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HÖLDER CLASSES RELATIVE TO

DEGENERATE ELLIPTIC OPERATORS

AS INTERPOLATION SPACES

UGO GIANAZZA - VINCENZO VESPRI

The well known characterization of Hölder classes as interpolation
spaces is here extended under suitable hypotheses to a class of spaces where
the Hölder continuity is given in terms of an intrinsic distance relative to
degenerate elliptic operators of Hörmander type.

1. Introduction and interpolation between Banach spaces.

In [9] we studied the generation of analytic semigroups by a proper
degenerate elliptic operator A and the aim was to apply that result to obtain
optimal regularity for the corresponding evolution equation.

However a major dif�culty arose: we could not completely characterize the
interpolation spaces between the domain of the operator D(A) and the Banach
space X , mostly because of the lack of commutativity of the vectors �elds Xi

involved in the de�nition of A.
Therefore in this paper we concentrate on the de�nition of Hölder spaces

by means of interpolation and we prove some interpolation results for spaces of
continuous functions.
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We recall that Prof. A. Lunardi in a recent paper ([16]) solved this problem
in the framework of Heisenberg vector �elds, using a method that could be
applicable to more general subelliptic operators.

Let us introduce the general framework we will need in the following:

1.1 Homogeneous Spaces.
Let us be given a topological space X with a distance d .

De�nition 1.1. We say that (X, d) is a homogeneous space in the sense of
Coifman e Weiss (see [8]) if

a) the balls B(r, x) form a basis of open neighbourhoods of x ;
b) there exists N ∈ N s.t. ∀x ∈ X and ∀r > 0 the ball B(r, x) contains at

most N points xi s.t. d(xi , xj ) > r
2

(homogeneity property).

Remark 1.2. A remarkable case where the homogeneity property is automat-
ically veri�ed is when there exists a Borel measure µ which satis�es the so
called doubling condition

(1.1) 0 < µ(B(r, x)) ≤ Aµ(B(
r

2
, x)) < ∞,

where A is an absolute constant.

Since the homogeneity property is usually veri�ed showing (1.1), in the
following by homogeneous space we will directly denote a set X with a distance
d and a Borel measure µ which satis�es (1.1). Without entering too much into
details, let us just say that homogeneous spaces have been recently used as a
natural framework to study Poincaré inequality relative to Dirichlet forms (see
[4], [5]). We recall also that it is possible to work with a pseudodistance instead
of a distance. For the sake of simplicity here we prefer to consider only the case
of a topological space X with a distance d .

1.2 Interpolation between Banach Spaces.
Let (X, � · �X ) and (Y, � · �Y ) be Banach spaces s.t.

a) Y ⊂ X ;
b) there exists an absolute constant c > 0 s.t. ∀ y ∈ Y�y�X ≤ c�y�Y .

Let now t ∈ R+ and consider the following real functional

K (t, x , X,Y ) = inf{�a�X + t�b�Y : x = a + b, a ∈ X, b∈ Y }.

We then de�ne

(X, Y )θ,∞ :=
�
x ∈ X : sup

t>0

1

t θ
K (t, x , X, Y ) < ∞

�
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with θ ∈ (0, 1]. It can be proved that (X, Y )θ,∞ is a Banach space if it is
endowed with the norm

�x�(X,Y )θ,∞
= sup

t>0

1

t θ
K (t, x , X, Y )

and it turns out that it is also an interpolation space beetween X and Y in the
sense that for any linear operator T : X → X and T : Y → Y s.t. T ∈ L(X, X )

and T ∈ L(Y, Y ) we have T ∈ L((X, Y )θ,∞, (X, Y )θ,∞).

De�nition 1.3. Let α ∈ [0, 1] and E a Banach space s.t. Y ⊂ E ⊂ X .

a) E is said to belong to the class Jα(X, Y ) if

�x�E ≤ C�x�1−α
X �x�α

Y ∀x ∈ Y

for some absolute constant C > 0; in this case we write E ∈ Jα(X, Y );
b) E is said to belong to the class Kα(X, Y ) if

K (t, x , X, Y ) ≤ ktα�x�E ∀x ∈ E, t > 0

for some absolute constant k > 0; in this case we write E ∈ Kα(X, Y ).

For more details on general interpolation spaces and also on the spaces we
are considering here, see for example [2], [3], [6] and [15]. We conclude this
section, brie�y presenting another interpolation method.

De�nition 1.4. For 0 ≤ θ < 1 and 1 ≤ p ≤ ∞ set

V (p, θ, Y, X ) =

�
u : R+ �→ X : t �→ uθ (t) = t θ−1/pu(t) ∈ L p((0, ∞); Y ),

t �→ vθ(t) = t θ−1/pu�(t) ∈ L p((0, ∞); X )
�
,

�u�V (p,θ,Y,X ) = �uθ�L p((0,∞);Y ) + �vθ�L p((0,∞);X ).

Then

Proposition 1.5. For (θ, p) ∈ ]0, 1[×[1, ∞] ∪ {(1, ∞)}, (X, Y )θ,p is the set of
traces at t = 0 of the functions in V (p, 1− θ, Y, X ) and the norm

�x�T
θ,p = inf{�u�V (p,1−θ,Y,X ) : x = u(0), u ∈ V (p, 1− θ, Y, X )}

is an equivalent norm in (X, Y )θ,p.
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Proof. See for example [15], Theorem 1.2.10. �

1.3 Hörmander vector �elds.
Let us consider C∞(Rn) vector �elds Xi , i = 1, . . . , m, that satisfy a

Hörmander conditionof order K : at any point the vectors and their commutators
up to order K span R

n . In this case an intrinsic distance dX associated to the Xi

can be de�ned. Namely

dX (x , y) = inf
�
δ > 0 : ∃� Lipschitz curve s.t.(1.2)

��(t) =

m�

i=1

ai (t)Xi(�(t)) with |ai(t)| ≤ δ and �(0) = x , �(1) = y
�
,

(see also [18]). It is well-known that ∀x , y ∈ R
n dX (x , y) satis�es the condition

1

c
|x − y| ≤ dX (x , y) ≤ c|x − y|ε

where | · | stands for the usual euclidean norm, ε = 1
K+1

and c > 1 is a suitable
constant. We can then de�ne balls in the usual way relying on the distance dX .
When referring to Hörmander vector �elds in the following we will always deal
with these so - called intrinsic balls.

If we denote with m the Lebesgue measure in R
n , in [18] it is proved that

the following duplication property holds:

(1.3) 0 < m(B(2r, y)) ≤ c0m(B(r, y))

for every ball with center at y ∈ R
n and radius r < R0, with the constant c0

possibly depending only on R0. The validity of the duplication property is a
fundamental step in the proof of the Poicaré inequality for vector �elds (see
[11] and [14]). Anyway we can say that the space R

n with distance dX and
Lebesgue measure m gets the structure of homogeneous space as discussed in
1.1.

As a consequence of (1.3) there exists a constant ν = log2 c0 such that

(1.4) m(B(r, y)) ≤ 2m(B(s, y))
�r

s

�ν

for every 0 < s < r ≤ R0
2
. On the other hand it is easy to see that

m(B(2r, y)) ≥ c∗m(B(r, y))
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(where c∗ > 1 is a constant that depends only on c0) and

(1.5) m(B(s, y)) ≤ m(B(r, y))
�s

r

�σ

where 0 < s < r
2

< R0
2
and σ = 1− 1

c∗ .

The numbers ν and σ give an upper and a lower bound on the intrinsic
dimension of R

n and are in general different. However there are special cases
in which they can coincide and to these we will come back in Section 3. In any
case the intrinsic dimension ν is usually different from n.

Finally, if we de�ne

d∗ := sup
�
�(x) − �(y) : � ∈ C∞

0 (Rn),

m�

i=1

|Xi(�)|2 ≤ 1
�
,

then d∗ is actually a distance and is equivalent to dX (see [12]). However in the
following we will always refer to dX .

Starting from his fundamental work on hypoelliptic operators (see [10]),
Hörmander vector �elds and more general subelliptic operators have been the
subject of a tremendous amount of work (see [12] for the references updated
until 1987, but much more has followed).

2. Interpolation between C0(X) and C0,1(X).

Let us consider a homogeneous space (X, d, µ), as explained in the
previous section.

By C0(X ) (C0,θ (X ), C0,1(X )) we denote the space of bounded and uni-
formly continuous functions (the space of bounded Hölder continuous func-
tions, the space of bounded Lipschitz continuous functions, respectively) en-
dowed with the usual norms.

The following interpolation result holds

Proposition 2.1. Let θ ∈ (0, 1). Then

(C0(X ), C0,1(X ))θ,∞ = C0,θ (X ).

To prove Proposition 2.1 we need this approximation Lemma.
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Lemma 2.2. Let θ ∈ (0, 1] and ϕ ∈ C0,θ (X ). De�ne for t > 0 and x ∈ X

u(t, x) = sup
z∈X

�
inf
y∈X

[ϕ(y) +
1

2t
d2(z, y)] −

1

t
d2(z, x)

�
.

Then u(t, ·) ∈ C0,1(X ) and

(2.1) �u(t, ·)�C0(X ) ≤ �ϕ�C0(X ),

(2.2) 0 ≤ ϕ(x) − u(t, x) ≤ (2θ |ϕ|2θ )
1

2−θ t
θ

2−θ ,

(2.3) sup
x �=y

|u(t, x) − u(t, y)|

d(x , y)
≤ H (23−θ |ϕ|θ )

1
2−θ t

θ−1
2−θ ,

∀x ∈ X and t > 0 with H proper absolute constant.

Proof. By the de�nition of u(t, x) we obtain

u(t, x) ≤ ϕ(x)

(so that the �rst part of (2.2) is immediately proved) and

u(t, x) ≥ inf
y∈X

[ϕ(y) +
1

2t
d2(y, x)].

Now �x ε > 0 and let yε ∈ X be such that

u(t, x) + ε > ϕ(yε) +
1

2t
d2(yε, x) ≥ ϕ(yε).

Since ε is arbitrary, we have u(t, x) ≥ −�ϕ�C0(X ) and we have proved (2.1).
Regarding the second part of (2.2), recalling that ϕ ∈ C0,θ (X ), we have

ϕ(x) − u(t, x) < ϕ(x) − ϕ(yε) −
1

2t
d2(yε, x) + ε,

that is

ϕ(x) − u(t, x) < |ϕ|θd
θ (x , yε) −

1

2t
d2(x , yε) + ε.

Since the left-hand side above is nonnegative, we �nd

d(x , yε) ≤ Mε,
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where Mε is the greatest positive number s.t.

M2 ≤ 2t (|ϕ|θ Mθ + ε).

Then we have
ϕ(x) − u(t, x) ≤ |ϕ|θ Mθ

ε + ε ∀x ∈ X

and the second part of (2.2) follows as

lim
ε↓0

Mε = (2t |ϕ|θ )
1

2−θ .

To conclude the proof we have to show the validity of (2.3). For this purpose,
let ε > 0 and x ∈ X be �xed and let zε,x ∈ X be such that

(2.4) u(t, x) < inf
y∈X

[ϕ(y) +
1

2t
d2(zε,x , y)]−

1

t
d2(zε,x , x) + ε.

Then
1

t
d2(zε,x , x) < ε + ϕ(x) − u(t, x) +

1

2t
d2(zε,x , x).

From (2.2) we get

1

2t
d2(zε,x , x) ≤ ε + (2θ |ϕ|2θ )

1
2−θ t

θ
2−θ .

Now consider x � ∈ X . From (2.4) we have

u(t, x) − u(t, x �) < ε +
1

t
[d2(zε,x , x �) − d2(zε,x , x)] =(2.5)

= ε +
1

t
[d(zε,x , x �) − d(zε,x , x)][d(zε,x , x �) + d(zε,x , x)].

From the triangle inequality d(zε,x , x �) ≤ [d(zε,x , x) + d(x �, x)] we have

i) d(zε,x , x �) − d(zε,x , x) ≤ d(x , x �),

ii) d(zε,x , x �) + d(zε,x , x) ≤ 2d(zε,x , x) + d(x , x �).

Then (2.5) becomes

u(t, x) − u(t, x �) ≤ ε +
1

t
d(x , x �)[2d(zε,x , x) + d(x , x �)] =

= ε +
1

t
d2(x , x �) +

2

t
d(x , x �)d(zε,x , x)
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and also

u(t, x) − u(t, x �) ≤ ε +
1

t
d2(x , x �) +

2

t
d(x , x �)[2t (ε + Cθ t

θ
2−θ )]1/2,

where we have set Cθ = (2θ |ϕ|2θ )
1

2−θ . Therefore, letting ε ↓ 0 we �nally obtain

|u(t, x) − u(t, x �)| ≤
1

t
d2(x , x �) + 2d(x , x �)

�
2Cθ t

θ−1
2−θ

or
|u(t, x) − u(t, x �)|

d(x , x �)
≤
1

t
d(x , x �) + 2

�
2Cθ t

θ−1
2−θ

and by standard argument this implies

|u(t, ·)|1 ≤ 2
�
2Cθ t

θ−1
2−θ , ∀ t > 0, ∀x ∈ X,

which is exactly (2.3) once we set H = 2. �

Remark 2.3. It was already observed in [13] that this kind of regularization
works in general metric spaces even if no precise estimates were given. Here we
have adopted an argument due to [7]. What is interesting is that in [7] everything
is done in Hilbert spaces, but the actual properties used are just the metric ones.
We can now prove Proposition 2.1. As usual in this kind of results, we divide
the proof in two parts. In the following the symbol �→ will denote continuous
imbedding.

a) (C0(X ), C0,1(X ))θ,∞ �→ C0,θ (X ).
Let ϕ ∈ (C0(X ), C0,1(X ))θ,∞. Then for any t > 0 and any ε > 0 there exist
ft ,ε ∈ C0(X ) and gt ,ε ∈ C0,1(X ) s.t.

ϕ(x) = ft ,ε(x) + gt ,ε(x), ∀x ∈ X

and
� ft ,ε�C0(X ) + t�g�C0,1(X ) ≤ t θ�ϕ�C0(X ),C0,1(X ))θ,∞

+ ε,

where the (C0(X ), C0,1(X ))θ,∞ norm has been de�ned in the previous section.
Therefore

ϕ(x) − ϕ(y) = ft ,ε(x) − ft ,ε(y) + gt ,ε(x) − gt ,ε(y)

and also

|ϕ(x) − ϕ(y)| ≤ 2� ft ,ε�C0(X ) + |gt ,ε|1d(x , y) ≤

≤ 2Ct θ + Ct θ−1d(x , y) +
ε

t
d(x , y) + 2ε,
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∀x , y ∈ X, t > 0 and some constant C > 0. Now, letting ε ↓ 0 and taking
t = d(x , y), we are done.

b) C0,θ (X ) �→ (C0(X ), C0,1(X ))θ,∞ .
Let ϕ ∈ C0,θ (X ) and let u(t, x) as above in Lemma 2.2. For every t > 0 and
x ∈ X we set

ft (x) = ϕ(x) − u(t2−θ , x),

gt (x) = u(t2−θ , x).

Then for some proper constant C we have

� ft�C0(X ) ≤ Ct θ , |gt |1 ≤ Ct θ−1.

Since �gt�C0(X ) ≤ �ϕ�C0(X ) , we obtain

� ft�C0(X ) + t (�gt�C0 (X ) + |gt |1) = � ft�C0(X ) + t�gt�C0,1(X ) ≤ Ct θ

and so K (t, ϕ, C0(X ), C0,1(X )) ≤ Ct θ for any t ∈ (0, 1). Since this last
inequality is trivial for t ≥ 1, the conclusion follows. �

Remark 2.4. As a matter of fact, the implication (C0(X ), C0,1(X ))θ,∞ �→

C0,θ (X ) holds not only for spaces de�ned on (X, d, µ) metric and homoge-
neous, but also for (X, d, µ) generally homogeneous. In fact it is the second
inclusion that requires d to be a distance and not just a pseudodistance. For a
general characterization of Lipschitz functions in this more general setting, see
[17].

3. The Gagliardo completion.

Consider now the case of C∞ vector �elds Xi that satisfy a Hörmander
condition of order K . As we said in Section 1, R

n endowed with the intrinsic
distance and the Lebesgue measure is a homogeneous space of the kind consid-
ered in Section 2; we can therefore specialize its situation to this new one.

We denote by C0
X (Rn) the class of bounded and uniformly continuous

functions f : R
n → R and set

C0,θ
X (Rn) :=

�
f ∈ C0

X (Rn) : | f |θ := sup
x �=y

| f (x) − f (y)|

dθ (x , y)
< ∞

�
, θ ∈ (0, 1),
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C0,1
X (Rn) :=

�
f ∈ C0

X (Rn) : | f |1 := sup
x �=y

| f (x) − f (y)|

d(x , y)
< ∞

�
,

exactly as in the previous section, where for the sake of simplicity we write
d instead of dX from here on. It is obvious that Proposition 2.1 immediately
applies here so that we can conclude that (C0

X (Rn), C0,1
X (Rn))θ,∞ = C0,θ

X (Rn).
As a matter of fact, the presence of a differential structure in this context

allows us to say a little bit more.
First of all, let us de�ne

C1
X (Rn) := { f ∈ C0

X (Rn) : Xi ( f ) ∈ C0
X (Rn), ∀ i = 1, . . . , m}.

It is immediate to see that if f ∈ C1
X (Rn), then f ∈ C0,1

X (Rn). In fact take x0
and x1 in R

n . Then there certainly exists � such that

u(x1) − u(x0) = u(�(1)) − u(�(0)) =

� 1

0

m�

i=1

ai (t)Xi(u(�(t))) dt .

Since Xi(u) ∈ C0
X (Rn), ∀ i = 1, . . . , m, they are all bounded in R

n . Therefore

|u(x0) − u(x1)| ≤ Cd(x0, x1)

where the constant C does not depend on x0 or x1 and we conclude that

sup
x �=y

|u(x) − u(y)|

d(x , y)
≤ C < ∞.

One is now naturally confronted with the following.

Problem 3.1. Can we strengthen the result of the previous section and conclude
that actually

(C0
X (Rn), C1

X (Rn))θ,∞ = C0,θ
X (Rn),

with θ ∈ (0, 1)?

Under this point of view we have the following general result due to
Gagliardo (see for example [1] and [2]).

Proposition 3.2. Consider a couple of Banach spaces A0 and A1 and the real
functional K (t, f ; A0, A1) de�ned in Section 2. We have

K (t, f ; A0, A1) = K (t, f ; A0 + ∞A1, A1 + ∞A0) =(3.1)

= K (t, f ; A0, A1 + ∞A0), t > 0
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for all f ∈ A0 + A1 where

a) an element f ∈ A0+A1 is said to belong to A0+∞A1 if there is a sequence
{gε} ⊆ A0 for which

sup
ε

�gε�A0 < ∞, lim
ε→0

� f − gε�A0+A1 = 0;

b) analogous statement holds for A1 + ∞A0 with obvious interchange of the
roles.

In this case we say that A1+∞A0 is theGagliardo completion of A1 in A0+A1 .

Referrring to the previous notation, if we take A0 = C0
X (Rn) and A1 =

C1
X (Rn), it is clear that

A0 + A1 = C0
X (Rn), A0 ∩ A1 = C1

X (Rn).

In the classical case, i.e. Xi = ∂
∂ xi

(m = n), we have C1(Rn) + ∞C0(Rn) =

C0,1(Rn); in this situation the answer to Problem 3.1 is immediate, since we
obtain

K ( f, t; C0(Rn), C0,1(Rn)) = K ( f, t; C0(Rn), C1(Rn)) ⇒

⇒ (C0(Rn), C0,1(Rn))θ,∞ = (C0(Rn), C1(Rn))θ,∞ = C0,θ (Rn).

Is the same true in the case of general Hörmander vector �elds? What we were
able to prove is the following

Proposition 3.3. Suppose that the (upper bound of the) intrinsic dimension ν is
such that

(3.2) C1r
ν ≤ m(B(r, x)) ≤ C2r

ν ,

where C1 and C2 are two constants that do not depend on x or r . Then for any
function f ∈ C0,1

X (Rn) there exists a sequence { fε} ⊆ C1
X (Rn) s.t.

a) fε
C0

X
(Rn )

−→ f as ε → 0,

b) � fε�C1
X
(Rn) ≤ C for any ε > 0,

which is the same to say that C0,1
X (Rn) is the Gagliardo completion of C1

X (Rn)

in C0
X (Rn).
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Proof. Take the function f : R → R de�ned by

�(t) =

�
exp

�
− 1

1−t2

�
|t | < 1

0 |t | ≥ 1

and for ε > 0 �xed, set

aε(x) =
1

εν

�

Rn

�
�d(x , y)

ε

�
dy.

Relying on (3.2) it is then easy to see that with ν as in the hypotheses

1) 0 < C1 ≤ |aε| ≤ C2 ;

2) |Xi (aε)| ≤ C3

ε
.

Given now f ∈ C0,1
X (Rn), de�ne

fε(x) :=
1

aε(x)

1

εν

�

RN

�
�d(x , y)

ε

�
f (y) dy.

It is not dif�cult to see that fε ∈ C1
X (Rn). In particular, if we take f ∗ ≡ 1, we

have

f ∗
ε =

1

aε(x)

1

εν

�

Rn

�
�d(x , y)

ε

�
dy ≡ 1.

Therefore

0 = Xi ( f ∗
ε ) = Xi

�
1

εν

�

Rn

�(
d(x,y)

ε
)

aε(x)
dy

�

=(3.3)

=
1

εν

�

Rn

X i

�
�( d(x,y)

ε
)

aε(x)

�

dy.

Moreover

� f − fε�C0
X
(Rn ) = sup

Rn

�
�
�
�

1

aε(x)

1

εν

�

Rn

�(
d(x , y)

ε
) f (y) dy − f (x)

�
�
�
� =

= sup
Rn

�
�
�
�

1

aε(x)

1

εν

�

Rn

�(
d(x , y)

ε
)( f (y) − f (x)) dy

�
�
�
�

≤

�
1

|aε(x)|

1

εν

�

Rn

�(
d(x , y)

ε
) dy

��

sup
x �=y

| f (y) − f (x)|

d(x , y)

�

ε = Lε,
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where we have taken into account that �( t
ε
) = 0 when |t | ≥ ε and L is the

Lipschitz constant of f .

�Xi( fε)�C0
X
(Rn) = sup

Rn

|Xi( fε)| =

= sup
Rn

�
�
�
�Xi

�
1

εν

�

Rn

1

aε(x)
�(

d(x , y)

ε
) f (y) dy

��
�
�
� ≤

≤ sup
Rn

1

εν

�

Rn

�
�
�
�
�
Xi

�
�(

d(x,y)

ε
)

aε(x)

��
�
�
�
�
| f (x) − f (y)| dy

where we have taken into acount (3.3). Moreover

�
�
�
�
�
Xi

�
�(

d(x,y)

ε
)

aε(x)

��
�
�
�
�
=

�
�
�
�

1

a2ε (x)
Xi(aε(x))�(

d(x , y)

ε
) +

+
1

aε(x)

��(d(x , y))

ε
Xi(d(x , y))

�
�
�
� ≤

K1

ε
+

K2

ε
=

K

ε
.

Therefore considering that �(m)( t
ε
) = 0 ∀ t ≥ ε and m ∈ N ∪ {0}, we conclude

that �Xi( fε)�C0
X
(Rn) ≤ K , where K does not depend on ε or i and we are done.

�

Remark 3.4. Actually a kind of regularization as the one used here is consid-
ered in [20], where however the aim is more in proving the existence of regular
cut - off functions relative to a suitable quasi-distance, de�ned in terms of the
exponential mapping.

Remark 3.5. The essential hypothesis assumed above is (3.2); as a matter of
fact, due to the particular nature of the function �, we do not really need (3.2)
for any r > 0: it is enough that it holds for r < 1 and in fact we could have
assumed it directly in the hypotheses. Therefore, even if it does not hold for
general vector �elds, as it remarked in Section 1, it is however veri�ed in a wide
range of situations, as it is the case of Xi associated to polynomial groups (see
[19], Proposition 4.9).
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