ALGEBRAIC AND GEOMETRIC AUTOMORPHISMS OF HYPERGROUPOIDS

GIUSEPPE GENTILE

Two concepts of automorphism of a hypergroupoid are introduced; the first one preserve the algebraic structure of a hypergroupoid, the second one preserve the geometric structure that one can associate naturally to a hypergroupoid. The groups of such automorphisms are studied, in particular in the case that the geometric space associated to a hypergroupoid is a Steiner system.

1. Definitions and notations.

Definition 1.1. A hypergroupoid (H, \circ) is a non-empty set H equipped with a hyperoperation \circ, that is an application $\circ: H \times H \rightarrow \mathscr{P}^{*}(H)$, where $\mathscr{P}^{*}(H)$ is the set of non-empty subsets of H. If $x, y \in H$, we will denote by $x \circ y$ the hyperproduct of x and y.

Definition 1.2. A geometric space is a pair (H, \mathscr{B}), where H is a non-empty set, which elements are called points, and \mathfrak{B} is a family of non-empty subsets of H, called blocks.

[^0]If (H, \circ) is a hypergroupoid, we say that the geometric space (H, \mathscr{B}) is associated to (H, \circ) if and only if the elements of \mathscr{B} are exactly the hyperproducts of two elements of H, that is:

$$
\mathscr{B}=\{x \circ y\}_{x, y \in H} .
$$

Conversely, if (H, \mathcal{B}) is a geometric space, many hypergroupoids (H, \circ) exist such that the set of all hyperproducts $x \circ y$ is exactly \mathcal{B}; each one of these hypergroupoids is said to be associated to (H, \mathscr{B}).

We recall the following
Definition 1.3. An automorphism of the geometric space (H, \mathscr{B}) is a bijective application $\varphi: H \rightarrow H$ such that:

$$
\forall B \in \mathscr{B}, \quad \varphi(B) \in \mathscr{B}
$$

Now we can introduce the following notion
Definition 1.4. Let (H, \circ) be a hypergroupoid. We say that $\varphi: H \rightarrow H$ is a geometric automorphism of (H, \circ) if it is an automorphism of the geometric space (H, \mathcal{B}) associated to (H, \circ), that is:

$$
\forall x, y \in H, \quad \exists u, v \in H: \quad \varphi(x \circ y)=\varphi(u) \circ \varphi(v) .
$$

We will denote by $\operatorname{Aut}_{G}(H, \circ)\left(\right.$ or simply $\left.\mathcal{A u t}_{G} H\right)$ the group of all geometric automorphisms of (H, \circ).

Definition 1.5. An automorphism of a hypergroupoid (H, \circ) is a bijective application $f: H \rightarrow H$ such that:

$$
\forall x, y \in H, f(x \circ y)=f(x) \circ f(y) .
$$

We will call these automorphisms, algebraic automorphisms of (H, \circ) and \left. we will denote by ${\mathcal{A} u t_{A}}^{(} H, \circ\right)\left(\right.$ or simply $\left.\mathcal{A}^{(} t_{A} H\right)$ the group of all algebraic automorphisms of (H, \circ).

Remark 1.1. From the previous definitions it follows immediately that for any hypergroupoid (H, \circ) we have that:

$$
\mathcal{A}^{u} u t_{A} H \leq \mathcal{A} u t_{G} H,
$$

that is $\mathcal{A} u t_{A} H$ is a subgroup of $\mathcal{A} u t_{G} H$.

In general $\mathcal{A}_{\mathcal{A}} u t_{A} H$ is proper a subgroup of $\mathcal{A} u t_{G} H$ in fact we have the following

Example 1.1. Let (H, \circ) be the hypergroupoid defined by:

\circ	1	2	3
1	1,2	1,3	1,3
2	1,2	1,3	1,3
3	2,3	1,2	1,2

The geometric space associated to (H, \circ) is (H, \mathscr{B}), where:

$$
\mathscr{B}=\{\{1,2\},\{1,3\},\{2,3\}\} .
$$

Clearly, any permutation on the set H is a geometric automorphism, that is:

$$
\mathcal{A}^{\prime} u t_{G} H=S_{3} ;
$$

while:

$$
\mathcal{A} u t_{A} H=\left\{1_{H}\right\} .
$$

In fact we have that:

$$
\begin{aligned}
& f_{1} \equiv(23) \notin \mathcal{A u t}_{A} H, \text { since } f_{1}(1 \circ 1)=\{1,3\} \neq\{1,2\}=f_{1}(1) \circ f_{1}(1) ; \\
& f_{2} \equiv(13) \notin \mathcal{A u t}_{A} H, \text { since } f_{2}(1 \circ 1)=\{2,3\} \neq\{1,2\}=f_{2}(1) \circ f_{2}(1) \text {; } \\
& f_{3} \equiv(12) \notin \mathcal{A u t}_{A} H, \text { since } f_{3}(1 \circ 1)=\{1,2\} \neq\{1,3\}=f_{3}(1) \circ f_{3}(1) \text {; } \\
& f_{4} \equiv(123) \notin \mathcal{A u t}_{A} H, \text { since } f_{4}(1 \circ 1)=\{2,3\} \neq\{1,3\}=f_{4}(1) \circ f_{4}(1) \text {; } \\
& f_{5} \equiv(132) \notin \mathcal{A u t}_{A} H \text {, since } f_{5}(1 \circ 1)=\{1,3\} \neq\{1,2\}=f_{5}(1) \circ f_{5}(1) \text {. }
\end{aligned}
$$

Remark 1.2. Let (H, \mathscr{B}) and $\left(H, \mathscr{B}^{\prime}\right)$ be two geometric structures such that \mathscr{B}^{\prime} do not contains singletons and $\mathscr{B}=\mathscr{B}^{\prime} \cup S$ where S is the set of all singletons of H. In [3] is proved that (H, \mathscr{B}) and $\left(H, \mathscr{B}^{\prime}\right)$ have the same group of automorphisms and so they are geometrically equivalent. If \mathscr{B}^{\prime} do not contains singletons then we say that $\left(H, \mathscr{B}^{\prime}\right)$ is the canonical representation of all structures (H, \mathscr{B}) geometrically equivalent to $\left(H, \mathscr{B}^{\prime}\right)$ obtained from (H, \mathscr{B}^{\prime}) by union of singletons.

2. Steiner systems, Steiner hypergroupoids and quasi-Steiner hypergroupoids.

In this section we study the k-Steiner systems, that is those geometric spaces (H, \mathcal{L}), where H is a non-empty set, which elements are called points, and \mathcal{L} is a family of non-empty subsets of H, which elements are called lines, such that every line has k points and any two distinct points are contained in a unique line.

In [6] the following notion was introduced:
Definition 2.1. A hypergroupoid (H, \circ) is said to be a k-Steiner hypergroupoid $(k \geq 2)$ (or simply Steiner hypergroupoid), if and only if the following conditions are satisfied:

1) $\forall x, y \in H, \quad\{x, y\} \subseteq x \circ y$;
2) $\forall x, y \in H, \quad|x \circ y|=\left\{\begin{array}{ll}1 & \text { if } x=y \\ k & \text { if } x \neq y\end{array}\right.$;
3) the associativity holds for any triple of points not all distinct.

If (H, \mathcal{L}) is a k-Steiner system, then one can define a hyperoperation on H in the following way:

$$
\forall x, y \in H, \quad x \circ y= \begin{cases}l_{x y} & \text { if } \quad x \neq y \\ \{x\} & \text { if } \quad x=y\end{cases}
$$

where $l_{x y}$ denote the unique line trough x and y. In [6] it was proved that (H, \circ) is a k-Steiner hypergroupoid, that we will call associated to (H, \mathcal{L}).

Conversely, if (H, \circ) is a k-Steiner hypergroupoid and if $\left(H, \mathcal{L}^{\prime}\right)$ is the geometric structure associated to (H, \circ), then the canonical representation (H, \mathcal{L}) of $\left(H, \mathcal{L}^{\prime}\right)$ is a k-Steiner system. So, the notions of k-Steiner hypergroupoid and k-Steiner system are equivalent.

Now we introduce the following
Definition 2.2. A hypergroupoid (H, \circ) is said to be a k-quasi-Steiner hypergroupoid ($k \geq 2$) (or simply quasi-Steiner hypergroupoid), if and only if the following conditions are satisfied:

1) $\forall x, y \in H, \quad x \neq y, \quad\{x, y\} \subseteq x \circ y$;
2) $\forall x, y \in H, \quad|x \circ y|=k$;
3) $\forall x, y, z, t \in H, \quad|x \circ y \cap z \circ t|>1 \Rightarrow x \circ y=z \circ t$.

Remark 2.1. The geometric structure associated to a k-quasi-Steiner hypergroupoid is always canonically represented.

Theorem 2.1. If (H, \circ) is a k-quasi-Steiner hypergroupoid, then we have:

$$
\forall x \in H, \quad \exists(u, v) \in H^{2}, \quad u \neq v: x \circ x=u \circ v .
$$

Proof. Let $x \in H$; by 2) it follows that:

$$
|x \circ x|=k \geq 2
$$

and therefore

$$
\exists u, v \in x \circ x, \quad u \neq v
$$

By 1) we have that:

$$
\{u, v\} \subseteq u \circ v
$$

and so:

$$
|x \circ x \cap u \circ v| \supseteq\{u, v\}
$$

by 3), it follows now that:

$$
x \circ x=u \circ v .
$$

Theorem 2.2. Any quasi-Steiner hypergroupoid (H, \circ) is commutative.
Proof. By 1) it follows that:

$$
\forall x, y \in H, \quad x \neq y, \quad y \circ x \supseteq\{x, y\} \subseteq x \circ y
$$

and therefore, by 3), we have that:

$$
x \circ y=y \circ x
$$

Let (H, \mathcal{L}) be a k-Steiner system; we define on H a hyperoperation by setting:

$$
\forall x, y \in H, \quad x \circ y= \begin{cases}l_{x y} & \text { if } x \neq y \\ l_{x} & \text { if } x=y\end{cases}
$$

where $l_{x y}$ denote the unique line trough x and y and l_{x} is an arbitrary line of \mathcal{L}. Clearly, (H, \circ) is a k-quasi-Steiner hypergroupoid that we will call associated to (H, \mathcal{L}).

Conversely, if (H, \circ) is a k-quasi-Steiner hypergroupoid and if we consider the family:

$$
\mathcal{L}=\{x \circ y\}_{(x, y) \in H \times H},
$$

then (H, \mathcal{L}) is a k-Steiner system. In fact, from 2) it follows that every element of \mathcal{L} has cardinality k; from 1) it follows that any pair of distinct points are contained in a line; from 3) it follows that any pair of distinct points are contained in one and only one line. So, the notions of k-Steiner system and k-quasi-Steiner hypergroupoid are equivalent.

Remark 2.2. If (H, \mathcal{L}) is a Steiner system, with $|H|=v,|\mathcal{L}|=b$, then the number of quasi-Steiner hypergroupoids associated to (H, \mathcal{L}) is b^{v}.

3. Remarkable groups of automorphisms in a Steiner system.

We already know that, if (H, \circ) is a hypergroupoid, then $\mathcal{A} u t_{A} H$ is a subgroup of $\mathcal{A b t}_{G} H$ and, in general, a proper subgroup; but in some cases these groups are coincident; in fact we have
Theorem 3.1. Let (H, \mathcal{L}) be a Steiner system, (H, \circ) be the associated Steiner hypergroupoid. Then we have:

$$
\mathcal{A} u t_{A} H=\mathcal{A} u t_{G} H .
$$

Proof. We must show that:

$$
\mathcal{A}^{4} u t_{G} H \subseteq \mathcal{A} u t_{A} H .
$$

Let $\varphi \in \mathcal{A u t}_{G} H,(x, y) \in H^{2}$. By definition of Steiner hypergroupoid it follows that:

$$
\{x, y\} \subseteq x \circ y
$$

since φ preserve the incidences, we have that:

$$
\begin{equation*}
\varphi(x) \in \varphi(x \circ y) \ni \varphi(y) \tag{3.1}
\end{equation*}
$$

On the other hand, by definition of Steiner hypergroupoid, we have that:

$$
\begin{equation*}
\varphi(x) \in \varphi(x) \circ \varphi(y) \ni \varphi(y) . \tag{3.2}
\end{equation*}
$$

Finally, we have that:
if $x=y$, then:

$$
\varphi(x \circ x)=\varphi(x)=\varphi(x) \circ \varphi(x)
$$

if $x \neq y$, then from (3.1) e (3.2) it follows that:

$$
(\varphi(x \circ y)) \supseteq\{\varphi(x), \varphi(y)\} \subseteq(\varphi(x) \circ \varphi(y)),
$$

that is $\varphi(x \circ y)$ and $\varphi(x) \circ \varphi(y)$ are two lines in a Steiner system that meet in at least two points, and so they must to be equal, that is:

$$
\varphi(x \circ y)=\varphi(x) \circ \varphi(y) .
$$

This shows that $\varphi \in \mathcal{A} u t_{G} H$
Now we will prove that, unlike Steiner hypergroupoids, the group $\mathcal{A} u t_{A} H$ of all algebraic automorphisms of an arbitrary quasi-Steiner hypergroupoid (H, \circ) is a proper subgroup of $\mathcal{A}^{\mathcal{A}} t_{G} H$.

Theorem 3.2. Let (H, \mathcal{L}) be a Steiner system, (H, \circ) be a quasi-Steiner hypergroupoid associated to (H, \mathcal{L}); then we have:

$$
\mathcal{A} u t_{A} H \neq \mathcal{A} u t_{G} H
$$

Proof. We suppose that $\mathcal{A} u t_{A} H=\mathcal{A}^{\mathcal{A}} u t_{G} H$. We put $\mathcal{L}^{\prime}=\{x \circ x\}_{x \in H}$. First of all we note that, in this case:

$$
\begin{equation*}
\mathcal{L}^{\prime}=\mathcal{L} \tag{3.3}
\end{equation*}
$$

in fact, if $\exists l \in \mathcal{L} \backslash \mathcal{L}^{\prime}$, then:

$$
\forall x \in H, \quad x \circ x \neq l,
$$

and so the geometric automorphisms that send a line of \mathcal{L}^{\prime} in the line l are not algebraic and so $\mathcal{A} u t_{A} H \neq \mathcal{A} u t_{G} H$.

From (3.3) it follows that, if we put $v=|H|, b=|\mathcal{L}|$, we have that:

$$
b \leq v
$$

On the other hand, in a Steiner system we have always that $v \leq b$, and so:

$$
b=v
$$

and consequently:

$$
\begin{equation*}
\forall x, y \in H, \quad x \neq y \quad \Leftrightarrow \quad x \circ x \neq y \circ y . \tag{3.4}
\end{equation*}
$$

Now let $z \in H$ and $f \in \mathscr{A} u t_{A} H$ such that the line $z \circ z$ is fixed by f; we have that:

$$
f(z) \circ f(z)=f(z \circ z)=z \circ z
$$

and therefore from (3.4) it follows that $f(z)=z$; so, if an algebraic automorphism fixes the line $z \circ z$, then it must fixe the point z. So, the geometric automorphisms that fixe the line $z \circ z$, but do not fixe the point z are not algebraic, that is absurd.

Theorem 3.3. Let (H, \mathcal{L}) be a Steiner system, (H, \circ) be a quasi-Steiner hypergroupoid associated to (H, \mathcal{L}). Then we have that:

$$
\mathcal{A}^{u} t_{A} H=\left\{\varphi \in \mathcal{A} u t_{G} H: \varphi(x \circ x)=\varphi(x) \circ \varphi(x), \forall x \in H\right\}
$$

Proof. It is enough to observe that, as in Theorem 3.1, we have that:

$$
\forall \varphi \in \mathcal{A} u t_{G} H, \quad \forall x, y \in H, \quad x \neq y \quad \Rightarrow \quad \varphi(x \circ y)=\varphi(x) \circ \varphi(y),
$$

but, in general, we have that:

$$
\varphi(x \circ x) \neq \varphi(x) \circ \varphi(x)
$$

Corollary 3.4. Let (H, \mathcal{L}) be a Steiner system and $l \in \mathcal{L}$. Let $\left(H, \circ_{l}\right)$ be the quasi-Steiner hypergroupoid defined by:

$$
\forall x \in H, \quad x \circ_{l} x=l
$$

Then we have:

$$
\mathcal{A} u t_{A} H=\left\{\varphi \in \mathcal{A} u t_{G} H: \varphi(l)=l\right\}
$$

that is $\mathcal{A u t}_{A} H$ is the subgroup of $\mathcal{A u t}_{G} H$ that fixes the line l.
Proof. It suffices to observe that:

$$
\forall x \in H,\left\{\begin{array}{l}
\varphi\left(x \circ_{l} x\right)=\varphi(l) \\
\varphi(x) \circ_{l} \varphi(x)=l
\end{array}\right.
$$

The corollary follows now from the previous theorem.
Corollary 3.5. Let $A=A G(2, q), P=P G(2, q)$; let l be a line in $P G(2, q)$. Let $(A, \circ),\left(P, \circ_{l}\right)$ be respectively the Steiner hypergroupoid associated to $A G(2, q)$ and the quasi-Steiner hypergroupoid associated to $P G(2, q)$, where \circ_{l} is defined as in the previous corollary. Then we have:

$$
\mathcal{A} u t_{A} A \cong \mathcal{A} u t_{A} P
$$

Proof. It is enough to observe that:

$$
\mathcal{A}^{u} u t_{A} A=\mathcal{A} u t_{G} A,
$$

by Theorem 3.1;

$$
\mathcal{A}^{\prime} u t_{G} A \cong\left(\mathcal{A}^{\prime} u t_{G} P\right)_{l},
$$

where $\left(\mathcal{A u t}_{G} P\right)_{l}$ is the subgroup of $\mathcal{A u t}_{G} P$ that fixe the line l, since the automorphisms of an affine plane are (up to isomorphisms) those geometric ones that fixe a line in the projective plane in which it is imbedded;

$$
\left(\mathcal{A} u t_{G} P\right)_{l}=\mathcal{A}^{\prime} u t_{A} P
$$

by the previous corollary.
Example 3.1. Let $A \equiv A G(2,2)$ and $P \equiv P G(2,2)$. We consider the Steiner hypergroupoid (A, \circ) associated to $A G(2,2)$, that is:

\circ	1	2	3	4
1	1	1,2	1,3	1,4
2	1,2	2	2,3	2,4
3	1,3	2,3	3	3,4
4	1,4	2,4	3,4	4

and the quasi-Steiner hypergroupoid $\left(P, \circ_{l}\right)$ associated to $P G(2,2)$, that is:

\circ	1	2	3	4	5	6	7
1	$1,2,3$	$1,2,3$	$1,2,3$	$1,4,7$	$1,5,6$	$1,5,6$	$1,4,7$
2	$1,2,3$	$1,2,3$	$1,2,3$	$2,4,6$	$2,5,7$	$2,4,6$	$2,5,7$
3	$1,2,3$	$1,2,3$	$1,2,3$	$3,4,5$	$3,4,5$	$3,6,7$	$3,6,7$
4	$1,4,7$	$2,4,6$	$3,4,5$	$1,2,3$	$3,4,5$	$2,4,6$	$1,4,7$
5	$1,5,6$	$2,5,7$	$3,4,5$	$3,4,5$	$1,2,3$	$1,5,6$	$2,5,7$
6	$1,5,6$	$2,4,6$	$3,6,7$	$2,4,6$	$1,5,6$	$1,2,3$	$3,6,7$
7	$1,4,7$	$2,5,7$	$3,6,7$	$1,4,7$	$2,5,7$	$3,6,7$	$1,2,3$

where $l=\{1,2,3\}$; from the last corollary it follows that:

$$
\mathcal{A u t}_{A} A \cong \mathcal{A u t}_{A} P
$$

Theorem 3.6. Let (H, \mathcal{L}) be a (non-degenerated) Steiner system; let $l \in \mathcal{L}$, $p \in l$; let (H, \circ) be a quasi-Steiner hypergroupoid associated to (H, \mathcal{L}) such that:

$$
\begin{cases}x \circ x=l, & \forall x \in(H \backslash l) \cup\{p\} \\ x \circ x \neq l, & \text { otherwise } .\end{cases}
$$

Then we have:

$$
\mathcal{A} u t_{A} H \leq\left(\mathcal{A} u t_{G} H\right)_{l, p},
$$

Proof. Let $f \in \mathcal{A} u t_{A} H$; first of all we observe that, because the Steiner system is not degenerated, then:

$$
|(H \backslash l) \cup\{p\}|>\frac{|H|}{2}
$$

So, since f is bijective, we have that:

$$
\exists x, y \in(H \backslash l) \cup\{p\}: \quad f(x)=y .
$$

We have that:

$$
\begin{aligned}
f(x \circ x) & =f(l) \\
f(x) \circ f(x) & =y \circ y=l
\end{aligned}
$$

and by Theorem 2.3:

$$
\begin{equation*}
f(l)=l . \tag{3.5}
\end{equation*}
$$

Now we prove that $f(p)=p$. By hypothesis we have that:

$$
f(p \circ p)=f(l)
$$

and from (3.5) it follows that:

$$
f(p \circ p)=l
$$

By Theorem 2.3, we have that:

$$
f(p) \circ f(p)=l,
$$

and therefore, from the hypothesis on \circ, it follows that:

$$
f(p) \in(H \backslash l) \cup\{p\}
$$

But $f(l)=l$ is equivalent to $f(H \backslash l)=H \backslash l$, and therefore:

$$
f(p) \notin H \backslash l,
$$

that is:

$$
f(p)=p
$$

In general if a quasi-Steiner hypergroupoid satisfies the conditions of the previous theorem, then $\mathcal{A} u t_{A} H$ is not equal to $\left(\mathcal{A} u t_{G} H\right)_{l, p}$, as we can see in the following

Example 3.2. Let $(H, \mathcal{L}) \equiv A G(2,3)$. Let (H, \circ) be the quasi-Steiner hypergroupoid associated to $A G(2,3)$, defined by the following table:

\circ	1	2	3	4	5	6	7	8	9
1	$1,2,3$	$1,2,3$	$1,2,3$	$1,4,7$	$1,5,9$	$1,6,8$	$1,4,7$	$1,6,8$	$1,5,9$
2	$1,2,3$	$4,5,6$	$1,2,3$	$2,4,9$	$2,5,8$	$2,6,7$	$2,6,7$	$2,5,8$	$2,4,9$
3	$1,2,3$	$1,2,3$	$7,8,9$	$3,4,8$	$3,5,7$	$3,6,9$	$3,5,7$	$3,4,8$	$3,6,9$
4	$1,4,7$	$2,4,9$	$3,4,8$	$1,2,3$	$4,5,6$	$4,5,6$	$1,4,7$	$3,4,8$	$2,4,9$
5	$1,5,9$	$2,5,8$	$3,5,7$	$4,5,6$	$1,2,3$	$4,5,6$	$3,5,7$	$2,5,8$	$1,5,9$
6	$1,6,8$	$2,6,7$	$3,6,9$	$4,5,6$	$4,5,6$	$1,2,3$	$2,6,7$	$1,6,8$	$3,6,9$
7	$1,4,7$	$2,6,7$	$3,5,7$	$1,4,7$	$3,5,7$	$2,6,7$	$1,2,3$	$7,8,9$	$7,8,9$
8	$1,6,8$	$2,5,8$	$3,4,8$	$3,4,8$	$2,5,8$	$1,6,8$	$7,8,9$	$1,2,3$	$7,8,9$
9	$1,5,9$	$2,4,9$	$3,6,9$	$2,4,9$	$1,5,9$	$3,6,9$	$7,8,9$	$7,8,9$	$1,2,3$

Such hypergroupoid satisfies all conditions of the previous theorem with $l=$ $\{1,2,3\}, p=1$; we have that $\mathcal{A} u t_{A} H \neq\left(\mathcal{A}^{\mathcal{A}} t_{G} H\right)_{l, p}$; more precisely, we have that:

$$
\mathcal{A u t}_{A} H=\left\{\begin{array}{c}
1_{H},(456)(798),(465)(789), \\
(32)(47)(59)(68),(32)(485769),(32)(496758)
\end{array}\right\}
$$

Theorem 3.7. Let $(H, \mathcal{L}) \equiv \prod_{q}$ be a projective plane of order q; let $l \in \mathcal{L}$, $p \notin l$; let (H, \circ) be a quasi-Steiner hypergroupoid associated to \prod_{q} such that:

$$
\begin{cases}x \circ x=l, & \forall x \in l \cup\{p\} \\ x \circ x \neq l, & \text { otherwise }\end{cases}
$$

Then we have that:

$$
\mathcal{A} u t_{A} H \leq\left(\mathcal{A} u t_{G} H\right)_{l, p},
$$

where $\left({\mathcal{A} u t_{G}} H\right)_{l, p}$ denote the subgroup of $\mathcal{A u t}_{G} H$ fixing l and p.

Proof. Let $f \in \mathcal{A} u t_{A} H$ and $l=\left\{b_{1}, b_{2}, \ldots, b_{q+1}\right\}$; first of all we prove that:

$$
\begin{equation*}
\exists x, y \in l \cup\{p\}: \quad f(x)=y . \tag{3.6}
\end{equation*}
$$

We suppose that:

$$
\forall x, y \in l \cup\{p\}, \quad f(x) \neq y
$$

that is:

$$
\forall x \in l \cup\{p\}, \quad f(x) \notin l \cup\{p\} .
$$

So, by definition of \circ, it follows that:

$$
\forall x \in l \cup\{p\}, \quad f(x) \circ f(x)=f(x \circ x)=f(l)
$$

but:

$$
f(x) \notin l \cup\{p\} \quad \Rightarrow \quad f(x) \circ f(x) \neq l .
$$

So, it follows that:

$$
\begin{equation*}
f(l) \neq l . \tag{3.7}
\end{equation*}
$$

But f is also a geometric automorphism; therefore we have that $f(l) \in \mathcal{L}$; let $f(l)=\left\{c_{1}, c_{2}, \ldots, c_{q+1}\right\}$. Now $l \cap f(l) \neq \emptyset$ because (H, \mathcal{L}) is a projective plane. This means that:

$$
\exists i, j \in\{1,2, \ldots, q+1\}: \quad b_{i}=c_{j}
$$

From this we obtain:

$$
\begin{equation*}
c_{j} \circ c_{j}=b_{i} \circ b_{i}=l . \tag{3.8}
\end{equation*}
$$

On the other hand, from $c_{j} \in f(l)$ it follows that:

$$
\exists b_{k} \in l: \quad c_{j}=f\left(b_{k}\right)
$$

therefore we have that:

$$
c_{j} \circ c_{j}=f\left(b_{k}\right) \circ f\left(b_{k}\right)=f\left(b_{k} \circ b_{k}\right)=f(l)
$$

and so, from (3.8), we have that:

$$
f(l)=l,
$$

that is absurd, by (3.7); this shows that (3.6) is true.
So, we have that:

$$
\begin{aligned}
f(x \circ x) & =f(l) \\
f(x) \circ f(x) & =y \circ y=l
\end{aligned}
$$

and therefore, by Theorem 2.3, it follows that:

$$
f(l)=l
$$

We observe now that:

$$
f(p) \circ f(p)=f(p \circ p)=f(l)=l
$$

so, by definition of \circ, we have that:

$$
f(p) \in l \cup\{p\}
$$

but from $f(l)=l$, it follows necessarily:

$$
f(p) \notin l,
$$

that is:

$$
f(p)=p
$$

Example 3.3. Let $(H, \mathcal{L}) \equiv P G(2.2)$. We consider the quasi-Steiner hypergroupoid (H, \circ) associated to $P G(2,2)$, defined by the following table:

\circ	1	2	3	4	5	6	7
1	$1,2,3$	$1,2,3$	$1,2,3$	$1,4,7$	$1,5,6$	$1,5,6$	$1,4,7$
2	$1,2,3$	$1,2,3$	$1,2,3$	$2,4,6$	$2,5,7$	$2,4,6$	$2,5,7$
3	$1,2,3$	$1,2,3$	$1,2,3$	$3,4,5$	$3,4,5$	$3,6,7$	$3,6,7$
4	$1,4,7$	$2,4,6$	$3,4,5$	$2,5,7$	$3,4,5$	$2,4,6$	$1,4,7$
5	$1,5,6$	$2,5,7$	$3,4,5$	$3,4,5$	$1,4,7$	$1,5,6$	$2,5,7$
6	$1,5,6$	$2,4,6$	$3,6,7$	$2,4,6$	$1,5,6$	$1,2,3$	$3,6,7$
7	$1,4,7$	$2,5,7$	$3,6,7$	$1,4,7$	$2,5,7$	$3,6,7$	$3,4,5$

Such hypergroupoid satisfies all conditions of the previous theorem with $l=$ $\{1,2,3\}$ and $p=6$; in such case we have that:

$$
\mathcal{A u t}_{A} H=\left(\mathcal{A u t}_{G} H\right)_{l, p} .
$$

In fact any geometric automorphism fixing the line $\{1,2,3\}$ and the point 6 is also algebraic. To prove this, it is enough to show that if $f \in\left(\mathcal{A u t}_{G} H\right)_{l, p}$, then:

$$
\forall x \notin l \cup\{p\}, \quad f(x \circ x)=f(x) \circ f(x),
$$

because for $x \in l \cup\{p\}$ the preceding equality holds, since for these x we have $x \circ x=l$ and f fixes $l \cup\{p\}$. In other words, we must show that:

$$
f(x \circ x)=f(x) \circ f(x), \quad \forall x \in\{4,5,7\} .
$$

First of all we observe that:

$$
\left|\left(\mathcal{A} u t_{G} H\right)_{l, p}\right|=6 .
$$

We have that:

$$
f_{1} \equiv(23)(47) \in \mathcal{A} u t_{A} H
$$

because:

$$
\begin{aligned}
& f_{1}(4 \circ 4)=f_{1}\{2,5,7\}=\{3,4,5\}=7 \circ 7=f_{1}(4) \circ f_{1}(4) ; \\
& f_{1}(5 \circ 5)=f_{1}\{1,4,7\}=\{1,4,7\}=5 \circ 5=f_{1}(5) \circ f_{1}(5) ; \\
& f_{1}(7 \circ 7)=f_{1}\{3,4,5\}=\{2,5,7\}=4 \circ 4=f_{1}(7) \circ f_{1}(7) .
\end{aligned}
$$

Moreover we have:

$$
f_{2} \equiv(13)(57) \in \mathcal{A u t}_{A} H
$$

because:

$$
\begin{aligned}
& f_{2}(4 \circ 4)=f_{2}\{2,5,7\}=\{2,5,7\}=4 \circ 4=f_{2}(4) \circ f_{2}(4) ; \\
& f_{2}(5 \circ 5)=f_{2}\{1,4,7\}=\{3,4,5\}=7 \circ 7=f_{2}(5) \circ f_{2}(5) ; \\
& f_{2}(7 \circ 7)=f_{2}\{3,4,5\}=\{1,4,7\}=5 \circ 5=f_{2}(7) \circ f_{2}(7) .
\end{aligned}
$$

Finally we have:

$$
f_{3} \equiv(12)(45) \in \mathcal{A}^{\prime} u t_{A} H
$$

because:

$$
\begin{aligned}
& f_{3}(4 \circ 4)=f_{3}\{2,5,7\}=\{1,4,7\}=5 \circ 5=f_{3}(4) \circ f_{3}(4) ; \\
& f_{3}(5 \circ 5)=f_{3}\{1,4,7\}=\{2,5,7\}=4 \circ 4=f_{3}(5) \circ f_{3}(5) ; \\
& f_{3}(7 \circ 7)=f_{3}\{3,4,5\}=\{3,4,5\}=7 \circ 7=f_{3}(7) \circ f_{3}(7) .
\end{aligned}
$$

Therefore, since $1_{H} \in \mathcal{A} u t_{A} H$, we obtain that:

$$
\left|\mathcal{A}^{\text {At }}{ }_{A} H\right| \geq 4
$$

and so:

$$
{\mathcal{A} u t_{A}} H=\left(\mathcal{A} u t_{G} H\right)_{l, p} .
$$

The following example shows that, if a quasi-Steiner hypergroupoid satisfies all conditions of the previous theorem, in general we have that $\mathcal{A} u t_{A} H$ is a proper subgroup of $\left(\mathcal{A} u t_{G} H\right)_{l, p}$.

Example 3.4. Let $(H, \mathcal{L}) \equiv P G(2,2)$. We consider the following quasiSteiner hypergroupoid (H, \circ) associated to $P G(2,2)$, defined by:

\circ	1	2	3	4	5	6	7
1	$1,2,3$	$1,2,3$	$1,2,3$	$1,4,7$	$1,5,6$	$1,5,6$	$1,4,7$
2	$1,2,3$	$1,2,3$	$1,2,3$	$2,4,6$	$2,5,7$	$2,4,6$	$2,5,7$
3	$1,2,3$	$1,2,3$	$1,2,3$	$3,4,5$	$3,4,5$	$3,6,7$	$3,6,7$
4	$1,4,7$	$2,4,6$	$3,4,5$	$3,4,5$	$3,4,5$	$2,4,6$	$1,4,7$
5	$1,5,6$	$2,5,7$	$3,4,5$	$3,4,5$	$2,5,7$	$1,5,6$	$2,5,7$
6	$1,5,6$	$2,4,6$	$3,6,7$	$2,4,6$	$1,5,6$	$1,2,3$	$3,6,7$
7	$1,4,7$	$2,5,7$	$3,6,7$	$1,4,7$	$2,5,7$	$3,6,7$	$1,4,7$

As in the previous example (H, \circ) is a quasi-Steiner hypergroupoid associated to $P G(2,2)$ satisfying the conditions of the theorem, with $l=\{1,2,3\}, p=6$; but in this case $g \equiv(12)(45)$ is a geometric automorphism fixing l and p that is not algebraic. So, in this case:

$$
\mathcal{A} u t_{A} H \neq\left(\mathcal{A}^{\prime} u t_{G} H\right)_{l, p} .
$$

Theorem 3.8. Let (H, \mathcal{L}) be a projective plane (finite of order $q \neq 2^{h}, \forall h \in \mathbb{N}$ or infinite); let Γ be a conic in $(H, \mathcal{L}),\left(H, \circ_{\Gamma}\right)$ the quasi-Steiner hypergroupoid defined by:

$$
\forall x \in H, \quad x \circ_{\Gamma} x=l_{x, \Gamma},
$$

where $l_{x, \Gamma}$ denote the polar line of x in respect to the conic Γ. Then we have:

$$
\mathcal{A u t}_{A} H=\left\{f \in \mathcal{A} u t_{G} H: f\left(l_{x, \Gamma}\right)=l_{f(x), \Gamma}, \forall x \in H\right\} .
$$

Proof. This follows immediately from Theorem 2.3, since in this case we have:

$$
\begin{aligned}
f\left(x \circ_{\Gamma} x\right) & =f\left(l_{x, \Gamma}\right) \\
f(x) \circ_{\Gamma} f(x) & =l_{f(x), \Gamma} .
\end{aligned}
$$

Theorem 3.9. Let (H, \mathcal{L}) be a projective plane (finite of order $q \neq 2^{h}, \forall h \in \mathbb{N}$ or infinite); let Γ be a conic, (H, \circ_{Γ}) the quasi-Steiner hypergroupoid defined by:

$$
\forall x \in H, \quad x \text { о } \frac{x}{}=l_{x, \Gamma},
$$

where $l_{x, \Gamma}$ denote the polar line of x in respect to the conic Γ. Then we have:

$$
\mathcal{A} u t_{A} H=\left(\mathcal{A} u t_{G} H\right)_{\Gamma},
$$

where $\left(\mathcal{A u t}_{G} H\right)_{\Gamma}$ denote the group of all geometric automorphisms fixing the conic Γ.
Proof. First of all we observe that, from the geometric properties of the polar line, it follows that:

$$
\begin{gather*}
\forall x \in H, \quad x \in x \circ_{\Gamma} x \quad \Leftrightarrow \quad x \in \Gamma \quad \Leftrightarrow \quad x \circ_{\Gamma} x \cap \Gamma=\{x\} ; \tag{3.9}\\
\forall x, y \in H, \quad x \in y \circ_{\Gamma} y \quad \Leftrightarrow \quad y \in x \circ_{\Gamma} x . \tag{3.10}
\end{gather*}
$$

Let $f \in \mathcal{A u t}_{A} H$; we suppose that $f \notin\left(\mathcal{A} u t_{G} H\right)_{\Gamma}$, that is:

$$
\exists x \in \Gamma, \quad \exists y \notin \Gamma: \quad f(x)=y .
$$

From $x \in \Gamma$, it follows that $x \in x \circ_{\Gamma} x$; and so:

$$
y=f(x) \in f\left(x \circ_{\Gamma} x\right)
$$

From $y \notin \Gamma$, it follows that $y \notin y \circ_{\Gamma} y$, that is:

$$
y \notin f(x) \text { ० }_{\Gamma} f(x) .
$$

So, we have that:

$$
f\left(x \circ_{\Gamma} x\right) \neq f(x) \circ_{\Gamma} f(x),
$$

that is absurd.

Now let $f \in\left(\mathcal{A b u t}_{G} H\right)_{\Gamma}$, that is $f(\Gamma)=\Gamma$; by the previous theorem, it suffices to show that:

$$
\forall x \in H, \quad f\left(x \circ_{\Gamma} x\right)=f(x) \circ_{\Gamma} f(x)
$$

If $x \in \Gamma$ then it is easily proved that:

$$
f\left(x \circ_{\Gamma} x\right) \cap \Gamma=\{f(x)\}
$$

So, from (3.9), it follows that $f\left(x \circ_{\Gamma} x\right)$ is the polar line of $f(x)$, that is:

$$
f\left(x \circ_{\Gamma} x\right)=f(x) \circ_{\Gamma} f(x)
$$

If $x \notin \Gamma$ we distinguish two cases:
a) $\left(x \circ_{\Gamma} x\right) \cap \Gamma \neq \emptyset$;
b) $\left(x \circ_{\Gamma} x\right) \cap \Gamma=\emptyset$.

In case a), since $\left|\left(x \circ_{\Gamma} x\right) \cap \Gamma\right|=2$, we can set $\left(x \circ_{\Gamma} x\right) \cap \Gamma=\left\{p_{x}, q_{x}\right\}$; so, it follows that:

$$
x \circ_{\Gamma} x=p_{x} \circ_{\Gamma} q_{x}
$$

and therefore:

$$
\begin{equation*}
f\left(x \circ_{\Gamma} x\right)=f\left(p_{x} \circ_{\Gamma} q_{x}\right) \tag{3.11}
\end{equation*}
$$

Recalling the proof of Theorem 2.3, we have that:

$$
\begin{equation*}
f\left(p_{x} \circ_{\Gamma} q_{x}\right)=f\left(p_{x}\right) \circ_{\Gamma} f\left(q_{x}\right) \tag{3.12}
\end{equation*}
$$

Now, since $\left\{p_{x}, q_{x}\right\} \subseteq x \circ_{\Gamma} x$, from (3.10) it follows that:

$$
x \in p_{x} \circ_{\Gamma} p_{x} \cap q_{x} \circ_{\Gamma} q_{x}
$$

and therefore:

$$
f(x) \in f\left(p_{x} \circ_{\Gamma} p_{x}\right) \cap f\left(q_{x} \circ_{\Gamma} q_{x}\right) .
$$

Moreover, since $\left\{p_{x}, q_{x}\right\} \subseteq \Gamma$, it follows that $f\left(p_{x}\right), f\left(q_{x}\right) \in \Gamma$, and so, by the first case, it follows that:

$$
f\left(p_{x} \circ_{\Gamma} p_{x}\right)=f\left(p_{x}\right) \circ_{\Gamma} f\left(p_{x}\right) \quad \text { and } \quad f\left(q_{x} \circ_{\Gamma} q_{x}\right)=f\left(q_{x}\right) \circ_{\Gamma} f\left(q_{x}\right)
$$

and therefore:

$$
f(x) \in f\left(p_{x}\right) \circ_{\Gamma} f\left(p_{x}\right) \quad \text { and } \quad f(x) \in f\left(q_{x}\right) \circ_{\Gamma} f\left(q_{x}\right) ;
$$

and so:

$$
f\left(p_{x}\right), f\left(q_{x}\right) \in f(x) \circ_{\Gamma} f(x) \quad \text { with } \quad f\left(p_{x}\right) \neq f\left(q_{x}\right) .
$$

Therefore:

$$
\begin{equation*}
f\left(p_{x}\right) \circ_{\Gamma} f\left(q_{x}\right)=f(x) \circ_{\Gamma} f(x) . \tag{3.13}
\end{equation*}
$$

Finally, from (3.11), (3.12) and (3.13), it follows now that:

$$
f\left(x \circ_{\Gamma} x\right)=f(x) \circ_{\Gamma} f(x) .
$$

In case b) let $p_{x} \in \Gamma$, since (H, \mathcal{L}) is a projective plane, then we can set:

$$
\begin{equation*}
p_{x}^{\prime}=\left(p_{x} \circ_{\Gamma} p_{x}\right) \cap\left(x \circ_{\Gamma} x\right) . \tag{3.14}
\end{equation*}
$$

From $p_{x} \in p_{x}^{\prime}$ ० $_{\Gamma} p_{x}^{\prime}$, it follows that:

$$
\left(p_{x}^{\prime} \text { ० }^{\circ} p_{x}^{\prime}\right) \cap \Gamma \neq \emptyset ;
$$

and so, by case a), it follows that:

$$
\begin{equation*}
f\left(p_{x}^{\prime} \text { ० }_{\Gamma} p_{x}^{\prime}\right)=f\left(p_{x}^{\prime}\right) \circ_{\Gamma} f\left(p_{x}^{\prime}\right) . \tag{3.15}
\end{equation*}
$$

On the other hand, from $x \in p_{x}^{\prime} \circ_{\Gamma} p_{x}^{\prime}$ it follows that:

$$
f(x) \in f\left(p_{x}^{\prime} \circ_{\Gamma} p_{x}^{\prime}\right)=f\left(p_{x}^{\prime}\right) \circ_{\Gamma} f\left(p_{x}^{\prime}\right) .
$$

and so:

$$
\begin{equation*}
f\left(p_{x}^{\prime}\right) \in f(x) \circ_{\Gamma} f(x) . \tag{3.16}
\end{equation*}
$$

Now we choose another point $q_{x} \in \Gamma$, and analogously we set:

$$
q_{x}^{\prime}=\left(q_{x} \circ \Gamma q_{x}\right) \cap\left(x \circ \circ_{\Gamma} x\right) .
$$

We can suppose $p_{x}^{\prime} \neq q_{x}^{\prime}$. So, we have that:

$$
\begin{equation*}
f\left(q_{x}^{\prime}\right) \in f(x) \text { ० } f(x) . \tag{3.17}
\end{equation*}
$$

Consequently, from (3.16) and (3.17), we have that:

$$
\begin{equation*}
f(x) \circ_{\Gamma} f(x)=f\left(p_{x}^{\prime}\right) \circ_{\Gamma} f\left(q_{x}^{\prime}\right) \tag{3.18}
\end{equation*}
$$

On the other hand we have that:

$$
p_{x}^{\prime}, q_{x}^{\prime} \in x \circ_{\Gamma} x
$$

and so:

$$
x \circ_{\Gamma} x=p_{x}^{\prime} \circ_{\Gamma} q_{x}^{\prime}
$$

Therefore:

$$
f\left(x \circ_{\Gamma} x\right)=f\left(p_{x}^{\prime} \circ_{\Gamma} q_{x}^{\prime}\right)
$$

so, since $p_{x}^{\prime} \neq q_{x}^{\prime}$, we have:

$$
f\left(p_{x}^{\prime} \circ_{\Gamma} q_{x}^{\prime}\right)=f\left(p_{x}^{\prime}\right) \circ_{\Gamma} f\left(q_{x}^{\prime}\right)
$$

and so:

$$
f\left(x \circ_{\Gamma} x\right)=f\left(p_{x}^{\prime}\right) \circ_{\Gamma} f\left(q_{x}^{\prime}\right) .
$$

Comparing this equality with (3.18), we have that:

$$
f\left(x \circ_{\Gamma} x\right)=f(x) \circ_{\Gamma} f(x)
$$

The proof is now complete.

4. A general result about algebraic automorphisms.

Theorem 4.1. Let (H, \circ) be a hypergroupoid associated to a geometric space (H, \mathscr{B}) and let $\varphi \in \mathcal{A}_{\boldsymbol{A}} \mathrm{t}_{G}(H, \circ)$; let \bullet be the hyperoperation on H defined by:

$$
\forall x, y \in H, \quad x \bullet y=\varphi(x \circ y)
$$

Then we have:

$$
\operatorname{Ab}_{A}(H, \circ)=\mathcal{A} u t_{A}(H, \bullet) \quad \Leftrightarrow \quad \varphi \in \mathcal{C}_{\mathcal{A}^{u} u t_{G}(H, \circ)}\left(\mathcal{A}^{\left(u t_{A}\right.}(H, \circ)\right),
$$

where $\mathcal{C}_{\text {Aut }_{G}(H, \circ)}\left(\mathcal{A u t}_{A}(H, \circ)\right)$ denote the centralizer of $\mathcal{A u t}_{A}(H, \circ)$ in Aut $_{G}(H, \circ)$.

$$
\left\{\begin{array}{l}
f(x \bullet y)=f(\varphi(x \circ y)) \tag{4.1}\\
f(x) \bullet f(y)=\varphi(f(x) \circ f(y))=\varphi(f(x \circ y))
\end{array}\right.
$$

Then, since $\varphi \in \mathcal{C}_{\mathcal{A u t}_{G}(H, \circ)}\left({\mathcal{A} u t_{A}}(H, \circ)\right)$, we have that:

$$
\forall z \in H, \quad f(\varphi(z))=\varphi(f(z))
$$

and, from (4.1), it follows that:

$$
\forall x, y \in H, \quad f(x \bullet y)=f(x) \bullet f(y)
$$

that is:

$$
f \in \mathcal{A} u t_{A}(H, \bullet)
$$

So, we have that:

$$
\mathcal{A} u t_{A}(H, \circ) \subseteq \mathcal{A} u t_{A}(H, \bullet)
$$

Now let $g \in \mathcal{A}^{\boldsymbol{A}} \mathrm{t}_{A}(H, \bullet)$; from (4.1) it follows that:

$$
\forall x, y \in H, \quad g(\varphi(x \circ y))=\varphi(g(x \circ y))
$$

Such property holds for φ^{-1}; in fact, we have:

$$
\begin{gathered}
\forall x, y \in H, \quad \varphi^{-1}(g(x \circ y))=\varphi^{-1}\left(g \varphi \varphi^{-1}(x \circ y)\right)= \\
=\varphi^{-1}\left(\varphi g \varphi^{-1}(x \circ y)\right)=\varphi^{-1} \varphi\left(g \varphi^{-1}(x \circ y)\right)=g\left(\varphi^{-1}(x \circ y)\right) .
\end{gathered}
$$

From this it follows now that:

$$
\left\{\begin{array}{l}
g(x \circ y)=g\left(\varphi^{-1}(x \bullet y)\right) \\
g(x) \circ g(y)=\varphi^{-1}(g(x) \bullet g(y))=\varphi^{-1}(g(x \bullet y))
\end{array}\right.
$$

that is:

$$
g \in \mathcal{A} u t_{A}(H, \circ)
$$

So, we have that

$$
\mathcal{A}^{2} t_{A}(H, \bullet) \subseteq \mathcal{A}^{(} u t_{A}(H, \circ)
$$

$\Rightarrow)$ We will show that:

$$
\varphi \notin \mathcal{C}_{\mathcal{A}^{4} t_{G}(H, \circ)}\left(\mathcal{A} u t_{A}(H, \circ)\right) \quad \Rightarrow \quad \mathcal{A} u t_{A}(H, \circ) \neq \mathcal{A} u t_{A}(H, \bullet) .
$$

Since $\varphi \notin \mathcal{C}_{\mathcal{A u t}_{G}(H, \circ)}\left(\mathcal{A}^{\operatorname{sut}} \mathrm{A}_{A}(H, \circ)\right)$, we have that:

$$
\exists h \in \mathcal{A b}_{A}(H, \circ): \quad h \varphi \neq \varphi h
$$

that is:

$$
\exists v \in H: \quad h \varphi(v) \neq \varphi h(v)
$$

Since φ is a geometric automorphism, we have that:

$$
\exists B \in \mathscr{B}: \quad h \varphi(B) \neq \varphi h(B),
$$

and therefore, since (H, \circ) is associated to (H, \mathscr{B}) :

$$
\exists x, y \in H: \quad h \varphi(x \circ y) \neq \varphi h(x \circ y)
$$

So, from (4.1) it follows that:

$$
h(x \bullet y) \neq h(x) \bullet h(y)
$$

that is:

$$
h \notin \mathcal{A} u t_{A}(H, \bullet)
$$

REFERENCES

[1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Udine, 1993.
[2] G. Gentile - R. Migliorato, Feebly associative hypergroupoids, Giornate di Geometrie Combinatorie, Atti del Convegno Scientifico Internazionale, Perugia, 1993, pp. 259-268.
[3] R. Migliorato, Finite hypergroups and combinatoric spaces, Proc. of the Fourth International Congress on Algebraic Hyperstructures and Applications, Xanthi, Greece, 1990, World Scientific, pp. 67-79.
[4] R. Migliorato, Some topics on the feebly associative hypergroupoids, Algebraic Hyperstructures and Applications, Proceedings of the Congress, Iasi, 1993, Hadronic Press, Palm Harbor, FL, pp. 133-142.
[5] R. Migliorato, Non associative hypergroupoids, in printing.
[6] G. Tallini, Ipergruppoidi di Steiner e Geometrie Combinatorie, Atti del Convegno su Sistemi Binari e Applicazioni, Taormina, 1978.

Department of Mathematics,
University of Messina, Contrada Papardo, Salita Sperone 31, 98166 Messina (ITALY), e-mail: gentile@dipmat.unime.it

[^0]: Entrato in Redazione il 17 dicembre 1997.
 1991 AMS Subjects Classification: Primary 20N20, Secondary 05C05.
 Key words and phrases: Geometric automorphism, Algebraic automorphism, Steiner hypergroupoid, Quasi-Steiner hypergroupoid.

