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A COVARIANT AND EXTENDED APPROACH TO

SOME PHYSICAL PROBLEMS WITH

CONSTRAINED FIELD VARIABLES

SEBASTIANO PENNISI

Many physical problems are described by means of systems S of partial
differential equations, whose �eld variables u are restricted by relations of
the type �I (u) = 0. Some examples, to this regard, are the ultrarelativistic
gases studied in the framework of Extended Thermodynamics, the relativistic
magneto�uiddynamics and the Maxwell Equations in the relativistic form.
Here a general method is proposed to deal with problems of this kind; in
particular, a new system S� is proposed in the independent variables u , ψR

which are not restricted. Moreover, the solutions of S� with �I (u) = 0, ψR =

0, are the same of the original system S . The new system S� is expressed in
the covariant form and is hyperbolic, under the assumption that the original
system S satis�es these properties; �I (u) = 0, ψR = 0 are satis�ed as
consequences of S� and of the intial conditions. The new variables ψR are
only auxiliary quantities.

1. Introduction.

Let us consider the physical problems which are described by means of a
quasi-linear system of partial differential equations of the type

(1)

N�

j=1

Aα
i j (u)∂αuj = fi (u)
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for i = 1, 2, . . . , n and in the N variables u1, . . . , uN .
When the variables u are independent and n = N , this system is un-constrained,
and its hyperbolicity is easily de�ned as follows.

De�nition 1. The system (1) is hyperbolic ([3], [4]) in the time-direction tα

(such tα tα = −1) if and only if
1) det(Aα

i j tα) �= 0;
2) for any four-vector nα such that nα tα = 0, nαnα = 1, the eigenvalue

problem
N�

j=1

Aα
i j (nα − λtα)δuj = 0 has real eigenvalues λ and N linearly

independent l.i eigenvectors δuj .

We notice that the �rst of these conditions is equivalent to the following one

1�) the system tα
N�

j=1

Aα
i j (u)δuj = 0, in the independent unknowns δuj , has

only the solution δuj = 0.
However, in some physical problems, the N variables u are not independent,
but constrained by M relations of the type

(2) �I (u) = 0 for I = 1, . . . , M,

where the functions �I are differentiable with respect to u , expressed in
covariant form, and functionally independent, i.e. the rectangular matrix

∂�I

∂uj
I = 1, . . . , M; j = 1, . . . , N

has rank M . In this way there remain N − M independent variables.
If n = N − M , the above de�nition can be easily extended and becomes

De�nition 2. The system (1) under the constraints (2) is hyperbolic in the time-
direction tα if and only if

1) the system tα
N�

j=1

Aα
i j (u)δuj = 0,

N�

j=1

∂�I

∂uj
δuj = 0, in the independent

unknowns δuj , has only the solution δuj = 0;
2) the problem

(nα − λtα)

N�

j=1

Aα
i j (u)δuj = 0,

N�

j=1

∂�I

∂uj

δuj = 0,

in the independent unknowns δuj , has real eigenvalues λ and N 1.i
eigenvectors δuj .
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In fact, if we choose N − M parameters qh such that uj = uj (qh) is the general
solution of the constraints (2), the De�nition 2 is exactly the De�nition 1 written
in the N − M un-constrained variables qh . This approach has been widely used
in literature; see, for example, ref. [7] where the independent variables are n
(partile density), e (energy density), π (dinamic pressure), Uα (4-velocity), qα

(heat �ux), t �αβ� (stress deviator), constrained by

UαUα = −1, qαUα = 0, t �αβ�Uα = 0, t �αβ�gαβ = 0,

with gαβ the metric tensor.
Finally, if n > N − M , we have also n − (N − M) differential constraints.
In this case we may conceive the idea of taking only N − M equations from
the system (1) and hoping that this reduced system is hyperbolic, according to
De�nition 2; more generally, we may take N − M linear combinations of the
equations of system (1), or, equivalently, we may multiply it on the left by a
(N −M)Xn matrix Zki . In order not to lose manifest covariance, we may allow
the matrix Zki to have more than N − M rows, but to have rank N − M ; in this
way the supplementary equations are only linear combinations of the others.
Therefore, the following de�nition of hyperbolicity, for this constrained system,
is proposed:

De�nition 3. The system (1) under the constraints (2) is hyperbolic in the time-
direction tα if and only if an mXn matrix Zki exists, such that,
1) Zki has rank N − M;

2) the system tα
n�

i=1

N�

j=1

Zki A
α
i j (u)δuj = 0,

N�

j=1

∂�I

∂uj
δuj = 0, in the indepen-

dent unknowns δuj , has only the solutions δuj = 0;
3) the problem

(nα − λtα)

n�

i=1

N�

j=1

Zki A
α
i j (u)δuj = 0,

N�

j=1

∂�I

∂uj
δuj = 0,

in the independent unknowns δuj , has real eigenvalues λ and N l.i eigen-
vectors δuj .

If the system (1) is expressed in covariant form, also the matrix Zki must be
covariant, to preserve this property.
Obviously, we may substitute the system (1) with

(3)

n�

i=1

N�

j=1

Zki A
α
i j (u)∂αuj =

n�

i=1

Zki fi (u),
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and apply to it the De�nition 2.

I remark that this arguments are inspired by the elegant Strumia�s papers on this
subject ([10], [11], [12]), altough the de�nition in this article is less restrictive
than Strumia�s one, as it will be seen in section 2. Also in this section, a method
will be shown to �nd the matrix Zki .

The above de�nition of hyperbolicity for a constrained system appears a little
complicated. To eliminate this drawback I propose a method based on the ideas
of extended thermodynamics ([6], [7]) to introduce other independent variables
ψR and to �nd a new system of equations that for ψR = 0 reduces to (1);
moreover this new system has the same number of equations and of independent
variables, it is hyperbolic if and only if the system (1) is hyperbolic, it gives
ψR = 0 if we impose ψR = 0 only on a given time-like initial hypersurface, it
is expressed in covariant form. These results will be obtained in Section 3 and
are expressed by the system (17).

Another idea is that of searching a new system with a less number of auxiliary
variables ψR than in (17), and without the constraints (2); this idea is realized
in Section 4 and the new system is expressed by (24).

All these results depend on the time-like congruence tα that has been initially
chosen. This problem is investigated in Section 5, under the assumption that the
system (1) is hyperbolic in the direction tα and the characteristic velocities do
not exceed the speed of light.

Physical examples of application of this methodology are also considered in this
paper; they are the equations of Extended Thermodynamics for ultra-relativistic
gases (see in Section 2), those of relativistic �uiddynamics (see in Section 4
from eq. (30) to eq. (32)), those of relativistic magneto�uiddynamics (see in
Section 3 from eq. (21) and Section 4, eq. (29)), those of covariant Maxwell
electro-dynamics (see in Section 4 from eq. (33)).

It is also shown, in Section 2 from eq. (13), that the Einstein�s equations in
empty space are not hyperbolic.

2. A method to �nd the matrix Zki .

If system (1) is hyperbolic, it can be written in the form (3) which makes
more easy to �nd the associated eigenvalues and eigenvectors. The problem
now arises on how to �nd the matrix Zki . To this end, the following 4 steps can
be accomplished.

Step 1) Let us consider the system δ�I = 0, of M linearly independent
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equations in the N unknowns δuj , i.e.,

(4)

N�

j=1

∂�I

∂uj
δuj = 0,

which is a consequence of the constraints (2); it gives δuj as a linear combina-
tion of N−M free unknowns. Another possibility, useful in order not to lose the
covariance, is to obtain δuj as a linear combination of p free unknowns, with
p ≥ N −M , but by means of functions which are not functionally independent.
More precisely, we may �nd

(5) δuj = Uj j � (u)Vj �, ∀Vj � ,

with Uj j � a matrix of rank N − M .
For the applications it is useful to notice that Uj j � is the matrix whose j -th row
is the derivative of δuj in equation (5), with respect to Vj � . This matrix is such
that

(6)

N�

j=1

∂�I

∂uj

Uj j � = 0.

The practical meaning of this step is that the variables contribute to the equa-
tions, only by means of their projections onto the subspace tangential to the
variety (2).

Step 2) Let us consider the matrix tα
N�

j=1

Aα
i jUj j � ; it has rank N − M , as proved

in appendix 1. For the applications, we notice that its i-th row is the derivative

with respect to Vj � of the expression tα
N�

j=1

Aα
i j δuj , after having substituted δuj

from equation (5).
After that, let us consider the system with this matrix of the coef�cients and
contracted on the left by the unknowns Xi ,

(7)

n�

i=1

Xi tα

N�

j=1

Aα
i jUj j � = 0.

I gives Xi as a linear combination of n−(N−M) free unknowns. Alternatively,
we may �nd Xi as a linear combination of q free unknowns, with q ≥
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n− (N −M), but by means of functionally dependent functions; this possibility
is used in order not to lose the covariance. More precisely, we may �nd

(8) Xi =

q�

i �=1

Xi � Xi � i ∀X i � ,

where the qXn matrix Xi � i has rank n − (N − M).
(Note that Xi � i is the matrix whose i-th coulumn is the derivative of Xi in
equation (8) with respect to Xi �).
This matrix is such that the following relation holds

(9)

n�

i=1

Xi � i tα

N�

j=1

Aα
i jUj j � = 0.

The practical meaning of this matrix is that it allows to separate the differential
constraints from the other equations.
Step 3) Let us consider the system

(10)

n�

k=1

Xi �kYk = 0;

it gives

(11) Yk =

n�

i=1

Yki Y i , ∀Y i (free unknowns),

where Yki is a n × n matrix having rank N − M . Obviously, it is such that

(12)

n�

k=1

Xi �kYki = 0.

Here too, the k-th row of Yki is the derivative of Yk in eq. (11) with respect to
Y i . The practical meaning of multiplyng the original system on the left by Yki is
that of projecting it onto the subspace ortogonal to Xi � i ; in this way, the constant
(9) on the evolutive part of the equations becomes now a constraint also on its
spatial part.
Step 4) The matrix Zki is sum of Yki and of a suitable solution of the system (9),
i.e., the parameters µki , exist such that

Zki = Yki +

n�

i �=1

µki , Xi �i .
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Obviously, the parameters µki � must be such that the above mentioned properties
of thematrix Zki , are preserved. The second term, in the expression of Zki , takes
account of the fact that the differential constraints may still play a role, before
to be neglected.
Having completed the description of these 4 step, let us prove the last of the

them. The 2n × n matrix

�
Yi � i
X i � i

�

has rank n (see Appendix 2); therefore the

parameters λki � , µki � exist such that Zki =
n�

i �=1

(λki �Yi � i + µki � Xi � i ); from this it

follows

tα

n�

i=1

N�

j=1

Zki A
α
i j δuj = tα

n�

i �=1

n�

i=1

N�

j=1

λki �Yi � i A
α
i j δuj ,

where (9) has been used and also the fact that δuj is a linear combination
of Uj j � . If we impose now the condition 2) of De�nition 3, we obtain that

tα
n�

i �=1

n�

i=1

N�

j=1

λki �Yi � i A
α
i j

∂uj

∂qh
δqh = 0 has only the solution δqh = 0; this

fact proves that the matrix tα
n�

i �=1

n�

i=1

N�

j=1

λki �Yi � i A
α
i j

∂uj

∂qh
has rank N − M and,

consequently,
n�

i �=1

λki �Yi � i has rank N − M (see Appendix 3).

In this way we see that
n�

i �=1

λki �Yi � i is also a solution of system (12) and has

rank N −M , i.e.,
n�

i �=1

λki �Yi � i satis�es the same properties of Yki ; by substituting

n�

i �=1

λki �Yi � i with Yki we obtain Zki = Yki +
n�

i �=1

µki � Xi � i .

Therefore Zki is determined except for µki � ; from equation (8), we see that Zki is

the sum of Yki and of a particular solution of the system
n�

i=1

Xitα
N�

j=1

Aα
i jUj j � = 0.

Let us introduce now some notes.

Note 1: We notice that the De�nition 2 is less restrictive that Strumia�s one [10];
in fact he considers only the case n = N and imposes the further condition that
the matrix Zki is the projector onto the subspace generated by the 1.i. columns
of Uj j � .

Note 2: If system (1) is hyperbolic and δuj is a solution of the system

tα
N�

j=1

Aα
i j (u)δuj = 0,

N�

j=1

∂�I

∂uj
δuj = 0, then δuj satis�es also the system
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considered in condition 2) of De�nition 2; therefore we have δuj = 0.
This note can be used to show that Einstein�s equations in empty space are not
hyperbolic. These equations are ([10], [2], [5]):

(13) ∂α�α
µν − ∂µ�λ

νλ + �λ
µν�

ρ
λρ − �

ρ
µλ�

λ
νρ = 0

with �α
µν = gαρ(∂νgρµ + ∂µgρν − ∂ρgµν)/2 (Christoffel symbol).

They constitute a second order system of ten equations for the unknown sym-
metric tensor gρµ .
By de�ning ωαµν = ∂αgµν , it can be reduced to the �rst order system

(14)






∂α[g
αρ(ωνρµ + ωµρν − ωρµν) − δα

µg
λρωνρλ] = Wµν(gαδ, ωβγ δ)

∂α(δα
βgµν) = ωβµν

(δα
σ δβ

τ − δα
τ δβ

σ )∂αωβµν = 0

in the 50 unknowns gµν, ωβµν .
We have I = 0 and Uj j � = δj j � , because there is no constraint on the
independent variables. However, the condition on note 3, which is necessary
for the hyperbolicity of the system (14) is not satis�ed. In fact, in this case, the
system in note 2 is

(15)






tαδ[g
αρ(ωνρµ + ωµρν − ωρµν) − δα

µg
λρωνρλ] = 0

tα(δ
α
βgµν) = 0

(δα
σ δβ

τ − δα
τ δβ

σ )tαδωβµν = 0.

Its general solution is

δgµν = 0, δωτµν = tτ (tµVν + tνVµ + tµtν t
λVλ),

with Vµ an arbitrary four-vector. Therefore this system has solutions different
from δuj = 0, i.e., the Einstein�s equations in empty space are not hyperbolic.
I conclude this section by illustrating the above 4 steps in the case of Extended
Thermodynamic of an ultrarelativistic gas. This problem is described by the
equations

�
∂α V α = 0
∂α T αβ = 0
∂α Aαβγ = Iβγ ,

where the independent variables are V µ (particle number-particle �ux vector),
T λν (stress-energy-momentum tensor), constrained by � = 0, with � = T λ

λ .
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Moreover, in the case of a non degenerate gas, we have

Aαβγ = (4/3)n−1e2(2UαUβU γ + g(αβU γ ))+

+2(e/n)(g(αβqγ ) + 6U (αUβqγ )) + 6(e/n)t (�αβ�U γ ),

Iβγ = B3t
�βγ � + 2B4q

(βU γ ),

n = (−VβV
β)1/2,Uα = n−1V α,

hαβ = gαβ + UαUβ, t �αβ� = (hα
µh

β
ν − 1/3hαβhµν)T

µν,

qα = −hα
µUνT

µν, e = UµUνT
µν.

An arbitrary single variable function A, which appears in the �rst version of
these equations, has been dropped because it does not appear in other versions
based on the kinetic theory.
For the sake of simplicity, let us take tα = Uα .

Step 1) The system (4) is gαβδTαβ = 0, whose solution is δT λν = (g(λ
ϕ gν)

ρ −

1/4gλνgϕρ)W
ϕρ ; therefore, the requested matrix Uj j � is

Uj j � =

�
g

µ
δ 0
0 g(λ

ϕg
ν)
ρ − 1/4gλνgϕρ

�

, whose rank is 9.

(The index j is described by µλν , while j � is described by δϕρ).

Step 2) For the sake of simplicity, let us aim to hyperbolicity holding in a neigh-
bourhood of thermodinamical equilibrium; in this case we may calculate the

coef�cients of ∂αV
µ, ∂αT

λν at equilibrium. The resulting matrix Uα

N�

j=1

Aα
i jUj j �

is 


Uδ 0
0 U(ϕg

β

ρ) − 1/4Uβgϕρ

A
βγ

δ A
Bγ
ϕρ



 ,

with A
βγ

δ = −(4/9)e2n−2[(hβγ + 3UβU γ )Uδ − 10h(β
δU

γ )],

Aβγ
ϕρ = (2/3)(e/n)[−4(gβγ + 4/3UβU γ )(UϕUρ + 1/4gϕρ) +

+ 10U (βh
γ )

(ϕUρ) + hϕρh
βγ − 3h

β

(ϕh
γ

ρ)].

The system (7) is

XUδ + Xβγ (8/9)e2n−2[−2UβU γUδ + 5h
β
δU

γ ] = 0,

Xβ[(U(ϕg
β

ρ) − 1/4Uβgϕρ]+ Xβγ (2/9)en−1[−16UβU γ (UϕUρ +

+ 1/4gϕρ) + 3(hϕρU
βU γ − 3hγ

ϕh
β
ρ )] = 0,
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where the relation h
β

δ XβγU
γ = 0 (which comes from the �rst of these equa-

tions, contracted with hδ
δ� ) has been used. Moreover, Xβγ is a symmetric and

traceless tensor.
The above system has the solution

X = (16/3)e2n−2X , Xβ = (32/3)en−1XUβ ,

Xβγ =X (gβγ + 4UβUγ ). Consequently, the matrix Xii � is (i � = 1)

((16/3)e2n−2, (32/3)en−1Uβ , (gβγ + 4UβUγ )).

Step 3) We have to consider now the system

(16/3)e2n−2Y + (32/3)en−1UβY
β + (gβγ + 4UβUγ )Y βγ = 0, gβγY

βγ = 0.

To �nd a covariant solution to this system, we notice that Y1, Y2, Y
λν
exist such

that

Y βγ = Y1g
βγ + Y2U

βU γ + (1/3)[3g
β
λg

γ
ν − (gλν + UλUν)g

βγ +

− (4UλUν + gλν)U
βU γ ]Y

λν
;

(In fact Y1, Y2 can be found by contracting this expression with gβγ +

UβUγ , (1/3)(gβγ + 4UβUγ ) respectively; after that Y
λν

= Y βγ is a possible

choice for Y
λν
). By using this expression the above equations become condi-

tions which give Y, Y β , Y1, Y2; the result is

Y = Y , Y β = g
β

λY
λ
,

Y βγ = −(4/9)en−2(eY + 2nUλY
λ
)(gβγ + 4UβU γ ) +

+ (1/3)[3g
β

λg
γ
ν − (gλν + UλUν)g

βγ − (4UλUν + gλν )U
βU γ ]Y

λν
;

after that, we see that the matrix Yki is




1 0 0
0 g

β �

β 0

eCβ �γ �

2nCβ �γ �

Uβ C
β �γ �

βγ





where Cβ �γ �

= −(4/9)en−2(4Uβ �

U γ �

+ gβ �γ �

),

C
β �γ �

βγ = g
β �

β gγ �

γ − (1/3)gβγ g
β �γ �

− (1/3)UβUγ g
β �γ �

+

− (1/3)Uβ �

U γ �

gβγ − (4/3)UβUγU
β �

U γ �

.
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Step 4) If we take µki � = 0, we obtain Zki = Yki and the De�nition 2 is satis�ed,
as it can be easily seen. For the sake of brevity, I avoid to report the proof of
this statement. I simply note that the system multiplied on the left by Zki give
3 equations; if we add to the third one of them the �rst one, premultiplied by
eCβ �γ �

, and the second one, premultiplied by 2nCβ �γ �

Uβ , we obtain






∂α V α = 0
∂α T αβ = 0
∂α Aαβ �γ �

− (1/3)(gβ �γ �

+ 4Uβ �

U γ �

)UβUγ ∂αA
αβγ = Iβ �γ �

,

where the identities gβγ A
αβγ = 0, UβUγ I

βγ = 0, gβγ I
βγ = 0, have been

used. This system is the conterpart of (3), for this particular case.

3. An extended approach to systems with constrained �eld.

In this section a new system is searched, in the variables u, �R (auxiliary
quantities), which for �R = 0 reduces to system (1); if (1) is hyperbolic, then
also the new system is hyperbolic.
To this end, let T R

k be n − (N − M) l.i. solutions of the system

(16) TkZki = 0,

expressed in covariant form and let ωα be a four-vectorial function such that
tαωα �= 0 (for example we may choose ωα = tα ).
Let us consider the system

(17)

n�

i=1

N�

j=1

Zki A
α
i j (u)∂αuj +

n−(N−M)�

R=1

ωαT R
k ∂α�R =

n�

i=1

Zki fi (u)

in the variables uj , �R constrained by �(u) = 0, so that we have N − M +

[n − (N − M)] = n independent variables.
This system has the advantage to have an equal number of equations and of
independent variables; when �R = 0 it reduces to system (10), which is
equivalent to system (1) except for some conditions to be imposed in the initial
manyfold (see the previous section).
Moreover we prove that
1) the system (17) is hyperbolic if this property is satis�ed by the system (1),
2) if �R = 0 on an intial hypersurface � , then �R = 0 will propagate off � .
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In fact the system (17) is equivalent to

(18)

n�

i=1

N�

j=1

Zki A
α
i j

∂uj

∂qh
∂αqh +

n−(N−M)�

R=1

ωαT R
k ∂αψR =

n�

i=1

Zki fi .

Condition 1) of De�nition 1 is equivalent to impose that the system

(19) tα

n�

i=1

N�

j=1

Zki A
α
i j

∂uj

∂qh
δqh +

n−(N−M)�

R=1

tαω
αT R

k δψR = 0

has only the solution δqh = δψR = 0.

If we multiply eq. (19) by T S
k , we obtain

n−(N−M)�

R=1

tαω
αT S

k T
R
k δψR = 0, from

which δψR = 0 because T R
k are l.i.; after that, the system (19) gives δqh = 0

because the system (1) is hyperbolic and condition 2) of De�nition 3 is satis�ed.
Let us now see that the system (18) satis�es also the condition 2) of De�nition
1. To this end, let δqk , for k = 1, . . . , N − M , be N − M l.i. solutions of the
condition 2) in De�nition 2, corresponding to the eigenvalue λk ; let δψR be the
vector of components δψRP = δRP .
The vectors (δqk, 0R) and (0k, δψP) are n l.i. eigenvectors of the system (18),
corresponding to the eigenvalues λk and λ� = (nαω

α)/(tαωα), respectively. In
fact they satisfy the system

(nα − λtα)
� n�

i=1

N�

j=1

Zki A
α
i j

∂uj

∂qh
δqh +

n−(N−M)�

R=1

ωαT R
k δψR

�
= 0.

In this way we have proved that the system (17) is hyperbolic. Let us prove now
the statement 2). To this end, we multiply the system (17) by T S

k , obtaining that

n−(N−M)�

R=1

T S
k T

R
k ωα∂αψR = 0, i.e., ωα∂αψR = 0;

this relation can be written also as

(20) tα∂αψR = (tµωµ)−1ωγ h
γα∂αψR,

with hγα = gγα + tγ tα .
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If ψR = 0 on the initial hypersurface � (from which hγα∂αψR = 0 also holds
in �), we see from eq. (20) that ψR = 0 holds also off � , as we desired to
prove.
Let us now apply thismethdology to a particular physical problem, the equations
of relativisticmagneto�uiddynamics. These equations are the conservation laws
of mass and energy-momentum and the maxwell�s equations, i.e.,

�
∂α(nu

α) = 0
∂α[(e + p + b2)uαuβ + (p + b2/2)gαβ − bαbβ] = 0
∂α(u

αbβ − bαuβ) = 0

in the variables e (total energy-density), V α, bα (related to the electromagnetic
�eld), constrained by Vαb

α = 0. Moreover, we have n = (−V γ Vγ )−1/2 (rest-
mass density), uα = n−1V α (four-velocity), p = p(n, e).
Hyperbolicity of this system has already been proved, for example in refs. ([10],
[11],[9], [1], [8]). By appliying the present methodology, with tα = uα, ωα =

uα , we obtain that n = 9, N = 9, M = 1,

Uj j � =

�
1 0γ 0γ

0γ gγ δ 0γ δ

0γ n−1bδuγ hγ δ

�

; Xi �i =

�
0 0β uβ

0γ 0γβ 0γβ

0γ 0γβ 0γβ

�

;

Ykj =

�
1 0β 0β

0λ gλβ 0λβ

0λ 0λβ hλβ

�

; µki � =

�
0 0γ 0γ

bλ 0λγ 0λγ

0λ 0λγ 0λγ

�

;

Zkj =

�
1 0β 0β

0λ gλβ bλuβ

0λ 0λβ hλβ

�

; T 1
k =

�
1
0λ

uλ

�

.

Consequently, the system (17), in this case, is

(22)






∂α(nu
α) = 0

∂α[(e + p + b2)uαuλ + (p + b2/2)gαλ−

−bαbλ] + uγ bλ∂α(u
αbγ − bαuγ ) = 0

hβγ ∂α(u
αbβ − bαuβ) + uλuα∂αψ = 0.

Obviously, the system (22) in the unknowns e, V α, bα, ψ constrained by
Vαb

α = 0 is hyperbolic, is expressed in covariant form and has an equal number
of equations and of independent variables.
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4. A new form for the system (17).

Let us consider �rstly the case n ≥ N (from which n − (N − M) ≥ M
holds), which I call case a. The system (17) in the independent variables
q1, . . . , qN−M , ψ1, . . . , ψM, ψM+1, . . . , ψn−(N−M) is hyperbolic. There are M

columns of the matrix
∂�I

∂uj
, which are l.i.; we can suppose, without loss of

generality, that they are the last M columns, i.e., that the matrix

∂�I

∂uj

for j = N − M + 1, . . . , N has rank M.

Therefore we can take q1 = u1, . . . , qN−M = uN−M and the system (17) in
the independent variables u1, . . . , uN−M , ψ1, . . . , ψM, ψM+1, . . . ψn−(N−M) is
hyperbolic. Let us consider the invertible change of variables, expressing the
above ones in terms of u1, . . . , uN−M , uN−M+1, . . . , uN , ψM+1, . . . , ψn−(N−M) ,
by means of the transformation law

(23) �I (u) = ψI for I = 1, 2, . . . , M.

In other words, we are obtaining uN−M+1, . . . , uN as functions of the previous
variables, from eq. (23).
Obviously, the system (17), expressed in terms of the new variables, is still
hyperbolic. By using eq. (23) it becomes

n�

i=1

N�

j=1

Zki A
α
i j ∂αuj +

M�

R=1

ωαT R
k ∂α�R(u) +(24)

+

n−(N−M)�

R=M+1

ωαT R
k ∂αψR =

n�

i=1

Zki fi .

This new form for the system (17) has the advantage to have an equal number
of equations and of independent variables; these last ones are u , ψM+1, . . .,
ψn−(N−M) and are not constrained.
However, if we impose that �I (u) = 0, ψM+1 = 0, . . . , ψn−(N−M) = 0 hold on
the initial manifold, they will be satis�ed also off it.
Let us consider now the case n < N (from which n − (N − M) < M holds),
which I call case b.

There are M columns of the matrix
∂�I

∂uj
, which are l.i.; we can suppose,

without loss of generality, that they are the last M columns, i.e., that the matrix
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M∗ =
∂�I
∂uj

for j = N − M + 1, . . . , N , has rank M . If we use the Laplace�s

rule to calculate detM∗ �= 0, we see that we can exchange some columns of

M∗ such that M∗ becomes

�
M∗

11 M∗
12

M∗
21 M∗22

�

with M∗
11 of order n − (N − M),

M∗
22 of order N − n and moreover det M∗

11 �= 0, det M∗
22 �= 0. In other words,

by exchanging the names of some uj , we obrtain that
∂�I

∂uj
takes the form






∂�I �

∂uj �

∂�I �

∂uj ��

∂�I �

∂uj ���

∂�I ��

∂uj �

∂�I ��

∂uj ��

∂�I ���

∂uj ���






for I � = 1, . . . , n − (N − M); I �� = n − (N − M) + 1, . . . , M ;

j � = 1, . . . , N − M; j �� = N − M + 1, . . . , n; j ��� = n + 1, . . . , N

and we have

(25) det
� ∂�I �

∂uj ��

�
�= 0; det

� ∂�I ��

∂uj ���

�
�= 0;

det






∂�I �

∂uj ��

∂�I ��

∂uj ���

∂�I ��

∂uj ��

∂�I ��

∂uj ���




 �= 0.

From (25)3 we see that we can take q1 = u1, . . . , qN−M = uN−M and the
system (17) in the independent variables u1, . . . , uN−M , ψ1, . . . , ψn−(N−M) is
hyperbolic. Let us consider the invertible change of variables, expressing
the above ones in terms of u1, . . . , uN−M , uN−M+1, . . . , un , by means of the
transformation law

(26) �I �(u) = ψI � for I � = 1, 2, . . . , n − (N − M).

In other words, we are obtaining uN−M+1, . . . , un as functions of the previous
variables, from eq. (26).
Obviously, the system (17), expressed in terms of the new variables, is still
hyperbolic. By using eq. (26) it becomes

(27)

n�

i=1

N�

j=1

Zki A
α
i j ∂αuj +

n−(N−M)�

R=1

ωαT R
k ∂α�R(u) =

n�

i=1

Zki fi .
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This system in the independent variables u1, . . . , un , is hyperbolic. The vari-
ables un+1, . . . , uN can be obtained from �I ��(u) = 0 as it can be seen from
(25)2. Consequently, the system (27) is hyperbolic in the variables u1, . . . , un
constrained only by

(28) �I ��(u) = 0 for I
��

= n − (N − M) + 1, . . . , M.

If we impose that �I , (u) = 0 (for I � = 1, . . . , n − (N − M) ) holds on the
initial manifold, it will be satis�ed also off it.
The new system (27) has the advantage to have all evolutive equations, even if
the variables u are still constrained. If we want to eliminate also this drawback,
we can proceed in the following way:
Let us consider the system (1) and N − n other scalar-valued equations of the

type
N�

j=1

0α
j ∂αuj = 0. We obtain a new system which �nally leads to the case a.

Let us see now some examples of physical applications.

1) Relativistic magneto�uiddynamics.

We have already obtained the system (22) to describe this physical problem;
in this system ψ is an auxiliary quantity, and the variables are constrained by
uαb

α = 0. We see now, by applying the methodology in case a, that the system
(22) can be substituted by

(29)






∂α(nuα) = 0
∂α[(e + p + b2)uαuλ + (p + b2/2)gαλ − bαbλ]+

+ uγ bλ∂α(u
αbγ − bαuγ ) = 0

hβλ∂α(uαbβ − bαuβ) + uλuα∂α(uγ b
γ ) = 0,

in the variables e, V α, bα which are now not constrained.

2) Relativistic �uiddynamics.

This physical problem is described by the equations

(30)

�
∂α(nu

α) = 0
∂α[(e + p)uαuλ + pgαλ] = 0

which can be obtained by substituting bα = 0 in eqs. (21).
If we consider e, V α as variables, this system is not constrained; moreover,
it is hyperbolic according to De�nition 1. However, to obtain an example
of application of the present methodology, we may take e, n, uα as variables
constrained by

(31) uαuα + 1 = 0.
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In this way the number of equations is n = 5; moreover, N = 6, M = 1. Let
tα = uα . The matrix Xki is identically null; consequently, Yki and Zki are the
identity matrix.
Therefore, we are in the case b; the system corresponding to (27) is exactly the
same initial system (30). However, if we consider the system (30). However, if
we cosider the system (30) and the equation 0α∂αe = 0, we have n = 6, N = 6,
M = 1. The matrices Xki , Yki , Zki , T

1
k are respectively

Xki =

�
0 0λ 0
0µ 0µλ 0
0 0λ 1

�

; Yki =

�
1 0λ 0
0µ gµλ 0
0 0λ 0

�

= Zki ; T
1
k =

�
0
0λ

1

�

.

Therefore the system (17) is given by eqs. (30) and uα∂αψ1 = 0, where
ωα = uα has been taken. Finally, the system (24) is given by

(32)






∂α(nuα) = 0
∂α[(e + p)uαuλ + pgαλ] = 0
uα∂α(uγ u

γ ) = 0

in the variables e, n, uα which are not constrained.

3) Covariant Maxwell electrodynamics.

The �eld equations are (see e.g. [10])

(33) ∂αF
αβ = − j β; ∂αF

αβ∗

= 0

where

Fαβ = tαEβ − tβEα + ηαβγ δHγ tδ,

Fαβ∗

= tαH β − tβH α − ηαβγ δEγ tδ.

The variables are Eα (relative electric �eld) and H α (relative magnetic �eld),
constrained by

(34) �1 = tαEα = 0; �2 = tαHα = 0.

Moreover tα is a �eld-independent time-direction, such that tα tα = −1,
and ηαβγ δ is the four-dimensional Levi-Civita�s symbol. Therefore we have
n = 8, N = 8, M = 2,

Uj j � =

�
hµ

γ 0
0 hµ

γ

�

, Xi �i =

�
tγ 0γ

0∗γ 0∗γ

0γ tγ

�

,
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Yki =

�
hν

λ 0
0 hν

λ

�

= Zki , T
1
k =

�
−tλ

0λ

�

, T 2
k =

�
0λ

−tλ

�

,

where 0∗γ denotes a 6 × 4 matrix with null elements.
Consequently the system (17), in this case, is

�
tαhγ λ∂αEγ + ηαλγ δ tδ∂αHγ − tλtα∂αψ1 = −hλγ jγ
−ηαλγ δ tδ∂αEγ + tαhγ λ∂αHγ − tλtα∂αψ2 = 0.

The system (24) is

(35)

�
tαhγ λ∂αEγ + ηαλγ δ tδ∂αHγ − tλtα∂α(tγ E

γ ) = −hλγ jγ
−ηαλγ δ tδ∂αEγ + tαhγ λ∂αHγ − tλtα∂α(tγ H

γ ) = 0.

in the variables Eγ , H γ which are not constrained.
We notice that (35) can be written also as

(36) ∂α(Fαλ + Eα tλ) = −hλγ jγ ; ∂α(Fαλ∗

+ H αtλ) = 0,

where also the conservative form is preserved.

5. Hyperbolicity in every time-like direction.

The problem of characterizing the system, which are hyperbolic in every
time-like direction, is still open. Strumia has obtained a very interesting result,
in the case of symmetric hyperbolic systems (see appendix of ref. [11]). The
general case remains still to be investigated. Here I rest content of the following
result. Let us choose a particular tα and �nd the matrix Zki depending on this
tα . Then the condition 2) of de�ntion 2 holds for every other time-direction t∗α
if the following two condition are satis�ed
1) the system (10) is hyperbolic in the time-direction tα ;
2) the characteristic velocities of system (10) (i.e., the solutions λ of condition

3) in De�nition 2) do not exceed the speed of light.
In fact, let us assume, by absurd, that a four-vector t∗α exists, such that t∗α t

∗α =

−1 and the system

t∗α

n�

i=1

N�

j=1

Zki A
α
i j δuj = 0,

N�

j=1

∂�I

∂uj

δuj = 0,

in the independent unknowns δuj , has a non null solution δu∗
j .
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Let nα be de�ned by t∗α = −tγ t∗γ tα + nα .
We have tαn

α = 0 and nαn
α ≥ 0, if nαn

α = 0 it would follow that nα = 0, and
condition 2) of De�nition 2 would be violated; consequentlywe have nαn

α > 0.
Let us de�ne ζα = nα(nγ n

γ )−1/2.
From condition 2) we have that the eigenvalues λ of the problem

(ζα − λtα)

n�

i=1

N�

j=1

Zki A
α
i j δ(uj = 0,

N�

j=1

∂�I

∂uj
δuj = 0,

are such that |λ| ≤ 1.
Now this problem is equivalent to

[nα − λtα(nγ n
γ )1/2]

n�

i=1

N�

j=1

Zki A
α
i j δuj = 0,

N�

j=1

∂�I

∂uj
δuj = 0,

which has the solution λ = tγ t∗γ (nδn
δ)−1/2, δuj = δu∗

j .
(See what we assumed by absurd). Therefore we have
|tγ t∗γ |(nδn

δ)−1/2 ≤ 1, from which (tγ t∗γ )2 ≤ −1 + (t δt∗γ )2!!
This absurd result proves our statement.
I conclude this section noticing that the characteristic velocities of system
(17) are those of system (10) and λ� = (nαωα)/(tαωα). (See in section III).
The �rst ones, of these, do not exceed the speed of light. Regarding λ�, we
have that (λ�)2 ≤ 1 holds iff (nαωα)2 ≤ (tαωα)

2 for every nα such that
nαnα = 1, nα tα = 0. This relation can be written in the references frames
where tα, ωα have the components tα ≡ (1, 0, 0, 0), ωα ≡ (ω0, ω1, 0, 0); it
reads (n1ω

1)2 ≤ (ω0)2 for every ni such that nin
i = 1. Now (n1ω

1)2 assumes
its maximum value for n1 = 1, n2 = n3 = 0; this maximum is (ω1)2. Therefore
we must have (ω1)2 ≤ (ω0)2, i.e., ωαωα ≤ 0.
Consequently ωα must be chosen as a time-like or a light-like 4-vector. If we
choose ωα = tα , this condition is surely satis�ed.

Appendix 1.

I prove here that thematrix tα
N�

j=1

Aα
i jUj j � , has rank N−M . Let δQj be a solution

of the system

(A.1) tα

N�

j �, j=1

Aα
i jUj j �δQj � = 0.
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If δPj is de�ned by δPj =
N�

j �=1

Uj j �δQj � , we have that tα
N�

j=1

Aα
i j δPj = 0,

N�

j=1

∂�I

∂uj

δPj = 0, from which tα
n�

i=1

N�

j=1

Zki A
α
i j δPj = 0,

N�

j=1

∂�I

∂uj
δPj = 0; from

condition 2) of De�nition 2, it follows that δPj = 0, i. e.,

(A.2)

N�

j �=1

Uj j � δQj � = 0.

Vice versa if δQj , is a solution of system (A.2), then it satis�es also (A.1).
Therefore the systems (A.1) and (A.2) have the same solutions; to this end it is
necessary that the matrices of their coef�cients have the same rank ρ (We have

N − ρ free unknowns). Consequently, tα
N�

j=1

Aα
i jUj j � and Uj j � have the same

rank, i.e., N − M .

Appendix 2.

I prove now that the 2n × n matrix

�
Yi � i
X i � i

�

has rank n. Let Chi be N − M l.i.

solutions of
n�

i=1

Xi � iChi = 0; these solutions can be chosen also orthonormal.

From system (9) it follows that

(A.3) Yki =

N−M�

h=1

λkhChi .

If λk1 is a linear combination of λk2, . . . , λk(N−M) , i.e., λk1 =
N−M�

p=2

qpλkp , then

(A.3) gives Yki =
N−M�

p=2

λkp(Cpi + qpC1i ), i.e., Yki are linear combinations of

N − M − 1 vectors; this is not possible because Yki has rank N − M . Similarly
no other λkh is a linear combination of the remaining ones. In other words, the
matrix L with elements λkh has rank N − M .
Let us consider now the system

(A.4)

n�

i=1

Yi � i xi = 0,

n�

i=1

Xi � i xi = 0,
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and prove that it has only the solution xi = 0. In this way our aim will be

achieved. From (A.4)2 we have xi =
N−M�

h=1

uhChi ; by substituting this and (A.3)

in (A.4)1 we obtain

N−M�

h,r=1

λi �hChiµr Cri = 0, i.e., LCCT u = 0.

This system can be written as

(A.5) Lu = 0

because CCT = IN−M .
Now L is a nX (N − M) matrix with rank N − M ; therefore we have u = 0
from (A.5), i.e., xi = 0.

Appendix 3.

Let us prove the following theorem
Let us consider a n× n matrix A and a n× p matrix B; moreover let AB have
rank p. It follows that A has rank ρ ≥ p.
In fact the system AT q = 0 has n − ρ 1.i. solutions q

1
, . . . , q

n−ρ
. Let Q be

an invertible n × n matrix whose �rst n − ρ rows are qT
1
, . . . , qT

n−ρ
. It follows

that QAB has rank p and its �rst n − ρ rows have null elements; the remaining
rows are ρ in number and, consequently, p ≤ ρ . By applying this theorem

with A =
n�

i �=1

λki �Yi � i and B = tα
n�

i=1

N�

j=1

Aα
i j

∂uj

∂qh
, we have that the rank ρ of

n�

i �=1

λki �Yi � i is such that ρ ≥ N −M . Now the rank of Yi � i is N −M , from which

ρ ≤ N − M . Finally, we have ρ = N − M , a property which I used in section
II.
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