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A COVARIANT AND EXTENDED APPROACH TO
SOME PHYSICAL PROBLEMS WITH
CONSTRAINED FIELD VARIABLES

SEBASTIANO PENNISI

Many physical problems are described by means of systems S of partial
differential equations, whose field variables u are restricted by relations of
the type ®; (1) = 0. Some examples, to this regard, are the ultrarelativistic
gases studied in the framework of Extended Thermodynamics, the relativistic
magnetofluiddynamics and the Maxwell Equations in the relativistic form.
Here a general method is proposed to deal with problems of this kind; in
particular, a new system S’ is proposed in the independent variables u, Vg
which are not restricted. Moreover, the solutions of §’ with ®; (u) =0, Y g =
0, are the same of the original system S. The new system S’ is expressed in
the covariant form and is hyperbolic, under the assumption that the original
system S satisfies these properties; ®;(u) = 0, yr = 0 are satisfied as
consequences of S’ and of the intial conditions. The new variables v are
only auxiliary quantities.

1. Introduction.

Let us consider the physical problems which are described by means of a
quasi-linear system of partial differential equations of the type

N
) > AL Wy = fi(w)
j=1
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fori =1,2,...,nand in the N variables uy, ..., uy.
When the variables u are independentand n = N, this system is un-constrained,
and its hyperbolicity is easily defined as follows.

Definition 1. The system (1) is hyperbolic ([3], [4]) in the time-direction t*
(such t*t, = —1) if and only if

1) det(Af;1a) #0;

2) for any four-vector n* such that n“t, = 0, n“n, = 1, the eigenvalue

N

problem ) A?} (ng — Aty)du; = 0 has real eigenvalues ) and N linearly
j=1

independent l.i eigenvectors Su;.

We notice that the first of these conditions is equivalent to the following one

N
1) the system t, > A% (w)du; = 0, in the independent unknowns du;, has
Y — ij J 7
J:
only the solution $u; = 0.

However, in some physical problems, the N variables u are not independent,
but constrained by M relations of the type

2) ®;(w)=0 for I=1,.... M,

where the functions ®; are differentiable with respect to u, expressed in
covariant form, and functionally independent, i.e. the rectangular matrix
0D, .
— I=1,....M; j=1,...,N
an
has rank M. In this way there remain N — M independent variables.
If n = N — M, the above definition can be easily extended and becomes

Definition 2. The system (1) under the constraints (2) is hyperbolic in the time-
direction t, if and only if
N

N 9d
1) the system ty Y Aj?j. wdu; = 0,y 8—18uj = 0, in the independent
j=1 j=1 0Uj
unknowns 8u;, has only the solution u; = 0;

2) the problem

~ alpL
(g — Mo) D A% Wdu; =0, Y —du; =0,
j=1

j=1

in the independent unknowns du;, has real eigenvalues ). and N 1.i
eigenvectors du;.
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In fact, if we choose N — M parameters g, such that u; = u;(qgy) is the general
solution of the constraints (2), the Definition 2 is exactly the Definition 1 written
in the N — M un-constrained variables g;. This approach has been widely used
in literature; see, for example, ref. [7] where the independent variables are n
(partile density), e (energy density), 7w (dinamic pressure), U® (4-velocity), ¢
(heat flux), t@#) (stress deviator), constrained by

UUy = —1, ¢°Uy =0, t*P'U, =0, t*“Plg,z =0,

with g,g the metric tensor.

Finally, if n > N — M, we have also n — (N — M) differential constraints.
In this case we may conceive the idea of taking only N — M equations from
the system (1) and hoping that this reduced system is hyperbolic, according to
Definition 2; more generally, we may take N — M linear combinations of the
equations of system (1), or, equivalently, we may multiply it on the left by a
(N — M)Xn matrix Zy;. In order not to lose manifest covariance, we may allow
the matrix Z;; to have more than N — M rows, but to have rank N — M in this
way the supplementary equations are only linear combinations of the others.
Therefore, the following definition of hyperbolicity, for this constrained system,
is proposed:

Definition 3. The system (1) under the constraints (2) is hyperbolic in the time-
direction t, if and only if an mXn matrix Zy; exists, such that,
1) Zy; hasrank N — M ;

n N N 8(1)1
2) the system ty Y 3 Zii Afj(w)du; = 0, Y ——38u; = 0, in the indepen-
i=1j=1 j=1 Mj
dent unknowns du;, has only the solutions du; = 0;
3) the problem

) Z Z Zii A% W)du; = 0, Z &5% =0,

i=1 j=1 = 8M/
in the independent unknowns du;, has real eigenvalues A and N l.i eigen-
vectors du;.

If the system (1) is expressed in covariant form, also the matrix Z;; must be
covariant, to preserve this property.
Obviously, we may substitute the system (1) with

n N n
3) YO Zu AL Wdau; =Y Zia fi(w),
i=1

i=1 j=1
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and apply to it the Definition 2.

I remark that this arguments are inspired by the elegant Strumia’s papers on this
subject ([10], [11], [12]), altough the definition in this article is less restrictive
than Strumia’s one, as it will be seen in section 2. Also in this section, a method
will be shown to find the matrix Z;.

The above definition of hyperbolicity for a constrained system appears a little
complicated. To eliminate this drawback I propose a method based on the ideas
of extended thermodynamics ([6], [7]) to introduce other independent variables
Y and to find a new system of equations that for g = 0 reduces to (1);
moreover this new system has the same number of equations and of independent
variables, it is hyperbolic if and only if the system (1) is hyperbolic, it gives
Yr = 0 if we impose ¥ = 0 only on a given time-like initial hypersurface, it
is expressed in covariant form. These results will be obtained in Section 3 and
are expressed by the system (17).

Another idea is that of searching a new system with a less number of auxiliary
variables g than in (17), and without the constraints (2); this idea is realized
in Section 4 and the new system is expressed by (24).

All these results depend on the time-like congruence ¢, that has been initially
chosen. This problem is investigated in Section 5, under the assumption that the
system (1) is hyperbolic in the direction 7, and the characteristic velocities do
not exceed the speed of light.

Physical examples of application of this methodology are also considered in this
paper; they are the equations of Extended Thermodynamics for ultra-relativistic
gases (see in Section 2), those of relativistic fluiddynamics (see in Section 4
from eq. (30) to eq. (32)), those of relativistic magnetofluiddynamics (see in
Section 3 from eq. (21) and Section 4, eq. (29)), those of covariant Maxwell
electro-dynamics (see in Section 4 from eq. (33)).

It is also shown, in Section 2 from eq. (13), that the Einstein’s equations in
empty space are not hyperbolic.

2. A method to find the matrix Z;;.

If system (1) is hyperbolic, it can be written in the form (3) which makes
more easy to find the associated eigenvalues and eigenvectors. The problem
now arises on how to find the matrix Z;. To this end, the following 4 steps can
be accomplished.

Step 1) Let us consider the system §®; = 0, of M linearly independent
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equations in the N unknowns du;, i.e.,

N
@) Zai uy =0,

which is a consequence of the constraints (2); it gives du; as a linear combina-
tion of N — M free unknowns. Another possibility, useful in order not to lose the
covariance, is to obtain du; as a linear combination of p free unknowns, with
p = N — M, but by means of functions which are not functionally independent.
More precisely, we may find

5) Su; = Uy @)Vy, ¥V,

with U;; a matrix of rank N — M.

For the applications it is useful to notice that U;; is the matrix whose j-th row
is the derivative of du; in equation (5), with respect to V. This matrix is such
that

N
90,
(6) Za_ Ujy =0.

The practical meaning of this step is that the variables contribute to the equa-
tions, only by means of their projections onto the subspace tangential to the
variety (2).

Step 2) Let us consider the matrix ¢, Z A?. U jj5 it has rank N — M, as proved
j=1
in appendix 1. For the applications, we notice that its i-th row is the derivative
N
with respect to V; of the expression 7, Zl Af;8u;, after having substituted du;
J:
from equation (5).
After that, let us consider the system with this matrix of the coefficients and

contracted on the left by the unknowns X;,

(7) ZXLXZA“U/_O

I gives X; as a linear combination of n — (N — M) free unknowns. Alternatively,
we may find X; as a linear combination of g free unknowns, with g >
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n — (N — M), but by means of functionally dependent functions; this possibility
is used in order not to lose the covariance. More precisely, we may find

q
(8) Xi= in’xi’i VX,

where the ¢ Xn matrix X;; has rank n — (N — M).

(Note that X;/; is the matrix whose i-th coulumn is the derivative of X; in
equation (8) with respect to X ;).

This matrix is such that the following relation holds

n N
© > Ko 3 A5y =
i=1 j=1

The practical meaning of this matrix is that it allows to separate the differential
constraints from the other equations.
Step 3) Let us consider the system

n
(10) > XY =0;
k=1
it gives
(11) Y, = Z YuY:, VY; (free unknowns),

i=1

where Y;; is a n X n matrix having rank N — M. Obviously, it is such that
(12) ZXﬁkYki =0.
k=1

Here too, the k-th row of Y}; is the derivative of Y, in eq. (11) with respect to
Y ;. The practical meaning of multiplyng the original system on the left by Y}, is
that of projecting it onto the subspace ortogonal to X;/;; in this way, the constant
(9) on the evolutive part of the equations becomes now a constraint also on its
spatial part.

Step 4) The matrix Z;; is sum of Y}; and of a suitable solution of the system (9),
i.e., the parameters ji; , exist such that

Zii =Y+ Zﬂki, Xij.

i'=1
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Obviously, the parameters w;;; must be such that the above mentioned properties
of the matrix Z;;, are preserved. The second term, in the expression of Z;;, takes
account of the fact that the differential constraints may still play a role, before
to be neglected.

Having completed the description of these 4 step, let us prove the last of the

them. The 2n x n matrix < ;” ) has rank n (see Appendix 2); therefore the
i'i

n
parameters Ay, (g exist such that Zy; = > (g Yiri + pair X ;)5 from this it
i'=1

follows

n N n n N
ty ZZZkiA?;(SMj =1, ZZZ)»M/Y,'/,'A?;SMJ',

i=1 j=1 =1 i=1 j=1

where (9) has been used and also the fact that du; is a linear combination
of Ujj. If we impose now the condition 2) of Definition 3, we obtain that

n n N ou;:
o D D> A Yii A} a—féqh = 0 has only the solution §g;, = 0; this
i'=1i=1j=1 qn
n n N ou;
fact proves that the matrix 7, > Y Y A Yi/iAj?j.a—/ has rank N — M and,
i'=1i=1j=1 qn

n
consequently, > Ay Yi; has rank N — M (see Appendix 3).

i'=1

In this way we see that > Az Yy, is also a solution of system (12) and has

i'=1

n
rank N — M, ie., Y Aw Yy satisfies the same properties of Yy; ; by substituting

i'=1

i M Yy with Yy; we obtain Zy; = Yy, + i Wi X v

lTTllerefore Zy; is determined except for ;lfr:(;rn equation (8), we see that Z; is
the sum of Y}; and of a particular solution of the system lil X;t, ]Xj:l Aj?j. Uiy =0.
Let us introduce now some notes. ) "~

Note 1: We notice that the Definition 2 is less restrictive that Strumia’s one [10];
in fact he considers only the case n = N and imposes the further condition that

the matrix Z;; is the projector onto the subspace generated by the 1.i. columns
of Ujj.
Ji

Note 2: If system (1) is hyperbolic and du; is a solution of the system
N N o

te ) Afj(Wdu; = 0, 3 8—18uj = 0, then du; satisfies also the system
j=1 j=1 OUj
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considered in condition 2) of Definition 2; therefore we have du; = 0.

This note can be used to show that Einstein’s equations in empty space are not
hyperbolic. These equations are ([10], [2], [5]):

(13) 0, %

Iy

-9, +1*

o o A _
/wFAp - Fukrvp =0

with I, = g (0,8 + 0.8pv — 9p8uv)/2 (Christoffel symbol).
They constitute a second order system of ten equations for the unknown sym-
metric tensor g, .

By defining @y, = 0480, it can be reduced to the first order system

Oy [gap(vau + Wypv — a)p;w) - 8ﬁg)\pva)\] = WMU(gC{(Sv a)ﬂyé)
(14) 0o (65 81v) = ®ppv
(8288 — 89880y wppy = 0

in the 50 unknowns g,,,, wg,..

We have I = 0 and U;;; = §;;, because there is no constraint on the
independent variables. However, the condition on note 3, which is necessary
for the hyperbolicity of the system (14) is not satisfied. In fact, in this case, the
system in note 2 is

ta(s[gap(vau + Wypv — a)pp,v) - 5;‘18)"060‘;,0)\] =0
(15) ta((sgg/w) =0
(8288 — 5488, 8wp,, = 0.

Its general solution is
88y =0, dwepy =t (1, Vy + 1,V + t,tut*V3),

with V), an arbitrary four-vector. Therefore this system has solutions different
from du; = 0, i.e., the Einstein’s equations in empty space are not hyperbolic.
I conclude this section by illustrating the above 4 steps in the case of Extended
Thermodynamic of an ultrarelativistic gas. This problem is described by the
equations

0y V¥ =0
0T =0
9, AT = [PV

where the independent variables are V# (particle number-particle flux vector),
T*" (stress-energy-momentum tensor), constrained by ® = 0, with ® = T}.
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Moreover, in the case of a non degenerate gas, we have
A" = (4/3)n" ' QUAUPUY + g“PU)+
_|_2(e/n)(g(otl3qy) 4 6U(“U’Sq”)) 4 6(e/n)t(<aﬂ>Uy),
157 — B3t(/37) —|-2B4q(ﬁUy),
n=(=VgVH'2 U* =n"'ve,
hf = g + U UP, 1P = (h%hE — 1/30 ) T,
q“ = —hiU,T", e = U, U,T"".

An arbitrary single variable function A, which appears in the first version of
these equations, has been dropped because it does not appear in other versions
based on the kinetic theory.

For the sake of simplicity, let us take t* = U*.

Step 1) The system (4) is g*’8T,5 = 0, whose solution is 87" = (g{*g}) —

1/4g" g,,) W?; therefore, the requested matrix U;; is

8 0

Uiy = v b , whose rank is 9.
7 < 0 g%g)—1/4g" g(pp)

(The index j is described by puAv, while j is described by S¢p).

Step 2) For the sake of simplicity, let us aim to hyperbolicity holding in a neigh-
bourhood of thermodinamical equilibrium; in this case we may calculate the

N
coefficients of 3, V", 8,T"" at equilibrium. The resulting matrix U, Y A%, Uj;r
j=1

is

Us 0
0 Ugsgh —1/4U%g,,
A

with A" = —(4/9)e2n=2[(hPY + 3UPUY)U;s — 10nE U],
ALY = (2/3)(e/n)[—4(gP" +4/3UPUY ) (U, U, + 1/48,) +
+ 10U PR U,y + hyoh®" — 300 171,
The system (7) is
XUs + Xp, (8/9)*n 2 [—2UPUY Us + 5h5 U] =0,
Xl (Ugh — 1/4UP 8,01 + X5, (2/9en™ ' [-16UP U (U, U, +
+ 1/48,,) + 3(hy, UPUY — 37 h5)] = 0,
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where the relation hg Xp, U” = 0 (which comes from the first of these equa-
tions, contracted with hg,) has been used. Moreover, Xg, is a symmetric and
traceless tensor.

The above system has the solution

X = (16/3)e’n*X, X5 = (32/3)en "X Uy,
Xg, =X (gs, +4UsU,). Consequently, the matrix X;; is (i’ = 1)
((16/3)e*n™2, (32/3)en"'Ug, (g5, + 4UgU,)).
Step 3) We have to consider now the system

(16/3)e’n™2Y + (32/3)en™ ' UpY" + (gp, +4UU,)Y"" =0, g4, Y’ =0.

: : : . S
To find a covariant solution to this system, we notice that Y;, Y5, ¥ " exist such
that

Y = v,¢% + LUPU” + (1/3)B3gle! — (g0 + UnUEP" +
— @UU, + g UPUT T,

(In fact Y;,Y, can be found by contracting this expression with gg, +
UgU,, (1/3)(gp, + 4UgU, ) respectively; after that YW =¥ isa possible

. ) : . . . .
choice for Y'"). By using this expression the above equations become condi-
tions which give Y, Y#, Y;, Y»; the result is

Y =7, YF=g7",
By _ 20,V VM (oBY Brrv
YP = —(4/9)en (€Y + 20U, Y ) (" +4UPUY) +
—AV
+(1/3)[387 87 — (g + UpUEY — (4ULU, + &) UPUYIY™;
after that, we see that the matrix Y}; is

1 0, 0
0 8s 2 /
! ! ! ! y
eCPY 2nCPV Uy Cp)
where CP7' = —(4/9)en>@UP U +¢P7),
ch =gh gl — (1/3)gs,8"" — (1/3)UsU, "7 +

— (1/3)HUP U gg, — (4/3)UsU,UP U
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Step 4) If we take uy;r = 0, we obtain Z;; = Y); and the Definition 2 is satisfied,
as it can be easily seen. For the sake of brevity, I avoid to report the proof of
this statement. I simply note that the system multiplied on the left by Z;; give
3 equations; if we add to the third one of them the first one, premultiplied by
eCP7", and the second one, premultiplied by 2nC#?'Ug, we obtain

0, V¥ =0
30, T =0
o APV —(1/3)(gP7 +4UP U YUSU, 3, A" = 1PV,

where the identities gg, A" = 0, UgU, 1?7 = 0, gz, 1?7 = 0, have been
used. This system is the conterpart of (3), for this particular case.

3. An extended approach to systems with constrained field.

In this section a new system is searched, in the variables u, W (auxiliary
quantities), which for W = 0 reduces to system (1); if (1) is hyperbolic, then
also the new system is hyperbolic.

To this end, let TkR be n — (N — M) l.i. solutions of the system

(16) TvZy; =0,

expressed in covariant form and let w* be a four-vectorial function such that
t*w, # 0 (for example we may choose w* = t%).
Let us consider the system

n—(N—M) n

n N
A7 Y ZuA o+ Y o T Ye = Zii fi(w)
R=1 i=1

i=1 j=lI

in the variables u;, Wy constrained by ®(u) = 0, so that we have N — M +
[n — (N — M)] = n independent variables.
This system has the advantage to have an equal number of equations and of
independent variables; when Wy = O it reduces to system (10), which is
equivalent to system (1) except for some conditions to be imposed in the initial
manyfold (see the previous section).
Moreover we prove that
1) the system (17) is hyperbolic if this property is satisfied by the system (1),
2) if Wi = 0 on an intial hypersurface X, then W = 0 will propagate off X.
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In fact the system (17) is equivalent to

n—(N—M)

(18) Zzzkl aqh+ Z wTkava—sz,fl.

i=1 j=1

Condition 1) of Definition 1 is equivalent to impose that the system

n—(N—M)
(19) taZsz,Af; a—th—i— Yt TES YR =
i=1 j=1 R=1
has only the solution 8¢q, = vz = 0.
n—(N—M)
If we multiply eq. (19) by T, we obtain Y.  1,0*TETRsyr = 0, from

R=1
which §1¢g = 0 because TkR are 1.i.; after that, the system (19) gives §g, = 0
because the system (1) is hyperbolic and condition 2) of Definition 3 is satisfied.
Let us now see that the system (18) satisfies also the condition 2) of Definition
1. To this end, let g, fork = 1,..., N — M,be N — M l.i. solutions of the
condition 2) in Definition 2, corresponding to the eigenvalue A;; let 1z be the
vector of components §Ygp = dgp.

The vectors (g, O0g) and (O, §1rp) are n li. eigenvectors of the system (18),
corresponding to the eigenvalues A; and A = (n,w®)/(t,@%), respectively. In
fact they satisfy the system

n—(N—M)
(na—m)[zzzm fsqh+ > o TRsyr] =0
i=1 j=1 R=1

In this way we have proved that the system (17) is hyperbolic. Let us prove now
the statement 2). To this end, we multiply the system (17) by 7,5, obtaining that

n—(N—M)
Z TSTRw* 9,0k =0, ie, w0yYg=0

this relation can be written also as
(20) 19 r = (") 0y h 0 g,

with AV = gV% + 17 1*.



A COVARIANT AND EXTENDED APPROACH TO... 253

If Y = 0 on the initial hypersurface ¥ (from which A¥*9,¥g = 0 also holds
in X), we see from eq. (20) that ¥y = 0 holds also off X, as we desired to
prove.

Let us now apply this methdology to a particular physical problem, the equations
of relativistic magnetofluiddynamics. These equations are the conservation laws
of mass and energy-momentum and the maxwell’s equations, i.e.,

0y (nu®) =0
(e + p +bHu“uP + (p +b?/2)g* — b*bP1 =0
3y (ubP — b*uf)y =0

in the variables e (total energy-density), V*, b* (related to the electromagnetic
field), constrained by V,b* = 0. Moreover, we have n = (—V*V,)"'/? (rest-
mass density), u* = n~!'V¥ (four-velocity), p = p(n, e).

Hyperbolicity of this system has already been proved, for example in refs. ([10],
[111,[9], [1], [8]). By appliying the present methodology, with t* = u*, ®* =
u*,weobtainthatn =9, N =9, M =1,

1 Oy Oy 0 0/3 Mﬂ
Ujj = <0y 8ys 0y8>  Xi = (Oy 0yp Oyﬂ) ;
0, n_lbsu}, hys 0y, 0y Oy

1 0 0 o o o
ij:<0A g 0w>;l/«ki/=(bA o 0“’);

0+ 0¥ n 0+ o o

1 0 0 1
ij = O)L gMS bAMﬂ ) Tkl = O)L .
OA OA/S hkﬁ M)L

Consequently, the system (17), in this case, is

0y(nu*) =0

dal(e + p + bHuu* + (p + b*/2)g** —
—b*b*] + u’ b*d, b, — b%u,) =0

hPY 3, (u®bp — bup) + u*u®d,y = 0.

(22)

Obviously, the system (22) in the unknowns e, V¥, b*, ¢ constrained by
Vub® = 0 is hyperbolic, is expressed in covariant form and has an equal number
of equations and of independent variables.
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4. A new form for the system (17).

Let us consider firstly the case n > N (from whichn — (N — M) > M
holds), which I call case a. The system (17) in the independent variables
q1s ---s4dN—-M, 1//1, ey WM, 1//M+1, ey wn—(N—M) is hyperbolic. There are M

L . . .
columns of the matrix 8—[, which are Li.; we can suppose, without loss of
Ui

generality, that they are the last M columns, i.e., that the matrix

3% forj=N-M+1,...,N hasrank M.

8L£j
Therefore we can take ¢, = uy,...,qn-yu = un—pu and the system (17) in
the independent variables wuy, ..., uy—p, V1, .., Um, Y41, - -« Yo (v—m) 18
hyperbolic. Let us consider the invertible change of variables, expressing the
above ones in terms of Uiy oo . s UN—- M UN—M+15---5 UN, l//M_H, ey wn—(N—M)a

by means of the transformation law
(23) S,w)y=y; forl=1,2,..., M.

In other words, we are obtaining uy_js+1, - .., Uy as functions of the previous
variables, from eq. (23).

Obviously, the system (17), expressed in terms of the new variables, is still
hyperbolic. By using eq. (23) it becomes

n N M
(24) DO Zii A dau; + Y 0 TR0, Pr(w) +
i=1 j=I R=1
n—(N—M) n
+ Y Trr=) Zuifi
R=M+1 i=1

This new form for the system (17) has the advantage to have an equal number
of equations and of independent variables; these last ones are u, ¥py1, .-,
Yu—(v—n) and are not constrained.

However, if we impose that ®;(u) =0, Y41 =0, ..., ¥Y_v—m) = O hold on
the initial manifold, they will be satisfied also off it.

Let us consider now the case n < N (from which n — (N — M) < M holds),
which I call case b.

. 0D . .
There are M columns of the matrix ——, which are 1.i.; we can suppose,
u.
J
without loss of generality, that they are the last M columns, i.e., that the matrix
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M* = % for j = N—-M+1,..., N, hasrank M. If we use the Laplace’s
J
rule to calculate det M* # 0, we see that we can exchange some columns of
M M .
M* such that M* becomes Mg M*1222 with M}, of order n — (N — M),
M3, of order N — n and moreover det M}, # 0, det M}, # 0. In other words,
od
by exchanging the names of some u;, we obrtain that 8—] takes the form
uj

ad, 0dy 0Py

8L£j/ 8L£j// 8L£j///
a¢]” 8<D]// 8q>]m
81/!]/ 8Mj// 8[,{////

for/’=1,....on—(N—=M);I"=n—(N—M)+1,..., M;
j/=1,....N—-M; j”=N-M+1,....,n; j"=n+1,...,N

and we have

od, 0D,
(25) det ( ) £0: det ( ) £0;
8[,{j// auj///
od; 00,
auj// auj///
det b, 9D, # 0.
auj// auj///
From (25); we see that we can take ¢ = uy,...,gyv—y = uy—_p and the
system (17) in the independent variables wuy, ..., un_a, Y1, ..., Yu—v—pr) 18
hyperbolic. Let us consider the invertible change of variables, expressing
the above ones in terms of uy, ..., Un_p, UN—M+1s - - -5 Uy, DY means of the

transformation law
(26) ®p(w)=ypforl’ =1,2,...,n— (N — M).

In other words, we are obtaining uy_jp+1, - - ., U, as functions of the previous
variables, from eq. (26).

Obviously, the system (17), expressed in terms of the new variables, is still
hyperbolic. By using eq. (26) it becomes

n—(N—M) n

n N
QD YN ZuAfdaui+ Y o0 TFUPRW =) Zii fi-
R=1 i=1

i=1 j=1
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This system in the independent variables uy, ..., u,, is hyperbolic. The vari-
ables u,,1,...,uy can be obtained from ®; (u) = 0 as it can be seen from
(25),. Consequently, the system (27) is hyperbolic in the variables uq, ..., u,
constrained only by

(28) O, u)=0 for I =n—(N—M)+1,..., M.

If we impose that ®;, (u) =0 (for I’ = 1,...,n — (N — M) ) holds on the
initial manifold, it will be satisfied also off it.

The new system (27) has the advantage to have all evolutive equations, even if
the variables u are still constrained. If we want to eliminate also this drawback,
we can proceed in the following way:

Let us consider the system (1) and N — n other scalar-valued equations of the
N
type > 0%9u; = 0. We obtain a new system which finally leads to the case a.
j=1
Let us see now some examples of physical applications.

1) Relativistic magnetofluiddynamics.

We have already obtained the system (22) to describe this physical problem;
in this system ¥ is an auxiliary quantity, and the variables are constrained by
u,b® = 0. We see now, by applying the methodology in case a, that the system
(22) can be substituted by

0y (nu®*) =0

Oe[(e + p + b uu* + (p + b*/2)g** — b*b*] +
+ u?b* 9 (u®b, — b*u,) =0

hP*3, (ubg — b*ug) + u*u®dy(u,b?) =0,

(29)

in the variables e, V%, b* which are now not constrained.

2) Relativistic fluiddynamics.
This physical problem is described by the equations

0y(nu®) =0
G0 { dal(e + plu* + pg™] =0

which can be obtained by substituting b* = 0 in eqgs. (21).

If we consider e, V¥ as variables, this system is not constrained; moreover,
it is hyperbolic according to Definition 1. However, to obtain an example
of application of the present methodology, we may take e, n, u® as variables
constrained by

(31) uu, +1=0.
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In this way the number of equations is n = 5; moreover, N = 6, M = 1. Let
t* = u®. The matrix Xy; is identically null; consequently, Y}; and Z;; are the
identity matrix.

Therefore, we are in the case b; the system corresponding to (27) is exactly the
same initial system (30). However, if we consider the system (30). However, if
we cosider the system (30) and the equation 0%*0,e = 0, we have n = 6, N = 6,
M = 1. The matrices Xy, Yii, Zii, T} are respectively

0o 0 0 1 0 0 0
in=<0” OM)L 0>;Yki:(0” gﬂ)L 0>=Zki;TkII(0)‘).
0 0+ 1 0 0 0 1

Therefore the system (17) is given by eqs. (30) and u“d,¥; = 0, where
o® = u® has been taken. Finally, the system (24) is given by

0y (nu®) =0
(32) dl(e + puu” + pg**1 =0
u®dy (uyu”) =0

in the variables e, n, u* which are not constrained.

3) Covariant Maxwell electrodynamics.
The field equations are (see e.g. [10])

(33) 0 F = —jP. 3, FF =0

where
F = t*EP — tPE* + n*P"° H, t;,

FP =1"HP —tPHY — n*P7°E 5.

The variables are E“ (relative electric field) and H* (relative magnetic field),
constrained by

(34) @, =t"E, =0; & = t*H, = 0.

Moreover t* is a field-independent time-direction, such that *¢f, = -1,
and n®?7? is the four-dimensional Levi-Civita’s symbol. Therefore we have
n=8 N=8 M=2,

” 0 tY (004
Ujjr = < 0 h“) X =07 07 ],
v o
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h 0 —t* 0*
= () =men = () 7= (5).
A

where 0*7 denotes a 6 x 4 matrix with null elements.
Consequently the system (17), in this case, is

W E, 4+ 10150, Hy — t* 1% 0,91 = —h" j,
50, Ey + 197 Hyy — %9531 = 0.

The system (24) is
(35) t*h" 0, E, + 00150, H, — t*1%0,(t, EV) = —h™ j,
—n* 3150, Ey + t*h7 3, H,, — t*1%9,(t, H?) = 0.

in the variables EV, HY which are not constrained.
We notice that (35) can be written also as

(36) 3 (F + E*t")y = —n"j,;  8,(F* + H*") =0,

where also the conservative form is preserved.

5. Hyperbolicity in every time-like direction.

The problem of characterizing the system, which are hyperbolic in every
time-like direction, is still open. Strumia has obtained a very interesting result,
in the case of symmetric hyperbolic systems (see appendix of ref. [11]). The
general case remains still to be investigated. Here I rest content of the following
result. Let us choose a particular 7, and find the matrix Z;; depending on this
to. Then the condition 2) of defintion 2 holds for every other time-direction ¢}
if the following two condition are satisfied

1) the system (10) is hyperbolic in the time-direction ¢,;
2) the characteristic velocities of system (10) (i.e., the solutions A of condition

3) in Definition 2) do not exceed the speed of light.

In fact, let us assume, by absurd, that a four-vector ¢ exists, such that 7;¢** =
—1 and the system

n N N 9P
* a — _I -—
0D D ZuAjdu; =0, > T Suj =0,

i=1 j=1 j=1

in the independent unknowns du;, has a non null solution & u;.‘.
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Let n* be defined by ¥ = —t?’t;jta + ng.

We have t,n% = 0 and n,n* > 0, if n,n* = 0 it would follow that n* = 0, and
condition 2) of Definition 2 would be violated; consequently we have n,n® > 0.
Let us define ¢, = ng(n,n?)~"/2

From condition 2) we have that the eigenvalues A of the problem

n N N 8CD]
Ca—Ma) DY ZiiAF;8(u; =0, Y ——8u; =0,
j=t

i=1 j=1

are such that |A| < 1.
Now this problem is equivalent to

N

n N
0P
[ne — Ata(nyny)l/z] Z Z Zyi Af;du; =0, _(,m']a”j =0,
iz J

i=1 j=1

which has the solution A = 17#5(nsn®)~'/?, Su; = Suj.

(See what we assumed by absurd). Therefore we have

|67 £51(nsn®) =% < 1, from which (t715)* < —1 + (°13)*!!

This absurd result proves our statement.

I conclude this section noticing that the characteristic velocities of system
(17) are those of system (10) and ' = (n“w,)/(t%w,). (See in section III).
The first ones, of these, do not exceed the speed of light. Regarding A’, we
have that (A)? < 1 holds iff (n%w,)> < (t%w,)* for every n® such that
n*n, = 1, n*, = 0. This relation can be written in the references frames
where t,, w, have the components ¢, = (1,0,0,0), w, = (wg, w1, 0, 0); it
reads (njw')? < (0°)? for every n; such that n;n’ = 1. Now (n;w')? assumes
its maximum value for n; = 1, n, = n3 = 0; this maximum is (w')?. Therefore
we must have (w!)? < («°)?, ie., 0w, < 0.

Consequently w® must be chosen as a time-like or a light-like 4-vector. If we
choose w* = t*, this condition is surely satisfied.

Appendix 1.
N
I prove here that the matrix 7, ) A} Ujjr, hasrank N—M. Let § Q; be a solution
j=1
of the system
N
(A.1) ta Y A%U;8Q; =0.

Jhi=l1
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If §P; is defined by 8P, = Z Ujj8Qj, we have that 1, Z A7 8P = 0,
J'=1 '

=

j=
N 9, o
> —3&P; = 0, from which taZZZsz 8P = Za—SP = 0; from

j=1 0U;j i=1j=1 j=1
condition 2) of Definition 2, it follows that 6 P; = 0, i. e.,

N
(A.2) ZUH”‘SQJ’ =0.

J'=1
Vice versa if §Q;, is a solution of system (A.2), then it satisfies also (A.1).

Therefore the systems (A.1) and (A.2) have the same solutions; to this end it is

necessary that the matrices of their coefficients have the same rank p (We have
N
N — p free unknowns). Consequently, 7, Z A} Ujj and Ujjr have the same

rank, i.e., N — M.

Appendix 2.

I prove now that the 2n x n matrix ( Yii ) has rank n. Let C;; be N — M 1.i.

i'i

n
solutions of ) X;;Cp; = 0; these solutions can be chosen also orthonormal.

i=1
From system (9) it follows that

(A.3) Yi = Z Aich Chi -
N-M
If A4 is a linear combination of Ak, ..., Agv—nr), 1€, Apgp = D qprkp, then
p=2
N-M
(A3) gives Vi, = Y Mp(Cpi + q,C1i), i.e., Yy; are linear combinations of
p=2

N — M — 1 vectors; this is not possible because Y;; has rank N — M. Similarly
no other Ay, is a linear combination of the remaining ones. In other words, the
matrix L with elements Ay, hasrank N — M.

Let us consider now the system

(A4) 2": Yyix; =0, 2": Xiix; =0,
i=1 i=1
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and prove that it has only the solution x; = 0. In this way our aim will be
N-M

achieved. From (A.4), we have x; = >_ u;,Cy;; by substituting this and (A.3)
h=1

in (A.4); we obtain

N-—-M
> hinChiprCri =0, ie., LCCTu=0.
h,r=1

This system can be written as
(A.5) Lu=0

because CCT = Iy_y.
Now L is a nX (N — M) matrix with rank N — M therefore we have u = 0
from (A.5), i.e., x; = 0.

Appendix 3.

Let us prove the following theorem
Let us consider a n x n matrix A and a n x p matrix B; moreover let AB have
rank p. It follows that A has rank p > p.

In fact the system A”g = 0 has n — p 1.i. solutions Qpoeend, Let Q be
an invertible n x n matrix whose first n — p rows are ng, . QZ_,,' It follows

that Q AB has rank p and its first n — p rows have null elements; the remaining

rows are p in number and, consequently, p < p. By applying this theorem
n n N ou;

with A = Y AwYriand B =1, > Y. Aj?j. 8—1, we have that the rank p of
i'=1 i=1j=1 qhn

> Ak Y is such that p > N — M. Now the rank of Y;; is N — M, from which
=1

p < N — M. Finally, we have p = N — M, a property which I used in section
II.
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