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A UNIFYING MINIMAX THEOREM

WERNER OETTLI - DIRK SCHLÄGER

In the present note, a minimax theorem is given which combines the
most general topological and quantitative conditions employed in the litera-
ture. This result encompasses a large part of the classes of topological, quan-
titative, and mixed minimax theorems, and includes several new variants.

The development of extensions of von Neumann�s minimax theorem until
1995 is surveyed comprehensively in a recent paper by Simons [11]. In par-
ticular, Simons noted that newer results tend to unify the classes of topologi-
cal, quantitative, and mixed theorems. In the present note, we want to con�rm
this point of view-as far as minimax theorems based on induction arguments are
concerned-by means of a single theorem which combines the most general topo-
logical and quantitative conditions employed in the literature. In some sense,
this is a complement of [10]. Our result is based on the observation that the two
connectedness properties applied in the abstract minimax theorems of Kindler
[1] need not be given for the same level sets. This possibility of �separating the
connectedness levels� paves the way to many new combinations of topological
and quantitative conditions. It leads also to a slightly simpler formulation of the
topological minimax theorems of König [5] (and the more detailed results of
Kindler which, for brevity, are not considered here).

Entrato in Redazione il 28 maggio 1998.
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1. Preliminaries.

Only some indispensable facts about (pre)minimax equalities and the
related intersection problems are stated here; we refer to [1] for more details.

We denote by E(S) the collection of all nonempty �nite subsets of a set S .
Let nonempty sets X, Y and a function f : X × Y → R be given. The equality

sup
X

inf
Y

f = inf
Y

sup
X
f

holds if (and only if) for every λ > supX infY f the level sets {y | f (x , y) ≤ λ},
x ∈ X , have nonempty intersection. In this problem, the set of all λ >

supX infY f can be replaced by a smaller set � satisfying inf� = supX infY f ,
a so-called border set [5].

Roughly speaking, solutions are obtained by some compactness condition
reducing the problem to nonempty intersections of �nitely many sets or, equiva-
lently, the preminimax equality supX infY f = supE∈E(X ) infY maxE f ; the latter
is then established by two geometric properties: a condition A on subsets of Y
such as the level sets {y | f (x , y) ≤ λ} and a condition B on subsets of X such
as the level sets {x | f (x , y) ≥ λ}.

However, some of the conditions of type B considered below involve
properties of level sets of f itself. Therefore we shall use notation built on
subsets of X × Y : Given a set F ⊆ X × Y , we set

F(x) := {y | (x , y)∈ F}, F∗(y) := {x | (x , y) /∈ F}.

As we are mainly concerned with intersections of such sets, we extend this
notation as follows: If A is a nonempty subset of X , then F(A) denotes the
intersection of all F(x), x ∈ A; likewise, F∗(B) is de�ned for every nonempty
B ⊆ Y , and we complete the de�nitions by setting F(∅) := Y and F∗(∅) := X .
As a consequence, the following relations, ubiquitous in the proofs, hold for
every B ⊆ Y :

F∗(B) = {x | F(x) ∩ B = ∅}, F∗(Y \ B) = {x | F(x) ⊆ B}.

With respect to F(·) only, we have to deal with intersections over a subset
together with some single elements, for example F(A)∩F(a1)∩F(a2); instead
of forming a set we just list the arguments: F(A, a1, a2).

Before we engage in the details, we want to show by a particular situation
occuring in the proof of our theorem what is meant by �separating the connect-
edness levels� and what sort of arguments we are going to use.
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Proposition. Let X and Y be topological spaces. Let subsets F1 ⊆ F2 ⊆ F3 ⊆

F4 of X ×Y be given such that all F
∗
1 (y) are closed, all F2(X

�), X � ∈ E(X ), are
connected, all F∗3 (Y �), Y � ⊆ Y , are connected, and all F4(x) are closed. If there
is a �nite A ⊆ X such that F1(A, a) �= ∅ for all a ∈ X , then F4(A, a1, a2) �= ∅

for all a1, a2 ∈ X .

To prove this, let F4(A, a1, a2) = ∅ for some a1, a2 ∈ X ; we shall �nd
some a ∈ X such that F1(A, a) = ∅. Let L := Y \ (F4(a1) ∪ F4(a2)), and
L1 := F1(A) ∩ F4(a1), L2 := F1(A) ∩ F4(a2), say. Then a1 ∈ F

∗
3 (L)∩ F∗1 (L2)

and a2 ∈ F
∗
3 (L) ∩ F∗1 (L1); since F∗3 (L) is connected and F∗1 (L1), F

∗
1 (L2) are

closed, we have F∗3 (L) �⊆ F∗1 (L1)∪ F
∗
1 (L2) or F∗3 (L)∩ F∗1 (L1)∩ F

∗
1 (L2) �= ∅.

But for every a ∈ F∗3 (L), F2(A, a) ⊆ F4(a1) ∪ F4(a2) and F2(A, a) ∩
F4(a1) ∩ F4(a2) = ∅; since F2(A, a) is connected and F4(a1), F4(a2) are
closed, we obtain F2(A, a) ∩ F4(a1) = ∅ or F2(A, a) ∩ F4(a2) = ∅, hence
a ∈ F∗1 (L1) ∪ F

∗
1 (L2). So there exists a ∈ F∗3 (L) ∩ F∗1 (L1) ∩ F

∗
1 (L2); then

F1(A, a) ⊆ F4(a1)∪F4(a2) and F1(A, a)∩F4(a1) = ∅, F1(A, a)∩F4(a2) = ∅,
thus F1(A, a) = ∅.

2. The result.

Our program is as follows. We have selected two conditions of type A
and eight of type B which can be combined arbitrarily. In this section we
prepare for applying them in the induction step; the following sections contain
the conditions and the remaining parts of the proof together with remarks and
related examples. The �nal section sketches some variants of the theorem. We
suppose throughout that X and Y are topological spaces.

Theorem. Suppose that Y is compact and f is lower semicontinuous in y. Let
�A and �B be border sets and

FA := {{(x , y) | f (x , y) ≤ λ} | λ∈�A} ,

FB := {{(x , y) | f (x , y) < λ} | λ∈�B}.

Then supX minY f = minY supX f holds, if one of the conditionsA1�2 and one
of the conditionsB1�8 is satis�ed.

It is clear from the compactness and continuity assumptions that we only
have to show that for every F ∈ FA the sets F(x), x ∈ X , have the �nite
intersection property. So let a �nite set A ⊆ X be given such that F(A, a) �= ∅
for every F ∈ FA and every a ∈ X ; this is true for A = ∅ by the de�nition of
FA . We assume, for contradiction, that there exist F � ∈FA and a1, a2 ∈ X with
F �(A, a1, a2) = ∅.
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The proof is �nished by choosing appropriate level sets below F � and
applying the various conditions to them. However, combining all the conditions
at once means dealing with a large number of sets. We �x a frame of eight sets,
F1 ⊆ . . . ⊆ F8, which offers a particularly clear view on the general argument
as well as on limitations and variants of the theorem. Let

(1) νB < µB < κA < λA < λB < κB < µA < νA

be chosen from �A and �B , as indicated by the indices, such that

{(x , y) | f (x , y) ≤ νA} ⊆ F
�,

and let F1, . . . , F8 be the associated sets, that is,

F1 = {(x , y) | f (x , y) < νB} ∈FB, . . . , F8 = {(x , y) | f (x , y) ≤ νA} ∈FA.

Then for every index k we have

(2) Fk(A, a) �= ∅ for all a ∈ X and Fk(A, a1, a2) = ∅.

Some of the conditions will require one or two other level sets from FA or FB ;
we prepare for these additions by assuming that between every two of the levels
in (1) we can �nd other members from �A as well as from �B .

3. Connectedness.

Although none of our conditions involves abstract connectedness, it is
convenient to use this notion in the proof. Given three sets U, V ,W , we say
that U is connected for V ,W (see [5], [1]) if

U ⊆ V ∪W and U ∩ V ∩ W = ∅ implies U ∩ V = ∅ or U ∩ W = ∅.

A similar relation called pseudoconnectedness (replace U ∩ V ∩W by V ∩W )
was introduced in [10], but it applies to the condition A only. However, neither
of the two covers the usual quantitative conditions as these lead to relations
involving more than three sets. (In [10], Lemma 2, compactness reduces the
number to three.) A suf�ciently general relation arises from replacing each of
the sets by a pair:

U ⊆ V ∪W and U ∩ V � ∩ W � = ∅ implies U � ∩ V = ∅ or U � ∩W = ∅,
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where U � ⊆ U , V ⊆ V �, W ⊆ W � are given. It is easily checked that this is
true if, for example, U is connected for V ,W or, in general, there are sets U ��

between U � and U , V �� between V and V � , and W �� between W and W � such
that U �� is connected for V ��,W ��. Such reasoning will be used now.

A1. For every F ∈FA, or every F ∈FB , all F(X �), X � ∈ E(X ), are connected.

B1. f is upper semicontinuous in x , and for every F ∈FB , or every F ∈FA,
all F∗(Y �), Y � ⊆ Y , are connected.

B2. f is lower semicontinuous, and for every F ∈ FB , or every F ∈ FA, all
F∗(Y �), Y � ⊆ Y , are connected.

These are the conditions that constitute generalized versions of König�s
theorems [5]. Note that the collections FA, FB are just examples: each of the
connectedness properties in A1, B1�4 may as well hold for another collection
F of level sets being compatible with FA in the sense that every member of F

contains a member of FA and vice versa.
Other topological minimax theorems based on connectedness conditions

over two arbitrary border sets were stated by Ricceri [8]; these are the only
known results, where only connectedness of single level sets is required.

We apply A1 as follows: we choose a set G4 ∈ FB between F4 and F3;
then, for every a ∈ X , one of the sets F4(A, a), G4(A, a) is connected. More-
over, from the continuity assumption of the theorem, the sets F7(a1), F7(a2) are
closed. So we have a set between F3(A, a) and F4(A, a) which is connected
for F7(a1), F7(a2), and we conclude that the following relation of type (3) holds
for every a ∈ X :

(4)
if F4(A, a) ⊆ F7(a1) ∪ F7(a2) and F4(A, a) ∩ F8(a1) ∩ F8(a2) = ∅,

then F3(A, a) ∩ F7(a1) = ∅ or F3(A, a) ∩ F7(a2) = ∅.

This relation will also be deduced from A2, so that we can use it in the �nal
step of the proof, where the conditions B1�8 are exploited. For example, from
condition B1 we can deduce in a similar way the counterpart of (4):

(5)
if F∗5 (L) ⊆ F∗2 (L1) ∪ F

∗
2 (L2) and F∗5 (L) ∩ F∗1 (L1) ∩ F

∗
1 (L2) = ∅,

then F∗6 (L) ∩ F∗2 (L1) = ∅ or F∗6 (L) ∩ F∗2 (L2) = ∅,

where L := Y \ (F6(a1) ∪ F6(a2)) and Li := F3(A) ∩ F7(ai ), i = 1, 2. Let us
see how combining (4) and (5) leads to a contradiction and therefore completes
the proof. Clearly, a1, a2 ∈ F

∗
6 (L) and, by (2), a1 ∈ F

∗
3 (L2) and a2 ∈ F

∗
3 (L1).
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Now let F0 ∈ FA , F0 ⊆ F1; of course, this set satis�es (2), too. Thus,
if a ∈ F∗4 (L), then ∅ �= F0(A, a) ⊆ F4(a) ⊆ F6(a1) ∪ F6(a2), hence
∅ �= F0(A, a) ∩ F6(ai ) ⊆ F0(a) ∩ Li for some i , so a /∈ F∗0 (Li ). And
if a ∈ F∗4 (L), then F4(A, a) ⊆ F7(a1) ∪ F7(a2); hence, from (2) and (4),
F3(A, a) ∩ F7(ai ) = ∅ for some i , that is, a ∈ F∗3 (Li ). Altogether,

(6)
a1 ∈ F

∗
6 (L) ∩ F∗3 (L2), a2 ∈ F

∗
6 (L) ∩ F∗3 (L1),

F∗4 (L) ⊆ F∗3 (L1) ∪ F
∗
3 (L2), F

∗
4 (L) ∩ F∗0 (L1) ∩ F

∗
0 (L2) = ∅.

In particular,

(7)
a1 ∈ F

∗
6 (L) ∩ F∗2 (L2), a2 ∈ F

∗
6 (L) ∩ F∗2 (L1),

F∗5 (L) ⊆ F∗2 (L1) ∪ F
∗
2 (L2), F

∗
5 (L) ∩ F∗1 (L1) ∩ F

∗
1 (L2) = ∅,

contradicting (5).
Instead of establishing (5) we shall apply (7) or even (6) to obtain a con-

tradiction from each of the conditions B1�8. Note also that, by the assumptions
of the theorem, L1 and L2 are closed subsets of Y and therefore compact.

To complete the proof for B1 and B2, we choose G5 ∈ FA between F6

and F5; then one of the sets F∗5 (L), G∗5(L) is connected, and it suf�ces to
�nd closed, or open, sets between F∗1 (Li ) and F∗2 (Li ). But if f is upper
semicontinuous in x , then F∗2 (L1) and F∗2 (L2) are closed. And if f is lower
semicontinuous, we choose G1 ∈FA between F2 and F1; then G1 is closed, and
from the compactness of L1 and L2 we conclude that G∗1(L1) and G∗1(L2) are
open.

The topological argument used here is well-known: it is just the fact that
a set-valued map x �→ G(x) having compact range Y and closed graph G is
upper semicontinuous, and this is equivalent to G∗(B) being open for every
closed B ⊆ Y . The reader may also recall the analogous characterization
of lower semicontinuity, saying that G∗(B) is closed for every open B ⊆ Y .
Actually, there is a property behind, called quartercontinuity, which generalizes
both upper and lower semicontinuity; we refer to [2] for more details, but let us
sketch how it works here:

In order to exploit the connectedness of G∗5(L), say, as above it suf�ces
to know that each G∗5(L) ∩ F∗2 (Li ) is open in G∗5(L). Suppose that there is
a set G1 between F1 and F2 such that x �→ G1(A, x) is quartercontinuous,
to the effect that for every x and every open V ⊇ G1(A, x) there is an open
U ⊆ X such that x ∈U and G1(A, u) ∩ V �= ∅ for all u ∈U . We apply this
to each x ∈ G∗5(L) ∩ F∗2 (L1) and V = Y \ F7(a1). It is readily seen that if
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u ∈ G∗5(L) ∩ U , then u /∈ F∗2 (L2), thus u ∈ F∗2 (L1). This shows that x is an
interior point of G∗5(L) ∩ F∗2 (L1) relative to G∗5(L).

4. Finite intersections.

This section deals with the question, posed in [5], whether it suf�ces
to suppose a condition B including connectedness of �nite intersections only.
By now several counterexamples have been found; two of them are stated
below, another one was given by Naselli [7]. But there are also two quite
different positive answers. The �rst is due to Komiya [3], who proved the
minimax equality for continuous real-valued functions on compact spaces from
abstract connectedness conditions involving only �nite intersections of level
sets. We reduce Komiya�s argument that utilizes the metric structure of R to
the underlying topological fact.

B3. X is compact and connected, f is continuous, and for every F ∈ FB , or
every F ∈FA, all F

∗(Y �), Y � ∈ E(Y ), are connected.

The idea behind it is to �nd a �nite subset of L for which (7) remains true.
This is done by means of the following lemma; then applying B3 just like B1
or B2 completes this part of the proof. But, as suggested by Komiya�s result,
we replace the sets Li by �nite subsets, too-this enables us to employ the �nite
staircase condition B8.

Lemma 1. Let B ⊆ Y and C ⊆ D ⊆ X × Y be given such that B is closed,
C is compact, and all D∗(y) are closed. Then D∗(B �) ⊆ C∗(B) for some �nite
B � ⊆ B.

To prove this, we may assume that B is nonempty. The set K := X \C∗(B)

is compact, being the image of the compact C ∩ (X × B) under the projection
(x , y) �→ x . So for every y ∈ B , D∗(y) ∩ K is closed and compact, and
D∗(B) ∩ K = ∅. Hence there exists B � ∈ E(B) such that D∗(B �) ∩ K = ∅.

We apply Lemma 1 to L, F4, F5, and to Li , F0, F1, observing that, by
compactness of both spaces and continuity of f , these sets have the required
properties. So there exist �nite M ⊆ L and Mi ⊆ Li such that F∗5 (M) ⊆ F∗4 (L)

and F∗1 (Mi ) ⊆ F∗0 (Li ). Combining these inclusions and (6) gives the �nite
version of (7):

(8)
a1 ∈ F

∗
6 (M) ∩ F∗2 (M2), a2 ∈ F

∗
6 (M) ∩ F∗2 (M1),

F∗5 (M) ⊆ F∗2 (M1) ∪ F
∗
2 (M2), F

∗
5 (M)∩ F∗1 (M1) ∩ F

∗
1 (M2) = ∅.
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Let us also note a variant of Lemma 1 that could be used here: if B is
compact and C is closed, then C∗(B) is open (see B2), hence K is closed, and
it clearly suf�ces to have closed compact D∗(y). We mention this because it
reveals an interesting picture resembling that of the continuity assumptions in
B1 and B2: for the existence of the �nite M and Mi , compactness of level sets
{(x , y) | f (x , y) ≤ λ} suf�ces as well as compactness of {y | f (x , y) ≤ λ} and
{x | f (x , y) ≥ λ}.

We turn to the second positive answer. It is due to König [6], who observed
that connectedness of �nite intersections suf�ces under additional assumptions
concerning the topology on X only. For simplicity, we include the crucial
compactness argument (see [5], Remark 2.3) in the proof. A topological space
is called normal if disjoint closed sets can be separated by disjoint open sets.

B4. X is compact, normal, and connected, f is upper semicontinuous in x , and
for every F ∈FB , or every F ∈FA, all F

∗(Y �), Y � ∈ E(Y ), are connected.

According to this condition, let G6 := F6 or G6 ∈ FA between F6 and
F5, so that every G∗6(B), B ∈ E(Y ), is connected. We observe that the sets
F∗5 (L) ∩ F∗2 (L1) and F∗5 (L) ∩ F∗2 (L2) are closed; by (7) they are nonempty,
disjoint, and cover F∗5 (L). Thus F∗5 (L) is disconnected, hence F∗5 (L) �= X ,
which rules out the case L = ∅.

Since X is normal, there exist disjoint open sets Oi ⊇ F∗5 (L) ∩ F∗2 (Li ).
For every B ∈ E(L), we see from (7) that a2 ∈G

∗
6(B)∩O1 and a1 ∈G

∗
6(B)∩O2;

thus G∗6(B) �⊆ O1∪O2. Hence all F∗5 (B)\(O1∪O2), B ∈ E(L), are nonempty,
whereby they have the �nite intersection property, and they are closed and
compact. But their intersection is F∗5 (L) \ (O1 ∪ O2) = ∅, a contradiction.

Without any compactness in X , connectedness of �nite intersections is
not suf�cient; this was shown in [6] by an impressive example: Let H be an
in�nite-dimensional Hilbert space, X := {x ∈ H | �x� ≥ 1} endowed with
the norm topology, Y := {y ∈ H | �y� ≤ 1} with the weak topology, and
f (x , y) := �x , y�, the inner product. Here Y is compact, f is continuous, and
for every λ ∈ R arbitrary intersections of {y | f (x , y) ≤ λ} as well as �nite
intersections of {x | f (x , y) ≥ λ} are connected; however, the level sets in X
are clearly non-compact.

We give another example that sheds more light on the matter; it is a proper
example for unsymmetry even in the presence of compactness. Compared to
the above, it looks rather odd-but note that the spaces must not be normal. Let
X, Y := Z \ {0}, the non-zero integers, and let f be the characteristic function
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of (X × Y ) \ F , where

F(1) := {1}, F(−1) := {−1},

F(x) := {−1, 1} ∪ {y | x/y /∈ Z and y/x /∈ Z}, ∀x �= ±1.

We endow X and Y with the weakest topologies such that all F(x) and F∗(y)
are closed; so f is lower semicontinuous in y and upper semicontinuous in
x . All F(x) are nonempty, hence maxX minY f = 0, and their intersection is
empty, hence minY maxX f = 1. The space Y is compact and connected, and
every F(A), A∈ E(X ), is connected-all at once from the fact that the only open
sets �= Y containing one of the points 1,−1 are Y \ {−1} and Y \ {1}. The
situation in X is exactly the same, since

F∗(1) = {−1}, F∗(−1) = {1},

F∗(y) = {x | x/y ∈Z or y/x ∈Z} ⊃ {−1, 1} ∀ y �= ±1.

5. Intervals and arcs.

In view of the conditions A1 and B1 there is no need to consider connect-
edness in terms of convex subsets of interval spaces unless one aims to weaken
the accompanying continuity properties. Let us brie�y discuss how this may be
done in our framework. We recall that a topological space T together with a
mapping [·, ·] from T × T into the subsets of T is an interval space if for all
t1, t2 ∈ T the interval [t1, t2] is connected and contains t1 and t2; see [2] and the
references therein.

B5. X is an interval space, and f is upper semicontinuous on intervals and
quasiconcave in x .

We apply this to the interval S := [a1, a2]. Quasiconcavity in x means that,
given x1, x2 ∈ X and y ∈ Y , f (x1, y)∧ f (x2, y) ≥ λ implies f (x , y) ≥ λ for all
x ∈ [x1, x2], and upper semicontinuity on intervals in x says that {x ∈ [x1, x2] |
f (x , y) ≥ λ} is closed in [x1, x2]. Hence a1, a2 ∈ F

∗
5 (L) gives S ⊆ F∗5 (L), and

we read off from (7) that S is not connected for S∩F∗2 (L1), S∩F
∗
2 (L2), though

these are closed subsets of the connected S , a contradiction.
By a similar argument, starting off with two points yi ∈ F3(A, a)∩ F7(ai),

(4) can be veri�ed if Y is an interval space and f is lower semicontinuous
on intervals and quasiconvex in y . However, there are examples showing that
semicontinuity on intervals does not imply a suf�cient compactness property,
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so that we can state only a preminimax result: If X and Y are interval
spaces, f is lower semicontinuous on intervals and quasiconvex in y, and f is
upper semicontinuous on intervals and quasiconcave in x , then supX infY f =
supE∈E(X ) infY maxE f holds. This is Stachó�s [12] Proposition 3 without any
separation or completeness assumptions.

Of course, the same holds true with upper semicontinuity on intervals in
y (applied to some set from FB between F8 and F7). On the other hand,
Komornik established the following ([4], Theorem 3): If X is a convex subset
of some real topological vector space, Y is a compact interval space, f is
lower semicontinuous and quasiconvex in y, and f is lower semicontinuous
on intervals and quasiconcave in x , then supX minY f = minY supX f holds.
We extend this result by means of condition B6.

With respect to connectedness, the question in [5] is still open: is it possible
to replace lower semicontinuity in condition B2 by lower semicontiuity in x?
Although it is hard to imagine how this could work, there is no example in sight.
The following may give some useful geometric information on this problem.

B6. X is an interval space with the property that, given a nonempty�nite subset
S � of an interval [x1, x2], there exist s1, s2 ∈ S

� such that s1 ∈ [x1, s] and
s2 ∈ [s, x2] for all s ∈ S

�, and f is lower semicontinuous on intervals and
quasiconcave in x .

As before let S := [a1, a2]; then S ⊆ F∗5 (L). From (6) we see that S is not
connected for S ∩ F∗3 (L1), S ∩ F

∗
3 (L2). We show that S ∩ F∗3 (L2) is open in S ;

likewise, S∩F∗3 (L1) is open in S , contradicting the connectedness of S . The sets
F3(x)∩L2, x ∈ S∩F

∗
3 (L1), are closed subsets of the compact L2, and they have

the �nite intersection property. To see the latter, let S � ∈ E(S∩F∗3 (L1)) be given,
and let s1 ∈ S

� satisfy s1 ∈ [a1, s] for all s ∈ S �. By quasiconcavity, F2(s1) ⊆
F2(a1) ∪ F2(s) for all s ∈ S �, so F1(s1) ∩ L2 ⊆ (F2(a1) ∩ L2) ∪ (F3(S

�) ∩ L2).
But F2(a1) ∩ L2 = ∅ and s1 /∈ F∗1 (L2), since s1 ∈ F

∗
5 (L) ∩ F∗1 (L1); hence

∅ �= F1(s1) ∩ L2 ⊆ F3(S
�) ∩ L2.

It follows that the sets F3(x) ∩ L2, x ∈ S ∩ F
∗
3 (L1), have nonempty

intersection, that is, S ∩ F∗3 (L1) ∩ F
∗
3 (y) = ∅ for some y ∈ L2. But S ⊆

F∗3 (L1)∪F
∗
3 (L2), and F∗3 (y) includes F∗3 (L2), hence S∩F∗3 (L2) = S∩F

∗
3 (y),

which is open in S .
There is another result in this direction, Tuy�s [13] Theorem 1�, and it is his

argument we analysed here. Suppose that, given a level set F and x1, x2 ∈ X ,
there exists an arc ϕ joining x1 and x2 such that

(9) F(ϕ(q)) ⊆ F(ϕ(p)) ∪ F(ϕ(r)) for all 0 ≤ p < q < r ≤ 1.

For F ∈ FA this is the condition employed by Tuy. Now let S := ϕ([0, 1]);
then S is connected, contains x1, x2, and F(x) ⊆ F(x1) ∪ F(x2) holds for all
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x ∈ S . Given S � ∈ E(S), we can choose a �nite Q ⊆ [0, 1] with ϕ(Q) = S �.
Then s1 := ϕ(min Q) satis�es F(s1) ∪ F(x1) ∪ F(s) for all s ∈ S �; likewise,
s2 := ϕ(max Q) satis�es F(s2) ⊆ F(s) ∪ F(x2) for all s ∈ S �.

Altogether, we may proceed as in the above proof-if we can apply (9) to
both F5 and F2 (or another pair of sets between F6 and F5, respectively F2

and F1), that is, if the arcs given for these sets coincide. In other words, Tuy�s
condition requires a condition A that allows to set F2 = . . . = F5 ∈ FA . For
example, we may suppose connectedness of all F(X �), F ∈ FA , X

� ∈ E(X );
however, this results in the original.

6. Staircases.

The conditionswe present in this section are modi�cations of those given in
[10]. They are equally elementary: having de�ned the level sets corresponding
to the inequalities we need only invoke the following combinatorial lemma
which yields precisely the abstract connectedness relation (3). But they also
include the more complicated quantitative conditions weakened by some ε .

Lemma 2. Let m, n > 0 and sets U , U0, . . . ,Um+n , V ,V0, . . . , Vm, W ,W0, . . .,
Wn be given such that U0 ⊆ . . . ⊆ Um+n ⊆ U, V ⊆ Vm, W ⊆ Wn, and
U0 ∩ V ∩W0 �= ∅, U0 ∩W ∩ V0 �= ∅. Suppose that, for all j < m + n, k < m,
l < n,

if Uj ∩ V ∩Wl �= ∅ and Uj ∩ W ∩ Vk �= ∅,(10)

then Uj+1 ∩ Vk+1 ∩ Wl+1 �= ∅.

Then U ∩ Vm ∩ Wn �= ∅ or U �⊆ V ∪W.

To prove this, just apply (10), starting off with j = k = l = 0; the
procedure will stop after less than m + n steps: Given Uj ∩ V ∩ Wl �= ∅ and
Uj ∩W ∩Vk �= ∅, pick u ∈Uj+1∩Vk+1∩Wl+1 . If u /∈ V ∪W , then U �⊆ V ∪W .
If u ∈ V and l + 1 = n, or u ∈W and k + 1 = m, then U ∩ Vm ∩ Wn �= ∅. If
u ∈ V and l+1 < n, increase j and l by one; likewise, if u ∈W and k+1 < m,
increase j and k by one.

B7. For all levels κ > λ > µ > ν from �B , all σ, τ < ν from f (X × Y ), and
Y0 := Y , the following holds:
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(11)

∃σ0, . . . , σm, τ0, . . . , τn, λ0, . . . , λm+n ∈R:

σ0 ≤ σ, σm = ν, τ0 ≤ τ, τn = ν, κ = λ0 ≥ . . . ≥ λm+n = λ;

∀ j < m + n, k < m, l < n, x1, x2 ∈ X : ∃ x ∈ X : ∀ y ∈ Y0 :

if f (x1, y) ≥ λj and f (x2, y) ≥ λj then f (x , y) ≥ λj+1;

if f (x1, y) ≥ µ and f (x2, y) ≥ σk then f (x , y) ≥ σk+1;

if f (x1, y) ≥ τl and f (x2, y) ≥ µ then f (x , y) ≥ τl+1.

A few remarks are in order here. First, we note that dealing with two
unordered sequences, (σk) and (τl), instead of a single ordered one, as in (12),
does not lead to anything new; but we do not want to dwell on how to order and
merge staircases in the example on mean functions below.

Second, conditions of this kind are usually accompanied by some bound-
edness assumption such as infy∈Y f (x , y) > −∞, ∀x ∈ X , the reason being
that one needs �nite levels σ, τ when the condition involves arithmetic opera-
tions. This is not the case here, but it will be in the examples, where f has
to be real-valued. However, the compactness and continuity conditions of our
theorem include a suitable assumption as they ensure that miny∈B f (x , y) exists
for every nonempty compact B ⊆ Y (in particular for L1, L2); this allows us
even to restrict σ, τ to f (X × Y ).

We apply B7 to (κ, λ, µ, ν) = (κB , λB , µB , νB), so that

F∗6 (y) = {x | f (x , y) ≥ κ}, F∗5 (y) = {x | f (x , y) ≥ λ},

F∗2 (y) = {x | f (x , y) ≥ µ}, F∗1 (y) = {x | f (x , y) ≥ ν}.

Let σ := miny∈L1
f (a1, y), τ := miny∈L2

f (a2, y). Then σ, τ < ν , since
a1 /∈ F∗1 (L1) and a2 /∈ F∗1 (L2) by (11). Let λj , σk , τl as given by (7). We de�ne

U := F∗5 (L), Uj := {x | f (x , y) ≥ λj ∀ y ∈ L},

V := F∗2 (L1), Vk := {x | f (x , y) ≥ σk ∀ y ∈ L1},

W := F∗2 (L2), Wl := {x | f (x , y) ≥ τl ∀ y ∈ L2}.

Then F∗6 (L) = U0 ⊆ . . . ⊆ Um+n = U , V ⊆ F∗1 (L1) = Vm , W ⊆ F∗1 (L2) =

Wn ; from (7), a1 ∈U0∩W ∩ V0, a2 ∈U0∩ V ∩W0; and (10) follows from (11).
Now Lemma 2 yields U ∩ Vm ∩Wn �= ∅ or U �⊆ V ∪W , which contradicts (7).
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Replacing L , Li by M , Mi , setting Y0 := M ∪ M1 ∪ M2, and refering to
(8) instead of (7) gives the appropriate argument for the �nite variant:

B8. X is compact, f is continuous, and for all levels κ > λ > µ > ν from
�B , all σ, τ < ν from f (X × Y ), and every Y0 ∈ E(Y ), (11) holds.

After what has been said about the lower bound assumption, the second
condition of the main result in [9], where f is supposed to be real-valued, reads
as follows: for all γ < β < α in R with γ ∈ f (X × Y ),

(12)

∃γ0, . . . , γn: γ = γ0 < . . . < γn = β; ∀ε > 0, x1, x2 ∈ X : ∃ x ∈ X :

∀k < n, y ∈ Y : f (x , y) ≥ ( f (x1, y)∧ f (x2, y))− ε;

if f (x1, y)∨ f (x2, y) > α > β > f (x1, y)∧ f (x2, y) ≥ γk,

then f (x , y) ≥ γk+1.

Let us see how (11) follows from this. Given κ > λ > µ > ν and σ, τ < ν

from f (X × Y ), we choose ν < β < α < µ and set γ := σ ∧ τ . Now let m
be the least index for which γm ≥ ν , and let σk := γk for k < m, σm := ν; that
is, we cut the staircase beyond ν , and we use (σk) in place of (τl). Further, let
κ = λ0 > . . . > λ2m = λ and 0 < ε ≤ β − ν satisfy λj − ε ≥ λj+1 for all
j ; so the �rst implication of (11) holds. For the second, let f (x1, y) ≥ µ > α

and f (x2, y) ≥ σk = γk . If f (x2, y) < β , then f (x , y) ≥ γk+1 ≥ σk+1 ; if
f (x2, y) ≥ β , then f (x , y) ≥ ( f (x1, y) ∧ f (x2, y))− ε ≥ β − ε ≥ ν ≥ σk+1 .
Likewise, f (x1, y) ≥ σk and f (x2, y) ≥ µ implies f (x , y) ≥ σk+1 .

Before we complete our theorem by the staircase condition of type A, let
us turn to another technical detail from [9]. Let R ⊆ R be an interval including
f (X ×Y ) and �B . We denote by �(R) the set of all functions φ : R× R→ R
satisfying φ(α, β) ≥ α∧β for all α, β ∈ R. Then the condition of type B in [9],
Theorem 13, may be formulated as follows: there exists a monotone φ ∈�(R)

such that

∃m, n > 0 : φ(µ, ·)m(σ ) ≥ ν; φ(·, µ)n(τ ) ≥ ν;

∀x1, x2 ∈ X : ∃ x ∈ X : ∀ y ∈ Y0 : f (x , y) ≥ φ( f (x1, y), f (x2, y)).

Is it possible to add −ε here? We have no complete answer, but we have found
natural assumptions that allow this weakening: Suppose that R contains some
ρ < σ ∧ τ and there exists a strictly monotone φ ∈�(R) such that

∃m, n > 0 : φ(µ, ·)m(ρ) ≥ ν; φ(·, µ)n(ρ) ≥ ν;

∀ε > 0, x1, x2 ∈ X : ∃ x ∈ X : ∀ y ∈ Y0 : f (x , y) ≥ φ( f (x1, y), f (x2, y))− ε.
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Then (11) can be deduced as follows: Choose αk ∈ R with σ = α0 > . . . >

αm = ρ ; let σk := φ(µ, ·)k(αk) for k < m and σm := ν ≤ φ(µ, ·)m(αm). Since
φ is strictly monotone, it follows for k < m that φ(µ, σk) = φ(µ, ·)k+1(αk) >

φ(µ, ·)k+1(αk+1) ≥ σk+1 . Similarly, there exist τl ∈ R such that τ0 = τ , τn = ν ,
and φ(τl , µ) > τl+1 for all l < n. Further, choose κ = λ0 > . . . > λm+n = λ.
Then there exists ε > 0 such that φ(λj , λj ) ≥ λj ≥ λj+1+ ε for all j < m + n,
φ(µ, σk) ≥ σk+1 + ε for all k < m, and φ(τl , µ) ≥ τl+1 + ε for all l < n; (11)
is immediate from these inequalities and the monotonicity of φ .

A2. For all κ < λ < µ < ν from �A, all σ, τ > ν from f (X × Y ), and every
X0 ∈ E(X ), the following holds:

(13)

∃σ0, . . . , σm, τ0, . . . , τn, λ0, . . . , λm+n ∈R:

σ0 ≥ σ, σm = ν, τ0 ≥ τ, τn = ν, κ = λ0 ≤ . . . ≤ λm+n = λ;

∀ j < m + n, k < m, l < n, y1, y2 ∈ Y : ∃ y ∈ Y : ∀x ∈ X0:

if f (x , y1) ≤ λj and f (x , y2) ≤ λj then f (x , y) ≤ λj+1;

if f (x , y1) ≤ µ and f (x , y2) ≤ σk then f (x , y) ≤ σk+1;

if f (x , y1) ≤ τl and f (x , y2) ≤ µ then f (x , y) ≤ τl+1.

We apply this to (κ, λ, µ, ν) = (κA, λA, µA, νA), so that

F3(x) = {y | f (x , y) ≤ κ}, F4(x) = {y | f (x , y) ≤ λ},

F7(x) = {y | f (x , y) ≤ µ}, F8(x) = {y | f (x , y) ≤ ν}.

In order to prove (4) for every a ∈ X we assume that there exist b1 ∈ F3(A, a)∩
F7(a2) and b2 ∈ F3(A, a) ∩ F7(a1). Let σ := f (a1, b1) and τ := f (a2, b2).
Then σ, τ > ν , since from (2) b1 /∈ F8(a1) and b2 /∈ F8(a2). Let X0 :=
A ∪ {a, a1, a2} and λj , σk, τl as given by (13). We de�ne

U := F4(A, a), Uj := {y | f (x , y) ≤ λj ∀x ∈ A ∪ {a}},

V := F7(a1), Vk := {y | f (a1, y) ≤ σk},

W := F7(a2), Wl := {y | f (a2, y) ≤ τl}.

Then F3(A, a) = U0 ⊆ . . . ⊆ Um+n = U , V ⊆ F8(a1) = Vm , W ⊆ F8(a2) =

Wn , b1 ∈U0 ∩ W ∩ V0, b2 ∈U0 ∩ V ∩W0, and (10) follows from (13). Lemma
2 yields U ∩ Vm ∩ Wn �= ∅ or U �⊆ V ∪W , which proves (4).
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7. Some remarks on variants.

As mentioned above, our staircase conditions are modelled after those in
[10]; however, they do not include them. The essential difference between
(13) and condition (2.2) in [10] is that the latter is formulated for levels
κ = λ = µ < ν . Following the arguments given above, a condition A for
λA = µA can not be combined with the conditions B3, B4, B7, B8; also, B1
and B2 need to be specialized to FA . After all, one attains to a different theorem
built around the staircase condition for κA < λA = µA < νA which is weaker
than A2. Similarly, another theorem including the weaker staircase condition
for κB > λB = µB > νB (or Tuy�s condition modi�ed for sets from FB ) may
be stated.

There are also variants of the theorem which include conditions on the
level set F∗ := {(x , y) | f (x , y) ≤ supX infY f }. They can be obtained by
inserting a compactness argument into the induction step: if F(A, a) �= ∅ for
all F ∈FA and a ∈ X , and if all these sets are closed and compact (as they are
by the assumptions of the theorem), then F∗(A, a) �= ∅ for all a ∈ X . This
enables to work with F8, . . . , Fk+1 de�ned as above and Fk = . . . = F1 = F∗
for some k. For example, we may replace lower semicontinuity in B2 by the
weaker closedness of F∗ (set k = 2), and we may combine condition B2,
B3 (note that L1, L2 need not be replaced by �nite sets there), or B6 with
connectedness of all F∗(X

�), X � ∈ E(X ), or with the staircase condition for
supX infY f = κA = λA < µA < νA (set k = 4).
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