
LE MATEMATICHE
Vol. LIII (1998) � Fasc. II, pp. 207�240

CENTERS OF PLANAR POLYNOMIAL SYSTEMS. A REVIEW

ROBERTO CONTI

A Franco Guglielmino, con affetto

Contents.

§ 1. Introduction.

§ 2. Degeneracy. Quasi homogeneity. O -symmetry.

§ 3. Polar coordinates.

§ 4. Homogeneous systems.

§ 5. Totally degenerate systems.

§ 6. Semidegenerate systems.

§ 7. Nondegenerate systems. The center/focus problem.

§ 8. Nondegenerate systems of even degree.

§ 9. Nondegenerate systems of odd degree.

§ 10. Remarks about the identi�cation problem.

§ 11. Hamiltonian systems.

§ 12. Reversible systems.

§ 13. Geometrical classi�cation of centers. Central region.

§ 14. Centers of types A and B.

§ 15. Period function. Isochronous centers. Linearization.

§ 16. Isochronous centers: n = 2.

Entrato in Redazione il 26 novembre 1998.



208 ROBERTO CONTI

§ 17. Isochronous centers: n = 3.

§ 18. Isochronous centers. Cauchy-Riemann systems. Commutativity.

§ 19. Uniform isochronism.

§ 20. More about the period function.

§ 21. Centers of types C and D.

1. Introduction.

A planar polynomial system is a pair of two ordinary differential equations

(1.1) ẋ = P(x , y), ẏ = Q(x , y)

where ẋ = dx/dt , ẏ = dy/dt , t ∈ R, and P(x , y), Q(x , y) are polynomials in
(x , y) ∈ R

2 with real coef�cients.
(1.1) is a system of degree n if the integer n is the maximum of the degrees

of P(x , y) and Q(x , y).
We shall assume that P(x , y), Q(x , y) are relatively prime so that (1.1)

has n2 singular points at most. �

Only recently Dulac�s Theorem asserting that planar polynomial systems
have �nitely many limit cycles, was proved (see Yu.S. Il�yashenko [18], J. Ecalle
[13]).

As one of the consequences a singular point S of (1.1) can be either a
center, or a focus or a tangential limit point, i.e., the limit point of trajectories
with a limit tangent at S . �

This paper, essentially expository, is a review of various aspects (analyt-
ical, geometrical, dynamical) of polynomial systems with a center, under the
assumptions declared above.

A large part is devoted to the identi�cation by means of the coef�cients of
P(x , y), Q(x , y), of systems with a center.

This includes the consideration of hamiltonian systems and of reversible
ones.

The rest of the paper deals with the central region, the period function and
with isochronous centers.

The integration problem, i.e., the determination of �rst integrals for sys-
tems with a center will be considered here only occasionally.
Nor systems with more than one center will be given a special consideration.

�
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As we shall see the behavior of (1.1) strongly depends on n. So it is convenient
to distinguish among the four cases

n = 2; n = 4, 6, . . . ; n = 3; n = 5, 7, . . .

In what follows particular attention will be paid to quadratic systems (n = 2)
and to cubic ones (n = 3). �

2. Degeneracy. Quasi homogeneity. O-symmetry.

As a rule, calculations are simpli�ed at no expense of generality by
assuming S = O = (0, 0).

Then (1.1) can be written as

(S)
ẋ = αx + βy + p(x , y),

ẏ = γ x + δy + q(x , y)

where

(2.1) p(x , y) =

n�

2
j
pj (x , y), q(x , y) =

n�

2
j
qj (x , y)

and

(2.2) pj (x , y) =

j�

0
ν
pj−ν, j x

j−ν yν, qj (x , y) =

j�

0
ν
qj−ν,νx

j−ν yν

are homogeneous polynomials of degree j . �

De�nition 2.1. We shall say that (S) is

totally degenerate

if α = β = γ = δ = 0,

semidegenerate
if αδ − βγ = 0, α + δ = 0, α2 + β2 + γ 2 + δ2 > 0,

nondegenerate
if αδ − βγ > 0.
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It can be shown (see, for instance G. Sansone - R. Conti [42]) that O can
be a center in each one of these cases, whereas if α + δ �= 0, or αδ − βγ < 0,
O cannot be a center.
From this it follows that if O is a center then, after a linear change of coordinates
x , y , (S) can be written as

(S)λ,µ

ẋ = λy + p(x , y),

ẏ = µx + q(x , y)

where λ = µ = 0 corresponds to total degeneracy, λ �= 0, µ = 0 to
semidegeneracy and λµ < 0 to nondegeneracy. �

For n = 2 and n = 3 we shall use the notations

(Q)λ,µ

ẋ = λy + ax 2 + bxy + cy2

ẏ = µx + kx 2 + lx y + my2,

(C)λ,µ

ẋ = λy + ax 2 + bxy + cy2 + Ax 3 + Bx 2y + Cxy2 + Dy3

ẏ = µx + kx 2 + lx y +my2 + K x 3 + Lx 2y + Mxy2 + Ny3,

(C)0λ,µ

ẋ = λy + Ax 3 + Bx 2y + Cxy2 + Dy3

ẏ = µx + K x 3 + Lx 2y + Mxy2 + Ny3. �

De�nition 2.2. If the polynomials p(x , y), q(x , y) are homogeneous of the
same degree n we say that (S) is quasi homogeneous.

If (S) is quasi homogeneous and totally degenerate we say that (S) is
homogeneous. �

If n is even the trajectories of (S) cannot be symmetric with respect to O .
In fact this happens if and only if the transformation (x , y) �→ (−x , −y) leaves
(S) unchanged, i.e., if and only if

(2.3) pj (x , y) = qj (x , y) = 0, (x , y) ∈ R
2, j even ≤ n

hold.
If n is odd then (2.3) make sense and we have

De�nition 2.3. When n is odd and (2.3) hold we say that (S) is O -symmetric.

For n = 3 O -symmetry is equivalent to quasi-homogeneity.
For n = 5, 7, . . . if (S) is quasi homogeneous then (S) is also O -symmetric,
but not viceversa. �
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3. Polar coordinates.

Introducing polar coordinates ρ, θ, x = ρ cos θ, y = ρ sin θ, (S) becomes

(�)

ρ̇ = [α cos2 θ + (β + γ ) cos θ sin θ + δ sin2 θ ]ρ +

n�

2
j
ρ j rj (θ)

θ̇ = [γ cos2 θ + (δ − α) cos θ sin θ − β sin2 θ ]+

n�

2
j
ρ j−1sj (θ)

where rj (θ), sj(θ) are homogeneous polynomials in cos θ , sin θ of degree j+1,
namely,

(3.1)
rj (θ) = pj (cos θ, sin θ) cos θ + qj (cos θ, sin θ) sin θ

sj (θ) = −pj (cos θ, sin θ) sin θ + qj (cos θ, sin θ) cos θ.
�

Using Euler�s identity for homogeneous functions we have the identities

(3.2) ( j + 1)rj (θ) +
dsj (θ)

dθ
= dj (θ),

where

dj (θ) =
∂pj

∂x
(cos θ, sin θ) +

∂qj

∂y
(cos θ, sin θ) =(3.3)

=

j−1�

0
ν
( j − ν)pj−ν, j cos

j−ν−1 θ sinν θ+

+

j�

1
ν
νqj−ν, j cos

j−ν θ sinν−1(θ).

�

Notice that

(3.4) rj (θ + π) = (−1) j+1rj (θ), sj (θ + π) = (−1) j+1sj (θ). �

In polar coordinates (S)λ,µ becomes

(�)λ,µ

ρ̇ = (λ + µ)ρ cos θ sin θ +

n�

2
j
ρ j rj (θ)

θ̇ = (µ cos2 θ − λ sin2 θ) +

n�

2
j
ρ j−1sj (θ) �
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4. Homogeneous systems.

We start with homogeneous systems (H. Forster [14], C.B. Collins [7]).
Let (S) be homogeneous, i.e., let n ≥ 2 and

(4.1) ẋ =

n�

0
ν
pn−ν,νx

n−ν yν, ẏ =

n�

0
ν
qn−ν,νx

n−ν yν.

If � is a trajectory of (4.1) then also r�, r > 0, is a trajectory. Therefore,
either (4.1) has no cycle or all its trajectories are cycles and O is called a global
center. �

In polar coordinates (4.1) becomes

(4.2) ρ̇ = ρnrn(θ), θ̇ = ρn−1sn(θ)

where

(4.3)

rn(θ) =

n�

0
ν
pn−ν,n cos

n−ν+1 θ sinν θ+

+

n�

0
ν
qn−ν,n cos

n−ν θ sinν+1 θ

sn(θ) = −

n�

0
ν
pn−ν,n cos

n−ν θ sinn−ν+1 θ+

+

n�

0
ν
qn−ν,n cos

n−ν+1 θ sinν θ.

If the equation sn(θ) = 0 has a solution θ0 then the ray θ = θ0, ρ > 0, is a
trajectory so that O is a tangential limit point.
Since sn(θ) is a polynomial in cos θ, sin θ of odd degree it follows

Theorem 4.1. Homogeneous polynomial systems of even degree have an in-
variant line through O. �

If n is odd the assumption

sn(θ) �= 0, θ ∈ R
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makes sense. If it holds we have θ̇ �= 0 and the trajectories can be represented
by the solutions ρ : θ �→ ρ(θ) of the linear equation

dρ

dθ
=
rn(θ)

sn(θ)
ρ.

On the other hand from (3.2), (3.3) for j = n we have

ρ(θ) = ρ(θ0)
� sn(θ0)

sn(θ)

� 1
n+1

exp
1

n + 1

� θ

θ0

dn(ϕ)

sn(ϕ)
dϕ, θ0, θ ∈ R.

Since
dn(ϕ)

sn(ϕ)
=
dn(ϕ + π)

sn(ϕ + π)
, ϕ ∈ R,

we have

Theorem 4.2. Homogeneous polynomial systems of odd degree have a tangen-
tial limit point at 0 with tangent line θ = θ0 if

sn(θ0) for some θ0 ∈ R,

a focus if

sn(θ) �= 0, θ ∈ R;

� π/2

−π/2

dn(θ)

sn(θ)
dθ �= 0,

a global center if

sn(θ) �= 0, θ ∈ R;

� π/2

−π/2

dn(θ)

sn(θ)
dθ = 0. �

5. Totally degenerate systems.

All the remaining systems to be classi�ed are non necessarily homoge-
neous. �

Examples show that if (S) is totally degenerate, but not homogeneous and
n = 4, 6, . . . then O can be a tangential limit point, a focus or a (non global)
center.
For instance O is a center for

(5.1) ẋ = y3, ẏ = −x 3 − xn, n = 4, 6, . . . �
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Also, there exist totally degenerate systems of degree n = 5, 7, . . . which are
O -symmetric but not homogeneous, or non O -symmetric, which have a center
at O .

For instance O is a (global) center for

(5.2) ẋ = y3, ẏ = −x 3 − xn, n = 5, 7, . . .

as well as for

(5.3) ẋ = y3, ẏ = −x 3 − x 4 − (n + 1)xn, n = 5, 7, . . . �

We shall now examine in detail the case n = 3 of totally degenerate systems,
i.e., systems (C)0,0.

For x = 0 we have ẋ = cy2 + Dy3, so if c �= 0 O cannot be a center nor
a focus, so it is a tangential limit point. The same happens if k �= 0.

If c = k = 0, in polar coordinates (C)0,0 becomes

(5.4) ρ̇ = ρ2r2(θ) + ρ3r3(θ), θ̇ = ρs2(θ) + ρ2s3(θ)

where

(5.5)
r2(θ) = [a cos θ + b sin θ ] cos2 θ + [l cos θ + m sin θ ] sin2 θ

s2(θ) = [(l − a) cos θ + (m − b) sin θ ] cos θ sin θ

and

(5.6)

r3(θ) = A cos4 θ + (B + K ) cos3 θ sin θ + (C + L) cos2 θ sin2 θ+

+ (D + M) cos θ sin3 θ + N sin4 θ

s3(θ) = K cos4 θ + (L − A) cos3 θ sin θ + (M − B) cos2 θ sin2 θ+

+ (N − C) cos θ sin3 θ − D sin4 θ.

Let (l−a)(m−b) �= 0 and (l−a) cos θ0 + (m−b) sin θ0 = 0. Then θ0, 0, π/2
are simple roots of s2(θ) = 0 and it follows (see, for instance, P. Hartman [40],
pp. 220�221) the existence of trajectories having O as limit point with tangents
θ = θ0, 0, π/2.
If l − a �= 0, m − b = 0 then s2(θ) = (l − a) cos2 θ sin θ and θ = 0 is a simple
root of s2(θ) = 0, so θ = 0 is a limit tangent.

Symmetrically, if l − a = 0, m − b �= 0, θ = π/2 is a limit tangent.
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Let l − a = m − b = 0, so that r2(θ) = a cos θ + b sin θ , s2(θ) ≡ 0 and
(5.4) becomes

ρ̇ = ρ2(a cos θ + b sin θ) + ρ3r3(θ), θ̇ = ρ2s3(θ).

If there exist θ0 such that s3(θ0) = 0 then θ = θ0, θ0 + π , is an invariant line.
Finally, let r2(θ) = 0, θ ∈ R, and

(5.7) s3(θ) < 0, θ ∈ R

hold. Then θ̇ = ρ2s3(θ) < 0, ρ > 0, θ ∈ R, so O is the unique singular point
of (C)0,0.

The trajectories are the graphs of the solutions θ �→ ρ(θ) of the equation

dρ

dθ
=
r3(θ)

s3(θ)
ρ +

a cos θ + b sin θ

s3(θ)

so that

(5.8) ρ(θ) exp I (θ) − r = Ja,b(θ), r = ρ(0) ≥ 0

where

(5.9) I (θ) = −

� θ

0

r3(ϕ)

s3(ϕ)
dϕ

(5.10) Ja,b(θ) =

� θ

0

a cosϕ + b sinϕ

s3(ϕ)
exp I (ϕ) dϕ.

The graph of θ �→ ρ(θ) represents a cycle if and only if ρ(2π) = r and
ρ(θ) > 0, θ ∈ R, i.e., if and only if r satis�es

(5.11) r[exp I (2π) − 1] = Ja,b(2π)

and

(5.12) r + µa,b > 0

where

(5.13) µa,b = min{Ja,b(θ), 0 ≤ θ ≤ 2π}
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Since Ja,b(0) = 0 we have

(5.14) µa,b ≤ 0.

If

(5.15) I (2π)Ja,b(2π) �= 0

there is only one (limit) cycle, namely the trajectory passing through
(Ja,b(2π)[exp I (2π) − 1]−1, 0) and O is a focus.
If

(5.16) I (2π)Ja,b(2π) = 0, I 2(2π) + J 2a,b(2π) > 0

there are no cycles and O is a focus.
If

(5.17) I (2π) = Ja,b(2π) = 0, µa,b = 0

O is a global center.
Finally, if

(5.18) I (2π) = Ja,b(2π) = 0, µa,b < 0

the trajectory through (r, 0), r > −µa,b , is a cycle and O is a limit point. �

Summing up we have

Theorem 5.1. Let

(C)0,0

ẋ = ax 2 + bxy + cy2 + Ax 3 + Bx 2y + Cxy2 + Dy3

ẏ = kx 2 + lx y + my2 + K x 3 + Lx 2y + Mxy2 + Ny3.

Then O is a tangential limit point if either c2 + k2 > 0, or c = k = 0,
l − a �= 0, or c = k = 0, m − b �= 0, or c = k = 0, l − a = m − b = 0 and
the equation

K cos4 θ + (L − A) cos3 θ sin θ + (M − B) cos2 θ sin2 θ+(5.19)

+(N − C) cos θ sin3 θ − D sin4 θ = 0

has one real root at least.
If c = k = 0, l − a = m − b = 0 and (5.19) has no real root, then O is a

focus if (5.17) holds and a tangential limit point if (5.18) hold. �
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Remark 5.1. If (C)0,0 is homogeneous then either O is a focus or a global
center, in accordance with Theorem 4.2 for n = 3.

If a2 + b2 > 0, O can be a tangential limit point as shown by

ẋ = xy + x 2y + y3, ẏ = y2 − x 3 − xy2

corresponding to a = 0, b = 1, µ0,1 = −2. �

Remark 5.2. The condition I (2π) = 0 is satis�ed, in particular if

(5.20) 3A + L = 0, B + M = 0, C + 3N = 0

hold. �

6. Semidegenerate systems.

Theorem 6.1. Let n = 2, 4, . . . and let (S)λ,0 be quasi homogeneous. Then O
is a tangential limit point.

Proof. In polar coordinates (S)λ,0 quasi homogeneous is written as

ρ̇ = λρ cos θ sin θ + ρnrn (θ)

θ̇ = −λ sin2 θ + ρn−1sn(θ).

Since n is even there are θ0 ∈ R such that sn(θ0) = O .
If sn(θ0) = 0 and sin θ0 = 0 the line θ = θ0 = 0 is invariant.
If sn(θ0) = 0 but sin θ0 �= 0, since for n even we have rn (θ + π) = −rn(θ)

then for θ = θ0+π ρ̇ equals λρ cos θ0 sin θ0 −ρnrn(θ0) and θ̇ equals − sin2 θ0.
This means that the trajectories close enough to O cut across with the same
orientation the two half lines of θ = θ0 originating from O .
Then O is not a center nor a focus. �

It remains to consider (S)λ,0 in the two cases a) n = 4, 6, . . . , (S)λ,0 not
quasi homogeneous, b) n odd. �

Next example shows that O can be a center in case a). Systems

(6.1) ẋ = y, ẏ = −x 3 − xn; n = 4, 6, . . .

are not quasi homogeneous and O is a center. �

The rest of this Section shows that O can be a center also in case b) n odd.
�

Let us consider �rst the cubic case, i.e., (C)λ,0 .
Then we have (A.F. Andreev [2], V.A. Lunkevich-K.S. Sibirskii [23])
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Theorem 6.2. Let (C)λ,0 be O-symmetric. Then O is a center if and only if

(6.2) λK < 0

and

(6.3)

�
3A + L = 0
2A(B + M) + K (C + 3N) = 0
2N(B + M)2 − M(B + M)(C + 3N) − A(C + 3N)2 = 0

hold.
Further O is a tangential limit point if and only if

(6.4) λ �= 0, λK ≥ 0. �

Notice that (5.20) are a particular case of (6.3). �

Independent of O -symmetry we have

Theorem 6.3. If O is a center or a focus of (C)λ,0 then

(6.5) k = 0, λK < 0

must hold.

In fact, for y = 0 ẏ equals (k + K x)x 2 so if k = K = 0 the liney = 0 is
invariant and if k �= 0 ẏ does not change sign for x ≶ 0 close to x = 0 and the
trajectories close to O will cut across the line y = 0 one way, so O cannot be a
center nor a focus. �

The converse of Theorem 6.3 is not valid as it is shown, for instance, by
(Yu Shu-Xiang, Zhang Ji-Zhou [39])

(6.6) ẋ = y + ax 2, ẏ = −x 3.

In fact if a2 ≥ 2 the parabolas y +
a±

√
a2−2

2
x 2 = 0 are invariant.

It is easy to show that O is a (global) center for a2 < 2. �

For semidegenerate systems (S)λ,0 of degree n = 5, 7, . . . , O can be a
center, possibly a global one.
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For instance, O is a center for semidegenerate systems which are quasi
homogeneous, like

(6.7) ẋ = y, ẏ = −xn; n = 5, 7, . . .

O -symmetric, not quasi homogeneous, like

(6.8) ẋ = y, ẏ = −xn−2 − xn; n = 5, 7 . . .

not O -symmetric, like

(6.9) ẋ = y + yn−2 + yn, ẏ = −x 3; n = 5, 7 . . . . �

7. Nondegenerate systems. The center/focus problem.

To deal with nondegenerate systems with a center, (S)λ,µ, λµ < 0, it is
not restrictive to assume further λ = 1, µ = −1, so that (S) and (�) reduce
respectively to

(S)1,−1 ẋ = y + p(x , y), ẏ = −x + q(x , y),

(�)1,−1 ρ̇ =

n�

2
j
ρ j rj (θ), θ̇ = −1+

n�

2
j
ρ j−1sj (θ).

The nondegenerate case is, by far, the most intensively investigated since the
classical work of Poincaré and Liapunov.

One of the reasons lies in the fact that O cannot be a tangential limit point,
i.e.,

Theorem 7.1. O is a center or a focus of (S)1,−1.

Proof. From (�)1,−1 we see that the trajectories close enough to O wind
around O itself so, either they are spirals tending to O and O is a focus, or
they are cycles surrounding O and O is a center. �

Due to this, in the nondegenerate case the identi�cation problem is com-
monly referred to as the center/focus problem. �

Another reason for privileging nondegenerate systems is that from Poin-
caré-Liapunov�s work (see, for instance, V.V. Nemytskii-V.V. Stepanov [41],
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G. Sansone-R. Conti [42]) it is known that such systems with a center are
characterized by a �nite number of algebraically independent conditions of the
form Di = 0, where Di are polynomials of the coef�cient of the system.

This is a very remarkable result, but its importance is more theoretical
than practical. In fact, quoting from V.V. Nemytskii-V. V. Stepanov [41],
p.123: �In order to make an effective use of these conclusions we must answer
the following question: Given that right hand members of our equation are
polynomials of degree n, to determine N(n) such that all the equalities Di = 0
for i > N(n) are consequences of such equalities for i ≤ N(n). The problem
of characterization of N(n) is still unsolved�.

And still (1998) it is.
It remains, therefore, to single out systems for which the question above is

solved. �

8. Nondegenerate systems of even degree.

For nondegenerate quadratic systems (Q)1,−1, i.e.,

(8.1)

�
ẋ = y + ax 2 + bxy + cy2

ẏ = −x + kx 2 + lx y +my2,

the center/focus problem has been solved in various ways in terms of algebraic
equalities satis�ed by the coef�cients (Li Chengzhi [20], D. Schlomiuk - J.
Guckenheimer - R. Rand [34]). We have, for instance

Theorem 8.1. Let n = 2. Then O is a center of (8.1) if and only if one of the
following sets of conditions is satis�ed:

(8.2)

�
(a + c)(b+ 2m) − (2a + l)(k +m) = 0
k(a + c)3 + (l − a)(a + c)2(k + m)+

+(m − b)(a + c)(k +m)2 − c(k +m)3 = 0

(8.3) 2a + l = 0, b + 2m = 0

(8.4)

�
5(a + c) − (2a + l) = 0
5(k +m) − (b + 2m) = 0
c2 + c(a + c) + k2 + k(k +m) = 0. �
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Remark 8.1. Notice the particular cases of (8.2):

(8.5) a + c = 0, k + m = 0

(8.6) a = c = l = 0

(8.7) b = k = m = 0. �

Let now n = 4, 6, . . .. Simple examples show that O can be a center both for
nondegenerate quasi homogeneous systems like

(8.8) ẋ = y, ẏ = −x − xn; n = 4, 6, . . . ,

and for nondegenerate non quasi homogeneous systems, like

(8.9) ẋ = y, ẏ = −x −
1

2
x 2 −

1

2
xn; n = 4, 6, . . . �

9. Nondegenerate systems of odd degree.

It remains to examine nondegenerate systems of odd degree. �

For cubic nondegenerate O -symmetric systems,

(9.1)

�
ẋ = y + Ax 3 + Bx 2y + Cxy2 + Dy3

ẏ = −x + K x 3 + Lx 2y + Mxy2 + Ny3

I.G. Malkin [24] and K.S. Sibirskii [36], using different methods, gave the
solution of the center/focus problem as follows.

Theorem 9.1. Let n = 3. O is a center of (9.1) if and only if one of the
following sets of conditions is satis�ed:

(9.2)






3A + L + C + 3N = 0
(3A + L)(B + D + K + M) − 2(A − N)(B + M) = 0
2(A + N)[(3A + L)2 − (B + M)2]+

+(3A + L)(B + M)(B − D + K − M) = 0,

(9.3)






3A + L + C + 3N = 0
2A − L + C − 2N = 0
B + 3D − 3K − M = 0
B + 5D + 5K + M = 0
(A + 3N)(3A + N) − 16DK = 0. �
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Notice that (5.20) are a particular case of (9.2). �

Cubic nondegenerate systems which are not quasi homogeneous (i.e., non
O -symmetric) but have a center at O , do exist as it is shown, for instance, by
(N.A. Lukashevich [22])

(9.4) ẋ = y + 2xy + 2y3, ẏ = −x − y2. �

A remarkable class of such systems, known as Kukles� systems, is represented
by

(9.5)

�
ẋ = y
ẏ = −x + kx 2 + lx y +my2 + K x 3 + Lx 2y + Mxy2 + Ny3

with k2 + l2 + m2 > 0, K 2 + L2 + M2 + N2 > 0.
Systems (9.5) with a center at O have been the object of intensive research

(I.S. Kukles [19], A.P. Sadovskii [32], P. Marde�sić - C. Rousseau - B. Toni [25],
C.J. Christopher - J. Devlin [6]). �

Simple examples like the following ones show the existence of a center at O for
nondegenerate systems of degrees n = 5, 7, . . . and quasi homogeneous, like

(9.6) ẋ = y, ẏ = −x − xn; n = 5, 7, . . . ,

or O -symmetric, non quasi homogeneous, like

(9.7) ẋ = y, ẏ = −x − x 3 − xn; n = 5, 7 . . .

or non O -symmetric, like

(9.8) ẋ = y + y2 + yn, ẏ = −x; n = 5, 7 . . . . �

10. Remarks about the identi�cation problem.

The identi�cation problem of polynomial systemswith a center, arose more
than one century ago and it is still alive and a challenging one.

What precedes shows that systems for which it was solved are a minority.
In fact the problem is solved for quadratic systems, but it is
- still unsolved for systems of degree n = 4, 6, . . . which are not quasi
homogeneous or which are quasi homogeneous but nondegenerate,
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- still unsolved for cubic systems which are not O -symmetric and are
semidegenerate or nondegenerate.
For n = 5, 7, . . . the problem is solved only for homogeneous systems.
This situation accounts for the search for conditions which are only neces-

sary or only suf�cient ones.
Hence the recourse to computer algebra (which will not be considered here), the
attention paid to hamiltonian systems, and the emphasis on reversible systems.
These two classes have in common the property that O cannot be a focus. �

11. Hamiltonian systems.

Restricting to polynomial systems the wellknown de�nition of hamiltonian
systems we have

De�nition 11.1. A polynomial system (S)λ,µ of degree n is said to be
hamiltonian if it can be written as

ẋ = Hy(x , y), ẏ = −Hx(x , y)

where H (x , y) is a polynomial of degree n + 1, H (0, 0) = 0.

To recognize whether (S)λ,µ is hamiltonian it is suf�cient (as well as
necessary) to verify whether

(11.1) px(x , y) + qy(x , y) = 0, (x , y) ∈ R
2

holds.
Since px(x , y)+qy(x , y) is the divergence of the vector (p(x , y), q(x , y))

(11.1) is also called the divergence condition. �

If (11.1) holds, then

[−µx − q(x , y)]dx + [λy + p(x , y)]dy =

=
1

2
d(−µx 2 + λy2) − q(x , y)dx + p(x , y)dy

is the differential of [−µx 2 + λy2+ R(x , y)]/2, where R(x , y) is a polynomial
of degree n + 1 with no term of degree ≤ 2.

Then the trajectories of (S)λ,µ are represented by the family of algebraic
curves of degree n + 1

−µx 2 + λy2 + R(x , y) = r, r ∈ R,

i.e., by the level curves of the algebraic surface z = −µx 2 + λy2 + R(x , y).
It follows that O cannot be a focus, so that we have
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Theorem 11.1. If the divergence condition holds, then O is a center or a
tangential limit point of (S)λ,µ. �

Notice that if the divergence condition holds and O is a tangential limit
point then O is the limit point of �nitely many trajectories. �

Since O is a center or a focus if (S)λ,µ is nondegenerate, from Theorem
11.1 it follows the criterion

Theorem 11.2. If (S)λ,µ is hamiltonian and nondegenerate then O is a center.
�

Nondegeneracy is not a necessary condition as it is shown, for instance, by

ẋ = y, ẏ = −2x 3.

Actually, Theorem 11.2 can be improved, so as to cover systems like the
preceding one, as follows

Theorem 11.3. If (S)λ,µ is hamiltonian and O is an isolated critical point of
the algebraic curve −µx 2 + λy2 + R(x , y) = 0 then O is a center. �

Notice that the theorems above are independent of n. �

Many systems considered in the previous Sections are hamiltonian.
(Q)λ,µ is hamiltonian if and only if (8.3) hold.
(C)λ,µ is hamiltonian if and only if (8.3) and (5.20) hold. �

When (S)λ,µis quasi homogeneous the divergence condition of Theorem
11.2 can be weakened as follows (M.A.M. Alwash-N.G. Lloyd [1])

Theorem 11.4. Let (S)1,−1 be quasi homogeneous of degree n. Then O is a
center if there exist α ∈ R such that

(x 2 + y2)[px (x , y) + qy(x , y)] =(11.2)

= α[xp(x , y) + yq(x , y)], (x , y) ∈ R
2

and either n is even, or n is odd and α �= n + 1, or n is odd, α = n + 1, and

� 2π

0

dn(θ) dθ = 0

where dn(θ) is the polynomial of degree n + 1 de�ned by (3.3) for j = n.

For α = 0 (11.2) reduces to the divergence condition (11.1). �
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12. Reversible systems.

Beside hamiltonian (polynomial) systems there is another class of systems
for which O cannot be a focus, namely that of reversible systems satisfying

De�nition 12.1. We say that (S)λ,µ is reversible with respect to a straight line
l through O if it is invariant with respect to re�ection about l and a reversion
of time t .

If (S)λ,µ is reversible O cannot be a focus, but it is not necessarily a center
as it is shown, for instance, by system (6.6), a2 ≥ 2.

However O is a center if (S)λ,µ is also nondegenerate. We thus have a
very simple and useful criterion, going back to Poincaré, namely (cfr. V.V.
Nemytskii-V.V. Stepanov [41], p.122)

Theorem 12.1. Let (S)λ,µ be non degenerate. Then O is a center if (S)λ,µ is
reversible. �

Examples show that Theorem 12.1 is not invertible. For instance O
is a center of the nondegenerate system (12.6) below, but the system is not
reversible. �

We shall now express reversibility of (S)λ,µ in terms of λ, µ, p(x , y), q(x , y).

(S)λ,µ is reversible about the line l : y = 0 if and only if the transformation
(x , y, t) �→ (x , −y, −t) leaves (S)λ,µ unchanged. This means that

(12.1)

�
p(x , y) = −p(x , −y)

, (x , y) ∈ R
2

q(x , y) = q(x , −y)

are satis�ed.
Let now l : αx − βy = 0, α2 + β2 = 1.
The rotation of axes

u = βx + αy, v = αx − βy

sends l into the line v = 0 and it transforms (S)λ,µ into

(12.2)






u̇ = αβ(λ + µ)u − (β2λ − α2µ)v+
+βp(βu + αv, αu − βv) + αq(βu + αv, αu − βv)

v̇ = (α2λ − β2µ)u − αβ(λ + µ)v+
+αp(βu + αv, αu − βv) − βq(βu + αv, αu − βv).
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Therefore, changing t into −t (12.2) coincides with (S)λ,µ if and only if

(12.3)

�
p(x , y) = −βp(βx + αy, αx − βy) − αq(βx + αy, αx − βy)
q(x , y) = −αp(βx + αy, αx − βy) + βq(βx + αy, αx − βy)

(x , y) ∈ R
2, and

(12.4) α(λ + µ) = 0

hold. Therefore (S)λ,µ is reversible about the line l : αx − βy = 0 if and only
if (12.3) and (12.4) hold.

Assuming λ = −µ = 1 we have (T.R. Blows-N.G. Lloyd [3])

Theorem 12.2. Let (12.3) hold for some α, β, α2+β2 = 1. Then O is a center
for (S)1,−1. �

Remark 12.1. Equalities (12.3) allow to verify whether a given line αx−βy =
0 is a reversibility line for (S)1,−1. However, when used for the search for
possible reversibility lines they may lead to calculations usually getting longer
and longer as the degree of (S)1,−1 is increased.

Some help may be obtained by observing that a reversibility line l is also
an orthogonality line, i.e., at every point P ∈ l the vector (ẋ , ẏ) is necessarily
orthogonal to the ray OP .

This means that a reversibility line is part of the algebraic curve of degree
n + 1

ρρ̇ = xp(x , y) + yq(x , y) = 0.

Therefore if ρρ̇ = 0 does not contain a real line through O then there are no
reversibility lines at all, whereas if ρρ̇ = 0 contains a real line l through O one
has only to apply (12.3) to verify whether l is actually a reversibility line. �

If xp(x , y) + yq(x , y) = 0 identically, i.e., for (x , y) ∈ R
2, then

y + p(x , y) = y[1− q(x , y)/x ], −x + q(x , y) = −x [1− q(x , y)/x ]

for x �= 0. Since by assumption, y + p(x , y), −x + q(x , y) must be relatively
prime, ρρ̇ = 0 cannot be valid for (x , y) ∈ R

2.
Therefore if we denote by lO the number of orthogonality lines and by lr

the number of reversibility lines of (S)1,−1 we have

(12.5) 0 ≤ lr ≤ lO ≤ n + 1. �
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Remark 12.2. Reversibility and O -symmetry are properties independent of
each other.
For instance system (6.6) is reversible with respect to the line x = 0, but for
a �= 0 it is not O -symmetric. Recall that for a2 < 2 O is a center.

Conversely the system (N.A. Saharnikov [33], C. Rousseau-D. Schlomiuk
[28])

(12.6) ẋ = y − x 3 + xy2, ẏ = −x − 7x 2y + 3y3

is O -symmetric and according to (9.3) O is a center. We have

ρρ̇ = −[x 2 + (2
√
3+ 3)y2][x 2 − (2

√
3− 3)y2]

so that there are two orthogonality lines, namely

l� : x −

�

2
√
3− 3y = 0;

l�� : x +

�

2
√
3− 3y = 0.

Since (12.6) is O -symmetric if l�, l�� were also reversibility lines they ought to
be orthogonal each other, which is not. Therefore 0 = lr < lO = 2. �

Remark 12.3. If (S)1,−1 is O -symmetric and it is reversible about a line l then
it is reversible also about the line l� orthogonal to l .

Therefore, an O -symmetric system is not reversible at all, i.e., lr = 0, or
the lines of reversibility come in pairs of orthogonal lines, i.e., lr = 2, . . . , n+1.

�

13. Geometrical classi�cation of centers. Central region.

We shall now consider some geometrical aspects of centers.
Let O be a center of a polynomial system, let �O denote the family of

cycles γ surrounding O and no other singular point and let intγ denote the
region of R

2 interior to γ .
Then

(13.1) NO =
�

γ∈�O

int γ
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is a region of R
2 whose boundary ∂NO is the �nite union of trajectories of

(S)λ,µ.
According to Poincaré ∂NO cannot be a cycle.
If ∂NO = φ , i.e., NO = R

2, O is a global center or a center of type A.
If ∂NO �= φ then ∂NO is the �nite union of connected components and we

have, a priori, the following possibilities:
O is of type B if ∂NO �= φ does not contain singular points, i.e., it is the

�nite union of open unbounded trajectories;
O is of type C if ∂NO is unbounded but it contains one singular point at

least;
O is of type D if ∂NO is bounded. �

The region
CO = NO \ {O}

will be called the central region of O . �

14. Centers of types A and B.

M. Galeotti and M. Villarini [17] extending Theorem 4.1 proved that
every polynomial system of even degree has one unbounded trajectory at least.
Therefore we have

Theorem 14.1. If O is a global center of a polynomial system of degree n then
n is odd. �

As we have seen already there exist polynomial systems of an arbitrary odd
degree for which O is a global center. Therefore it makes sense to pose

Problem 14.1. To identify all the polynomial systems (of odd degree) having a
global center.

Using the extension of (S)λ,µ to the Poincaré�s sphere, M. Sabatini [29]
gave a partial solution. �

If O is a center of type B then ∂NO is the union of k open unbounded
trajectories so that type B can be divided into subtypes Bk .

From a result of M. Galeotti [16] we have k ≤ n − 1 and examples (R.
Conti [10], [12]) show the existence of centers of type Bn−1 for each n ≥ 2.
Therefore, denoting by k(n) the maximum of k with respect to n we have

(14.1) k(n) = n − 1. �
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15. Period function. Isochronous centers. Linearization.

Let us now introduce some notion of a dynamical character.

De�nition 15.1. Let O be a center of (S)λ,µand let T (P) denote the period
of the cycle passing through P ∈ CO . The function P �→ T (P) is called the
period function associated with the center O.

De�nition 15.2. If the period function P �→ T (P) is constant for P ∈ CO we
say that O is an isochronous center. �

Studying regularity properties of the period function M. Villarini [37]
proved, in particular, the necessary condition expressed by

Theorem 15.1. If O is an isochronous center of (S)λ,µ then (S)λ,µ is nonde-
generate.

For another proof see C.J.Christopher-J. Devlin [6]. �

Theorem 15.1 accounts once more for the preference given to nondegener-
ate systems. �

A classical result due to Poincaré and Liapunov, of great theoretical im-
portance, reduces, roughly speaking, the isochronism of O to the existence of
an analytical transformation (x , y) �→ (u, v) of a certain type which linearizes
(S)1,−1, that is, sends (S)1,−1 into u̇ = v, v̇ = −u.
For a precise formulation see P. Marde�sić - C. Rousseau - B. Toni [25]. �

Another necessary condition of isochronism was proved by B. Schuman
[35], C.J. Christopher-J.Devlin [6], namely

Theorem 15.2. If O is an isochronous center of (S)1,−1 and (S)1,−1 is quasi
homogeneous then (S)1,−1 is not hamiltonian. �

If n = 2, since (Q)1,−1 is quasi homogeneous, it follows that hamiltonian
quadratic systems with an isochronous center do not exist (W.S. Loud [21]).
On the contrary, examples like the following show that hamiltonian systems of
degree n with an isochronous center do exist for n > 2.

Let m = 2, 3, . . . and consider the systems of degree 2m − 1 = 3, 5, . . .

(15.1)






ẋ = y + mxym−1 +my2m−1

m = 2, 3, . . .

ẏ = −x − ym

reducing to (9.4) for m = 2.
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Systems (15.1) are hamiltonian and either not O -symmetric for m =
2, 4, . . . or O -symmetric but not quasi homogeneous for m = 3, 5, . . .

O is a global isochronous center. In fact if (x , y) : t �→ (x(t), y(t)) is any
solution of (15.1), by differentiating ẏ = −x − ym we have ÿ = −y so that
y(t + 2π) = y(t), hence from x = −ẏ − ym , we have also x(t + 2π) = x(t).

If O is an isochronous center ∂NO cannot contain singular points. �

Therefore we have one more necessary condition for isochronism namely

Theorem 15.3. If O is an isochronous center of (S)1,−1 then O is of type B
k ,

1 ≤ k ≤ n − 1, if n is even, and of type Bk , 1 ≤ k ≤ n − 1, or of type A if n is
odd. �

Example (15.1) shows the existence of systems of any odd degree having O
as a global isochronous center. Therefore it makes sense to consider a particular
case of Problem 14.1, namely

Problem 15.1. Identify polynomial systems (S)1,−1 (of odd degree) having O
as a global isochronous center. �

16. Isochronous centers: n = 2.

Identi�cation of systems (S)1,−1 having O as an isochronous center is
part of the problem of identi�cation of systems having O as a center. This
sub-problem has been solved in full for quadratic and for O -symmetric cubic
systems. �

Let n = 2. Then we have (W.S. Loud [21], P.Marde�sić - C. Rousseau - B.
Toni [25]):

Theorem 16.1. The quadratic system (Q)1,−1 has an isochronous center at O
if and only if a linear change of coordinates x , y and a scaling of time t bring
(Q)1,−1 to one of the systems

ẋ =y(1+ x), ẏ = −x + y2(16.1)

ẋ =y(1+ x), ẏ = −x −
1

2
x 2 +

1

2
y2(16.2)

ẋ =y(1+ x), ẏ = −x +
1

4
y2(16.3)

ẋ =y(1+ x), ẏ = −x −
1

2
x 2 + 2y2. �(16.4)
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By using the method of invariants I.I. Pleshkan - K.S. Sibirskii [27]
obtained a different identi�cation of a system (Q)1,−1 with an isochronous
center at O , based directly on the coef�cients, namely

Theorem 16.2. The quadratic system (Q)1,−1 has an isochronous center at O
if and only if one of the following sets of conditions is satis�ed:

(16.5) a − l = 0, c = 0, b− m = 0, k = 0;

(16.6) a − c − l = 0, a + c = 0, b + k − m = 0, k +m = 0;

(16.7)

� 4a + 6c − l = 0, b− 6k − 4m = 0
α(α2 + γ 2) + β(β2 − 3δ2) = 0
(α2 + γ 2)γ + (3β2 − δ2)δ = 0;

(16.8)

� 4a + 10c − 3l = 0, 3b− 10k − 4m = 0
α(α2 + γ 2) − 27β(β2 − 3δ2) = 0
(α2 + γ 2)γ − 27(3β2 − δ2)δ = 0

where

α = b + k −m, β = −b + 3k +m, γ = −a + c+ l, δ = −a − 3c + l. �

17. Isochronous centers: n = 3.

Let us now consider the isochronism of the center O for a cubic nondegen-
erate O -symmetric system (C)01,−1 .

An analog of Theorem 16.1 is (R. Conti [11], P. Marde�sić - C. Rousseau -
B. Toni [25]):

Theorem 17.1. O is an isochronous center of (C)01,−1 if and only if a linear

change of coordinates x , y and scaling of time t transform (C)01,−1 into one of
the systems

ẋ =y(1+ x 2), ẏ = −x(1− y2)(17.1)

ẋ =y(1− 3x 2 + y2), ẏ = −x(1− x 2 + 3y2)(17.2)

ẋ =y(1+ 9x 2 − 2y2), ẏ = −x(1− 3y2)(17.3)

ẋ =y(1− 9x 2 + 2y2), ẏ = −x(1+ 3y2).(17.4)
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�

An analog of Theorem 16.2 is (I.I. Pleshkan [26]):

Theorem 17.2. O is an isochronous center of (C)01,−1 if and only if one of the
following sets of conditions is satis�ed:

(17.5)

�
A + C = 0, A − L = 0, A + N = 0
B − M = 0, D = 0, K = 0

(17.6)

�
3A + C = 0, 3A − L = 0, A + N = 0
B + 3D = 0, B + 3K = 0, B − M = 0

(17.7)






3A + L + C + 3N = 0, 9A − 5L + 5C − 9N = 0
B + 3D − 3K − M = 0, B + 6D + 6K + M = 0
(3A + 7N)(7A + 3N) − 100DK = 0
(A + N)[(3A + L)2 − (B + M)2]−

−2(3A + L)(B + M)(D − K ) = 0.

�

Notice that each one of the conditions (17.5), (17.6), (17.7) is a particular case
of (9.2). Therefore if (9.3) hold then the center O is non isochronous.

�

Non O -symmetric nondegenerate cubic systems (C)1,−1 with center at O are
not yet identi�ed.

In spite of that there are subclasses of such systems with an isochronous
center at O which have been identi�ed. We refer to Kukles systems (9.5) (C.J.
Christopher - J. Devlin [6]) and to systems with �degenerate in�nity�, i.e.,
systems whose Poincaré sphere has the equator �lled with singular points (J.
Chavarriga - M. Sabatini [5]). �

18. Isochronous centers. Cauchy-Riemann systems. Commutativity.

A suf�cient condition for isochronism of a center of (S) is given by (N.A.
Lukashevich [22], I.I. Pleshkan [26]):

Theorem 18.1. Let O be a center of (1.1). Then O is isochronous if P(x , y)
and Q(x , y) satisfy the Cauchy-Riemann equations

(18.1) Px(x , y) − Qy(x , y) = 0, Py(x , y) + Qx(x , y) = 0. �
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Notice that such systems cannot be Hamiltonian. �

For (Q)1,−1 (18.1) are equivalent to (16.6), for (C)1,−1 to (17.6). �

Equations (18.1) can be interpreted as a property of commutativity (M.
Villarini [38]). We say that

(S) ẋ = P(x , y), ẏ = Q(x , y)

and

(T ) ẋ = R(x , y), ẏ = S(x , y)

commute if

(18.2) RPx + SPy − PRx − QRy = 0, RQx + SQy − PSx − QSy = 0.

If R = Q, S = −P we say that (S) and

(S⊥) ẋ = Q(x , y), ẏ = −P(x , y)

are orthogonal each other.
Then (18.2) become

Q(Px − Qy) − P(Py + Qx) = 0, Q(Py + Qx) − P(Px − Qy) = 0

so that (18.1) means that the two systems (S), (S⊥) commute.
Starting from this remark, M. Villarini [38] extended Theorem 8.1 as follows.

Two systems (S) and (T ), of degrees n and m, are said to be transversal
each other if

P(x , y)S(x, y)− Q(x , y)R(x , y) �= 0

for all (x , y) which are not singular points for both (S) and (T ).
For instance (S) and (S⊥) are obviously transversal each other.
We then have

Theorem 18.2. Let (S) commute with some transversal system. Then O is an
isochronous center of (S). �

The invertibility of this result has been studied in detail by M. Sabatini
[30], [31] and it is still a source of research. �
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19. Uniform isochronism.

Let λ = 1, µ = −1 so that O is a center or a focus. In both cases the
trajectories close to O wind around O so we can denote by T (P) the time it
takes to the trajectory γp to make a complete turn around O .

When O is a center P �→ T (P) is the period function already de�ned.
If O is a focus then (V.I. �Cemodanov [4]) if P �→ T (P) is constant the

angular velocity θ̇ of the ray OP is constant. This is no longer true when O is
a center, so we have (R. Conti [12])

De�nition 19.1. When O is a center of (S)1,−1 and θ̇ is constant we shall say
that O is a uniformly isochronous center. �

Since
θ̇ = −1+ S(ρ, θ), lim

ρ→0
S(ρ, θ) = 0

θ̇ is constant if and only if θ̇ = −1, which, in turn, is equivalent to the fact that
(S)1,−1 becomes

(19.1) ẋ = y + x R(x , y), ẏ = −x + yR(x , y),

where R(x , y) is a polynomial of degree n − 1, R(0, 0) = 0. �

It can be proved (R. Conti [12])

Theorem 19.1. If O is a uniformly isochronous center of (S)1,−1 then O is a
center of type Bk , 1 ≤ k ≤ n − 1.

This represents a contribution to solving Problem 14.1. �

The following example shows that contrary to the center a focus which is
�uniformly isochronous� can be a �global� one.

Let, for instance,

ẋ = y − x(x 2 + y2), ẏ = −x − y(x 2 + y2).

Then ρ̇ = −ρ3, θ̇ = −1, hence

ρ2(θ) = [r−2 − 2θ ]−1, r2 = ρ2(0), θ < r−2/2,

so that R2 \ {0} is entirely covered by spirals, i.e., O is a �global� focus. �

Let O be uniformly isochronous, center or focus. Let

(19.2) R(x , y) =

n−1�

1
ν
Rν(x , y)
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(19.3) Rν(x , y) =
�

j+l=ν

rj,l x
j yl, 1 ≤ ν ≤ n − 1.

Then from (19.1) we have

(19.4) ρ̇ =

n−1�

1
ν
ρν+1

�

j+l=ν

rj,l cos
j θ sinl θ.

From this, if R(x , y) is homogeneous, i.e., (19.1) is quasi homogeneous, we
have (R. Conti [12])

Theorem 19.2. If (19.1) is quasi homogeneous, i.e., R(x , y) = Rn−1(x , y),
then O is a uniformly isochronous center if either n is even, or n is odd and

(19.5)

n−1�

0
ν
rn−1−ν,ν

� 2π

0

cosn−1−ν θ sinν θ dθ = 0. �

For n = 3 we have that O is a uniformly isochronous center or focus for
(C)1,−1 , O -symmetric or not, if and only if (16.5) and (17.5) hold.

An identi�cation of systems (C)1,−1 with a uniformly isochronous center
is provided by (C.B. Collins [8])

Theorem 19.3. O is a uniformly isochronous center of (C)1,−1 if and only if
(16.5), (17.5) hold and, in addition, we have

(19.6) A + C = 0

(19.7) a2A + abB + b2C = 0. �

For n odd we propose

Problem 19.1. Identify systems (19.1) of odd degree which are O-symmetric
(not necessarily quasi homogeneous) having O as a (uniformly isochronous)
center. �
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20. More about the period function.

Let O be a center of the polynomial system (S)λ,µ. When O is non
isochronous it is of interest to study the period function P �→ T (P), P ∈ CO =
NO \ {O}. �

First of all it can be shown (see M. Villarini [37]) that there are two
possibilities, namely, either

(20.1) lim
P→0

T (P) = +∞

or

(20.2) lim
P→0

T (P) < +∞.

In particular, (20.2) holds if P �→ T (P) is bounded on CO .
If P �→ T (P) is bounded then ∂NO cannot contain singular points, i.e., O is
global or of type Bk .
Also, if P �→ T (P) is bounded, O is not necessarily isochronous, as it is shown,
for instance, by the two following examples.

According to (8.5) O is a center of

ẋ = y + xy, ẏ = −x +
1

2
y2

O is of type B1, NO is the half plane x + 1 > 0, ∂NO is the line x + 1 = 0.
It takes a �nite time for (x(t), y(t)) to traverse the line ∂NO so P �→ T (P) is
bounded. Nevertheless, none of the conditions of Theorem 16.2 is satis�ed so
O is not isochronous.

Next, O is a global non isochronous center of

ẋ = y, ẏ = −x − x 3.

However P �→ T (P) is bounded. In fact the trajectories can be represented as
the graphs of θ → ρ(θ) satisfying

dρ

dθ
=

ρ3 cos3 θ sin θ

1+ ρ2 cos4 θ
.

It follows that the period of θ �→ ρ(θ) is
� 2π

0

dθ

1+ ρ2(θ) cos4 θ
< 2π.

What precedes suggests

Problem 20.1. Identify centers of (S)λ,µ whose period function is bounded.
�
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21. Centers of types C and D.

We shall now brie�y consider polynomial systems (S)λ,µ with a center O
and ∂NO containing one singular point S at least. S is necessarily the limit
point of a �nite number of open half trajectories ⊂ ∂NO .

As examples show S can be the limit point also of half trajectories not
contained in ∂NO , �nite in number or not.
In particular S can be a saddle point. �

Let O be a center of type C . The set ∂NO consists of k unbounded
connected components and type C can be distinguished into subtypes Ck ,
according to the value of k.

Denoting by k(n) the maximum of k for each n ≥ 2 we have (M. Galeotti
[16])

(21.1) k(n) ≤ n − 1, n ≥ 2.

Thus we can pose

Problem 21.1. Establish whether (21.1) can be improved by

(21.2) k(n) = n − 1, n ≥ 2.

Examples show that (21.2) is true for n = 2, 3. �

Let n = 2. If O is a center of type C then the region NO is the interior of
a convex angle whose vertex is a tangential limit point S .
S is non elementary if NO is an open half plane, it is a saddle point otherwise.
This case includes the so called Volterra-Lotka systems. �

When n > 2 a further distinction among systems with a center of type Ck

occurs by considering the total number σ of singular points belonging to ∂NO

and the total number ω of open trajectories contained in ∂NO , so that we have
systems of subtypes Ckσ,ω .
A detailed description of such systems (following the solution of Problem 1.1)
may be of interest, at least for n = 3. �

Also centers of (S)λ,µ of type D, i.e., with a bounded NO can be divided
into subtypes Dσ,ω .

For n = 2 we have σ = ω = 1, 2, 3 (see M. Frommer [15], R. Conti [9]).
For n > 2 a full description of subtypes Dσ,ω does not exist, even for n = 3.

�
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