let (H, L£) = ]—[q be a projective plane of order q; let | € L,
p &1, let (H, o) be a quasi-Steiner hypergroupoid associated to | | o Such that:

xox=1I[, VxelU{p};
xox #1, otherwise.

Then we have that:
AutyH < (AutgH); p,

where (AutgH); , denote the subgroup of AutgH fixing | and p.
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Proof. Let f € AutyH and | = {by, by, ..., by1}; first of all we prove that:

(3.6) dx,yelU{p}: [fx)=y.

We suppose that:
Vx,yelUfp}, fx)#y

that is:
VxelU{p}, [fx)¢lU{p}.

So, by definition of o, it follows that:

VxelUfp}, [f(x)of(x)=fxox)=f();

but:
fx)¢lu{pl = f(x)o f(x)#L

So, it follows that:

(3.7 J#L

But f is also a geometric automorphism; therefore we have that f (/) € L£; let
f) = {cr,ca, ..., cq1}. Now I N f(l) # ¥ because (H, L) is a projective
plane. This means that:
di,je{l,2,....,q+1}: b;=c.
From this we obtain:
(3.8) cjocj=bjob; =1.
On the other hand, from ¢; € f (/) it follows that:
dbrel: c¢j = f(bp);
therefore we have that:
cjocj= fbr)o f(br) = f(brobr) = f(D),

and so, from (3.8), we have that:

f =1
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that is absurd, by (3.7); this shows that (3.6) is true.
So, we have that:

fxox)y = f;
fX)ofx) = yoy=L
and therefore, by Theorem 2.3, it follows that:
f =1
We observe now that:
fof(p)=fpop)=f)=L
s0, by definition of o, we have that:
f(p)elUfp}

but from f (/) = [, it follows necessarily:

fp) ¢l

that is:
fipp=p. 0O

Example 3.3. Let (H, £) = PG(2.2). We consider the quasi-Steiner hyper-
groupoid (H, o) associated to PG (2, 2), defined by the following table:

1 1,2,3 1,2,3 1,2,3 1,4,7 1,5,6 1,5,6 1,4,7

2| 1,2,3 1,2,3 1,2,3 | 2,4,6 | 2,5,7 | 2,4,6 | 2,5,7

31 1,23 1,2,3 1,2,3 | 3,4,5 | 3,45 | 3,6,7 | 3,6,7

4 1 1,47 ] 2,46 | 3,45 [ 2,57 ] 3,45 | 2,4,6 1,4,7

5| L56 | 257 3,45 | 3,45 1,4,7 1,5,6 | 2,5,7

6 | 1,56 | 2,4,6 | 3,6,7 | 2,4,6 | 1,5,6 | 1,2,3 | 3,6,7

7| 1,47 | 2,57 3,67 1,4,7 | 2,5,7 | 3,6,7 | 3,4,5
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Such hypergroupoid satisfies all conditions of the previous theorem with [ =
{1, 2,3} and p = 6; in such case we have that:

AutaH = (fA’utGH)l,p-

In fact any geometric automorphism fixing the line {1, 2, 3} and the point 6 is
also algebraic. To prove this, it is enough to show that if f € (AutgH),; p, then:

VxglU{p}, flxox)= f(x)o fx),
because for x € [ U {p} the preceding equality holds, since for these x we have
xox =/[and f fixes [ U {p}. In other words, we must show that:

f(xox)= f(x)o f(x), Vxe{4,5 7}
First of all we observe that:
|(AutgH), ,| = 6.

‘We have that:
fi = (23) (47) € Aut,H

because:
fitdod) = f1{2,5,7}=1{3,4,5} =ToT= fi(4) o f1(4);
fiGo5) = fi{l, 4,7} ={1,4,7} =505= fi(5) o f1(5);

Si(MToT) = fi{3,4,5}=1{2,5,7} =404 = fi(Do fi(]).
Moreover we have:
= (13) (57) € Aut,H
because:
fdod) = f{2,5,7}=1{2,5,7T} =404 = fr(4) o L (4);
f(505) = L{1,4,7}=1{3,4,5}=T0T= f2(5) 0 f2(5);

f2(ToT) = 2{3,4,5}={1,4, 7} =505= fo(7) o fo(]D).
Finally we have:

fz = (12) (45) € Aut,H
because:
frdod) = f3{2,5, 7} ={1,4,7}=505= f3(4) o f3(4);
f505) = f3{1,4,7}={2,5,7T} =404 = f3(5) 0 f3(5);
S(ToT) = f3{3,4,5} ={3,4,5} =707 = f3(7) o f3(7).
Therefore, since 14 € Aut4 H, we obtain that:
|AUut,H| > 4

and so:
:A)I/ttAH = (:A)I/tl‘GH)l’p.
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The following example shows that, if a quasi-Steiner hypergroupoid satis-
fies all conditions of the previous theorem, in general we have that Auts H is a
proper subgroup of (AutgH); .

Example 34. Let (H, L) = PG(2,2). We consider the following quasi-
Steiner hypergroupoid (H, o) associated to PG (2, 2), defined by:

As in the previous example (H, o) is a quasi-Steiner hypergroupoid associated
to PG (2, 2) satisfying the conditions of the theorem, with [ = {1, 2,3}, p = 6;
but in this case g = (12)(45) is a geometric automorphism fixing / and p that
is not algebraic. So, in this case:

Auty H #- (:A)MtGH)]’p.

Theorem 3.8. Let (H, L) be a projective plane (finite of order q # 2",Yh € N
or infinite), let I be a conic in (H, L), (H, or) the quasi-Steiner hypergroupoid
defined by:

VxeH, xorx=lIlr,

where I denote the polar line of x in respect to the conic I". Then we have:

AutsH = {f € AutgH : f(lx[‘) = lf(x),l", Vxe H}.
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Proof. This follows immediately from Theorem 2.3, since in this case we have:
fxorx) = fl.r)
f&X)or f(x) = lpwr. U

Theorem 3.9. Let (H, .L£) be a projective plane (finite of order q¢ # 2",Yh e N
or infinite); let I" be a conic, (H, or) the quasi-Steiner hypergroupoid defined
by:

VxeH, xorx=Ir,

where [, 1 denote the polar line of x in respect to the conic I'. Then we have:
AutaH = (AutgH)r,

where (AutcH)r denote the group of all geometric automorphisms fixing the
conic I.

Proof. First of all we observe that, from the geometric properties of the polar
line, it follows that:

3.9 VxeH, xexorx < xel' & xorxNnNIl ={x};

(3.10) Vx,yeH, xe€yory <& yExorx.
Let f € AutyH; we suppose that f ¢ (AutgH)r, that is:
dxel, Fy¢l: fx)=y.
From x € I', it follows that x € x or x; and so:
y = f(x)€ f(xorx).
From y ¢ I, it follows that y ¢ y or y, that is:
yé& f(x)or f(x).

So, we have that:

f(xorx)# f(x)or f(x),
that is absurd.
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Now let f € (AutgH)r, thatis f(I') = I'; by the previous theorem, it
suffices to show that:

VxeH, f(xorx)= f(x)or f(x).

If x e I" then it is easily proved that:
fGorx)NT ={f(x)}
So, from (3.9), it follows that f(x or x) is the polar line of f(x), that is:
Jf(xorx) = f(x)or f(x).
If x ¢ I' we distinguish two cases:
a) (xorx)NT #;
b) (xorx)NI'=40.

In case a), since |(x or x) NI'| = 2, we can set (x or x) NI = {p,, g, }; so, it
follows that:
X Oor X = Dy Or {x

and therefore:

(3.11) Jf(&xorx) = f(pxor qy).

Recalling the proof of Theorem 2.3, we have that:

(3.12) S(pxorqe) = f(px)or fgx)-

Now, since {p,, gx} € x or x, from (3.10) it follows that:

XEPxOFmeCIxOFCIx§

and therefore:

f(X) € f(px or px) N f(qx or qx)-
Moreover, since {py, g} € I, it follows that f(py), f(gx) € I', and so, by the
first case, it follows that:

S(pxor px) = f(px)or f(px) and f(gxor qx) = f(qx) or f(qx);
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and therefore:

fx)e f(p)or f(py) and  f(x)€ f(gy)or f(qx);

and so:

F(ps), flgx) € f(x)or f(x) with  f(px) # f(gx).
Therefore:
(3.13) f(p) or flge) = f(x)or f(x).

Finally, from (3.11), (3.12) and (3.13), it follows now that:
Jfxorx) = f(x)or f(x).
In case b) let p, € I, since (H, L) is a projective plane, then we can set:
(3.14) py = (pxor px) N (x or x).
From p, € p) or p’, it follows that:
(P or p) NT #;
and so, by case a), it follows that:
(3.15) f (P or p) = f(p}) or f(PY)
On the other hand, from x € p’, or p) it follows that:
f&) e fpyor p) = f(py)or f(py).
and so:
(3.16) F(p) e f(x)or fx).
Now we choose another point g, € I', and analogously we set:
qx = (gx or ¢x) N (x or X).

We can suppose p’. # g.. So, we have that:

(3.17) f(qy) € fx)or f(x).
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Consequently, from (3.16) and (3.17), we have that:

(3.18) fx)or f(x)= f(py)or flq).

On the other hand we have that:

/ /
P gy €Xorx

and so:
/ !
XorXxX=p.ordg,.

Therefore:
fxorx)= f(p,orqy):

so, since p # g, we have:

f(piorqy) = f(py)or f(q))

and so:

fxorx)= f(p,)or f(gqy).
Comparing this equality with (3.18), we have that:

fxorx)= f(x)or f(x).

The proof is now complete. (]

4. A general result about algebraic automorphisms.

Theorem 4.1. Let (H, o) be a hypergroupoid associated to a geometric space
(H, B) and let ¢ € Autg(H, o), let @ be the hyperoperation on H defined by:

Vx,yeH, xey=g¢(xoy).
Then we have:
Auty(H, o) = Auty(H, o) < ¢ € CpugH,o) (Auts(H, o)),

where  Cuui,(H.0)(Auta(H, o)) denote the centralizer of Auts(H,o) in
Autg(H, o).
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Proof. <) Let f € Auts(H, o); by definition of e it follows immediately that:

fxey)= fp(xoy))

@b {f(x)'f()’)Z‘P(f(x)of(y)):(p(f(xoy)).

Then, since ¢ € Cpur,(H,0)(Auts(H, 0)), we have that:

VzeH, [f(p(@)=¢(f(2)

and, from (4.1), it follows that:

Vx,yeH, f(xey)= f(x)e f(y)

that is:
feAuts(H, o).

So, we have that:
Auty(H, o) C Auty(H, o).

Now let g € Auts(H, o); from (4.1) it follows that:

Vx,yeH, g(p(xoy))=¢p(gxoy)).

1

Such property holds for ¢ ~'; in fact, we have:

Vx,yeH, ¢ '(gxoy)=¢ '(gpp ' (xoy)) =
=9 N pge ' (x oY) =0 lo(gp (x 0 ¥) = glp ' (x 0 y)).

From this it follows now that:

{ gxoy) =glp~(xey)
g og( =9 gx)eg(y) =9 '(g(xey))

that is:
g € Auty(H, o).

So, we have that
Auts(H, o) C Auty,(H, o).

=) We will show that:

(p ¢ GAMIG(H,O)(‘AutA(Hv O)) = ‘AutA(Hv O) # ‘A]utA(Hv .)'
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Since ¢ ¢ C s, (H,0)(Auts(H, o)), we have that:
dh € Auts(H,o0): he # ¢h

that is:
JveH: hp) # ph(v).

Since ¢ is a geometric automorphism, we have that:
ABeB: hep(B) # ph(B),
and therefore, since (H, o) is associated to (H, 8B) :
dx,yeH: hp(xoy)#ph(xoy).
So, from (4.1) it follows that:
h(x ey) # h(x) e h(y)

that is:
h ¢ Auts(H, e). O
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