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ON THE NUMERICAL CALCULATION OF

HADAMARD FINITE-PART INTEGRALS

EZIO VENTURINO

This paper is dedicated to the memory of Claudio Barone,
friend and collaborator

In this paper we consider a simple method for calculating integrals
possessing strong singularities, to be interpreted in the Hadamard �nite-part
sense. We partition the original interval of integration and then integrate
over the subintervals by using suitably modi�ed low-order Gaussian-type
quadratures. Convergence is shown under suitable assumptions and numerical
evidence supports the theoretical �ndings.

1. Introduction.

Strongly singular integrals appear in many branches of applied mathemat-
ics, of which �uid dynamics and fracture mechanis are among the most impor-
tant ones. They arise from mixed boundary value problems, upon use of the
boundary integral method for their solution. If the unknown function on the
boundary is a tangential derivative, usually one obtains a singular integral equa-
tion, containing a Cauchy principal value integral. If the problem is instead
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reformulated for an unknown function which is a normal derivative, strongly
singular integrals appear, see e.g. [6], [8], [10], [11], [12].

Direct numerical methods for Hadamard �nite-part integrals are under cur-
rent investigation in the recent literature. Special formulae for their evaluation
have been introduced, see e.g. [13], [14]. In this note we would like to propose
a very simple low-order scheme for their calculation, which stems from recent
investigations of the author in related �elds, [1], [2], [16].

2. De�nitions.

We consider here the problem of evaluating the Hadamard �nite-part
integral

(1) I F P
α =

� 1

0

f (t)

|t − c|α
dt, 0 < c < 1, α ∈ R

+.

The �nite-part integral can be de�ned by subtracting out from the integrand a
suitable term so as to make the result �nite: usually this term is given by the
Taylor series of the integrand. Assuming m to be the integer part of α, and
assuming f to be m times continuously differentiable, we are then led to the
de�nition, [14]

(2)

� 1

0

t−α f (t) dt =

m−1�

k=0

(−1)k f (k)(1)

(1 − α)k+1
+

(−1)m

(1 − α)m

� 1

0

tm−α f (m)(t) dt,

with (a)k = �(a + k)/�(a), where now the last integral exists in the ordinary
sense.

If α is an integer, the above expression needs to be modi�ed by a logarith-
mic term, see [14], but the �nite-part integral can also be de�ned as a suitable
derivative under the sign of a corresponding Cauchy principal value integral, so
that, e.g. [13]

(3)

� 1

0

f (t)

|t − c|2
dt =

d

dc

� 1

0

f (t)

t − c
dt .

None of the above formulae are used in the algorithm we propose here,
although it is interesting to note that this second approach is used in [13]
to derive the quadrature rule for the �nite-part integral by differentiating the
corresponding rule for the principal value integral.
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3. The method.

Let us subdivide the basic interval [0, 1] by means of the breakpoints
tk = kh, k = 0, . . . , n, h = n−1 . Then

(4) I F P
α =

n�

k=1

Ik , Ik ≡

� kh

(k−1)h

f (t)

|t − c|α
dt .

Evidently, in general only one of the Ik �s gives again a Hadamard �nite-part
integral. Let us assume that c ∈ ((m − 1)h,mh), so that the strongly singular
integral is Im . We split Im into two �nite-part integrals, by means of the change
of variable s = φ−1(t) ≡ 1

h
[t−(m−1)h]. Then Im can be put into the following

form, letting s∗ = φ−1(c),

Im =

� s∗

0

g(s)

(s∗ − s)α
ds +

� 1

s∗

g(s)

(s − s∗)α
ds ≡ Im1

+ Im2
,(5)

g(s) = f (φ(s))φ�(s)
�
�
�

s − s∗

φ(s) − φ(s∗)

�
�
�
α

.

The proposed quadrature over each [(k − 1)h, kh], k = 1, . . . , n, is a low-
order Gaussian type rule. We replace each integral Ik by a q−nodes quadrature
as follows

(6) Ik ∼=

q�

i=1

wi f (xi ), k �= m, Im ∼=

q�

i=1

wi g(xi).

We devise the algorithm to converge for the number of subintervals tending to
in�nity, while keeping the order of the quadrature in each subinterval the same
and low enough so as to easily determine its weights and nodes.

We now address the question of how to determine the quadrature weights
and nodes. The basic tool we use to evaluate each Ik is given by the following
moment equations

(7)

q�

i=1

wi x
j
i = Mj , for k �= m;

q�

i=1

wi x
j
i = MH

j , for k = m,

where the right hand sides denote indeed the moments, to be de�ned below. The
latter can be explicitly obtained. Recalling from [14] that

� 1

0

t j

tα
dt =

1

j − α + 1
, α ∈ R

+,
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we indeed obtain, e.g. for the moments of the �rst integral in (5),

(8) MH
j ≡

� s∗

0

t j

tα
dt =

(s∗) j−α+1

j − α + 1
, α ∈ R

+.

In other words, in (6) we impose the quadrature to be extact for the low-order
moments, with respect of the weight function t−α . For some values of j it
is possible that the above integral exists either in the improper or even in the
ordinary sense. More in general, in view of (4), we will also need to evaluate
the following integrals, which always exist in the ordinary sense,

Mj ≡

� b

a

t j

tα
dt =

b j−α+1 − a j−α+1

j − α + 1
,(9)

a > 0, b − a = h, j = 0, 1, 2, . . . .

For low-order schemes, say q ≤ 4, we can derive explicitly the quadrature
nodes and weights by setting up a nonlinear system. The latter is then reduced
to a nonlinear algebraic equation, which is �nally solved by means of standard
closed-form formulae. For the rest of this section, let us then �x the interval
[a, b] under consideration. Also, in every formula that follows, let Mj be
understood as MH

j , whenever the quadrature is sought for the Hadamard �nite-
part integrals (5), i.e. for j = m, while let it be simply Mj for the rules related
to every other subinterval, j �= m.

Let us de�ne the following quantities

(10) s0 = 1, sl = (−1)l
�

1≤i1<i2<···<il≤q

xi1 · · · xil , l = 1, . . . , q,

as well as

s
( j)
0 = 1, s

( j)
l = (−1)l

�

1≤i1<i2<···<il ≤q

i1 ,i2 ,...,il �= j

xi1 · · · xil , j, l = 1, . . . , q.

Let us observe then that

(11)

q�

i=1

(x − xi ) =

q�

j=0

sj x
q− j .
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The system is constructed by imposing the quadrature formula to be exact
for polynomials up to degree 2q − 1, to obtain

(12)

w1 + w2 + · · · + wq = M0,

w1x1 + w2x2 + · · · + wq xq = M1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w1x
q−1
1 + w2x

q−1
2 + · · · + wq x

q−1
q = Mq−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w1x
2q−1
1 + w2x

2q−1
2 + · · · + wq x

2q−1
q = M2q−1.

To reduce it, let us consider the �rst q equations in the unknowns w1,
. . . , wq . The matrix of this subsystem is the q × q Vandermonde matrix
(x i

j )i=0,...,q−1; j=1,...,q . We reduce it to triangular form, by taking suitable lin-
ear combinations of adjacent rows. The system thus obtained has the matrix








1 1 1 · · · 1
x2 − x1 x3 − x1 · · · · · ·

(x3 − x1)(x3 − x2) · · · · · ·

· · · · · ·

(xq − x1) . . . (xq − xq−1)








and the right hand side








M0

M1 − x1M0

M2 − (x1 + x2) M1 + x1x2M0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mq−1 − (x1 + · · · + xq−1)Mq−2 + · · · + x1 · · · xq−1M0








The last equation gives then wq . With an exchange of the indices, we then �nd
the following expression for the weights:

(13) wj =

q�

i=1
i �= j

(xj − xi )
−1

� q−1�

l=0

s
( j)
q−l−1Ml

�

, j = 1, . . . , q.

For the nodes, we proceed on the bottom portion of (12) with the q × q

Vandermondematrix
�
x
q+i
j

�

i=0,...,q−1; j=1,...,q
. We take the q−1+ j -th equation,
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j = 0, . . . , q − 1, multiply it in turn q times by x1, . . . , xq and sum all these so
obtained q equations, to introduce the quantities sk :

Mq+ j = −Mq+ j−1s1 − x
q−2+ j
1 w1[x1x2 + x1x3 + · · · + x1xq]

− x
q−2+ j
2 w2[x1x2 + x2x3 + · · · + x2xq] − · · ·

− xq−2+ j
q wq[x1xq + x2xq + · · · + xq−1xq ]

= −Mq+ j−1s1 − Mq+ j−2s2 − x
q−3+ j
1 w1

�

2≤i1<i2<i3≤q

xi1 xi2xi3

−x
q−3+ j
2 w2

�

1≤i1<i2<i3≤q

i1 ,i2 ,i3 �=2

xi1 xi2xi3 − · · · − xq−3+ j
q wq

�

1≤i1<i2<i3≤q−1

xi1 xi2xi3 .

Proceeding inductively, completing each time the terms on the right hand side,
so as to introduce the sk �s up to k = q , by adding and subtracting the missing
terms, we obtain

(14) Mq+ j = −Mq+ j−1s1 − Mq+ j−2s2 − · · · − Mj sq , j = 0, . . . , q − 1.

This is a linear system for the unknowns sk . We can write it extensively by
reordering the unknowns as follows

(15)




M0 M1 M2 · · · Mq−2 Mq−1

M1 M2 M3 · · · Mq−1 Mq

· · · · · · · · · · · · · · · · · ·
Mq−1 Mq Mq+1 · · · M2q−3 M2q−2








sq

sq−1

· · ·
s1



 = −




Mq

Mq+1

· · ·
M2q−1





Let us then de�ne for i = 0, . . . , q − 1 the determinants

(16) �i =

�
�
�
�
�
�

M0 M1 M2 · · · Mi−1 −Mq Mi+1 · · · Mq−2 Mq−1

M1 M2 M3 · · · Mi −Mq+1 Mi+2 · · · Mq−1 Mq

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Mq−1 Mq Mq+1 · · · Mi+q−2 −M2q−1 Mi+q · · · M2q−3 M2q−2

�
�
�
�
�
�

as well as

(17) �̂i =

�
�
�
�
�
�

M0 M1 M2 · · · Mi−1 Mi+1 · · · Mq−2 Mq−1 Mq

M1 M2 M3 · · · Mi Mi+2 · · · Mq−1 Mq Mq+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Mq−1 Mq Mq+1 · · · Mi+q−2 Mi+q · · · M2q−3 M2q−2 M2q−1.

�
�
�
�
�
�

Notice that from (16) and (17)

(18) �i = (−1)q−i�̂i .
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Also, let

(19) �q = �̂q =

�
�
�
�
�
�
�

M0 M1 M2 · · · Mq−3 Mq−2 Mq−1

M1 M2 M3 · · · Mq−2 Mq−1 Mq

· · · · · · · · · · · · · · · · · · · · ·

Mq−1 Mq Mq+1 · · · M2q−4 M2q−3 M2q−2

�
�
�
�
�
�
�

By (11), it is easily veri�ed that the roots of the following nonlinear algebraic
equation are the sought quadrature nodes

(20)

q�

i=0

si x
q−i = 0.

On solving (15) by Cramer�s rule,

sq−i =
�i

�q
, i = 0, . . . , q − 1.

Substituting into (20) and using (18), we have

0 = xq +

q−1�

i=0

sq−i x
i = xq +

q−1�

i=0

�i

�q

x i = xq +

q−1�

i=0

(−1)q−i �̂i

�̂q

x i .

Upon multiplication by �̂q , the latter is equivalent to

q�

i=0

(−1)i�̂i x
i = 0,

which in turn can be �nally written in determinant form as

(21)

�
�
�
�
�
�
�
�
�

1 x x 2 · · · xq−2 xq−1 xq

M0 M1 M2 · · · Mq−2 Mq−1 Mq

M1 M2 M3 · · · Mq−1 Mq Mq+1

· · · · · · · · · · · · · · · · · · · · ·

Mq−1 Mq Mq+1 · · · M2q−3 M2q−2 M2q−1

�
�
�
�
�
�
�
�
�

= 0.

Its roots are the required quadrature nodes. In practice, the nodes are found by
using the explicit formulae for the zeros of the q−th degree equation. This of
course is possible only if q ≤ 4.
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Remark. The system (21) could be useful in case one wants to use a higher
order formula. This could be accomplished in principle by using the zeros of
the q−th degree equation as initial guesses for a root�nding method for the
equation of degree q + 1, or as endpoints for the subinterval in which the next
higher order quadrature node lies. The possibility of applying such technique
could be explicitly checked by using Stieltjes theorem, see Theorem 15, p. 232
of [5].

Remark. The drawback of the procedure described in this section consists
in the weights not being one-signed, contrary to what happens in standard
Gaussian quadrature. Indeed, e.g. for q = 1 we have w1 = M0, so that w1 > 0
only if α < 1, which is the case of ordinary or improper quadrature. This
fact might entail some kind of instability, mildly re�ected in the �gures of the
examples. However a sort of ill conditioning is reported to occur often in the
literature, for the numerical calculation of this type of integrals.

4. Convergence analysis.

We consider separately the two cases corresponding to the two intervals
with endpoint c, and to all the other subintervals, respectively. We start with the
analysis of the latter.

Since in all intervals not of the form (5) the integrals can be interpreted in
the ordinary sense, the error analysis for the above formulae follows from the
standard theory. Denoting by pm(t) the m − th orthogonal polynomial over
[a, b] with respect to the weight tγ , we have the following classical result, see
[7], p. 334.

Theorem 1. For the above described quadrature formulae the following error
estimates hold if the integrand function ψ is at least 2m times continuously
differentiable

(22) Em{ψ} ≡

� b

a

tγ ψ(t) dt −

m�

j=1

wjψ(xj ) =
ψ(2m)(ξ)

(2m)!

� b

a

p2m(t)tγ dt .

We then need to estimate the integral term, in terms of the interval length
b − a = h. Theorem 4, p. 203 of [7] holds for any generic family of orthogonal
polynomials. Thus the zeros xk , k = 1(1)q , of pq (t) must lie in [a, b]. Since in
(22) pq (t) is a monic polynomial, the following estimate follows

p2q (t) =

q�

k=1

(t − xk)
2 = O(h2q ), t ∈ [a, b].
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On using this result in (22), for the integrals (4), with k �= m, we then have the
following estimate.

Proposition 2. Assuming enough differentiability of the integrand, i.e. if f ∈

C2q [0, 1], for the proposed modi�ed Gaussian quadrature over [a, b] for Ik ,
k �= m, the error estimate for some ζ ∈ [a, b], is given by

(23) |Eq{ f }| ≤
| f (2q)(ζ )|

(2q)!

h2q−α+1

1 − α
= O(h2q+1−α).

We now turn to the analysis of the quadratures for (5). Let us �x our
attention on the �rst of (5). Assuming that the integrand is enough differentiable,
i.e. f ∈C2q [0, 1], or g ∈ C2q−1[0, 1], we can express it as a Taylor series with
remainder, in the interval [0, s∗].

Im1
≡

� s∗

0

t−αg(t) dt =

� s∗

0

2q−2�

i=0

1

i!
g(i)(0)t i−α dt +(24)

+

� s∗

0

R2q−1(ξt )t
−α dt,

where

(25) R2q−1(ξt ) =
1

(2q − 1)!
g(2q−1)(ξt )t

2q−1, 0 < ξt < t .

Then, recalling (8), observe that the �rst integral on the right hand side of (24)
becomes

(26)

2q−2�

i=0

1

i!
g(i)(0)MH

i .

Using now (7), which is exact for j = 0, 1, . . . , 2q − 1, we obtain from (24)

(27) Im1
=

2q−2�

i=0

1

i!
g(i)(0)

q�

j=1

wj x
i
j +

� s∗

0

R2q−1(ξt )t
−α dt .

By interchanging the summation order and using once again the Taylor series,
the �rst term on the right of (27) is

(28)

q�

j=1

wj

2q−2�

i=0

1

i!
g(i)(0)x i

j =

q�

j=1

wj [g(xj ) − R2q−1(ξxj )].
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Hence upon substituting (28) into (27) and in view of (25),

Im1
−

q�

j=1

wj g(xj ) =
−1

(2q − 1)!

q�

j=1

wj g
(2q−1)(ξxj )x

2q−1
j +(29)

+

� s∗

0

R2q−1(ξt )t
−αdt .

Notice that for �nite-part integrals the usual estimates involving absolute values
do not hold, since the �nite-part of a nonnegative integrand may have a negative
value, see the discussion on p. 13 of [4]. However, to circumvent this dif�culty,
let us impose the following restriction on the values of q and α, namely that
they satisfy

(30) 2q − α > 0.

With this constraint, the integral of the remainder term (25) appearing as the last
term in (29), becomes an ordinary integral. For the �rst term appearing on the
right of (29) we have the following estimate

−1

(2q − 1)!

q�

j=1

wj g
(2q−1)(ξxj )x

2q−1
j ≤

≤
−1

(2q − 1)!
min
1≤ j≤q

{g(2q−1)(ξxj )}

q�

j=1

wj x
2q−1
j ,

so that the following upper bound for (29) holds

Im1
−

q�

j=1

wj g(xj ) ≤ − min
1≤ j≤q

{g(2q−1)(ξxj )}
MH

2q−1

(2q − 1)!
+

� s∗

0

R2q−1(ξt )t
−α dt .

From this we then obtain

�
�
�
�
�
�
Im1

−

q�

j=1

wj g(xj )

�
�
�
�
�
�
≤

2

(2q − 1)!
�g(2q−1)�∞MH

2q−1.

On recalling (8) and the fact that 0 < s∗ ≤ h, the following result holds true.
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Proposition 3. Assuming the integrand function g to be 2q − 1 times con-
tinuously differentiable, or alternatively that f ∈ C2q [0, 1], the error for the
�nite-part integral over [0, s∗] is bounded above by

�
�
�
�
�
�
Im1

−

q�

j=1

wj g(xj )

�
�
�
�
�
�
≤

2

(2q − 1)!
�g(2q−1)�∞h2q−α.

A similar result holds for Im2
as well. Now, by considering the partition

(4), combining Propositions 2 and 3, we have the following convergence result.

Theorem 4. If f ∈C2q [0, 1], the proposedmodi�ed piecewise gaussian scheme
with q nodes is convergent to the �nite-part integral. Denoting by C a suitable
constant, the convergence rate is given by

�
�
�
�
�
�
I F P
α −

n�

k=1

q�

j=1

wj f (xj )

�
�
�
�
�
�
≤ Ch2q−α .

Proof. From the above considerations, indeed,
�
�
�
�
�
�
I F P
α −

n�

k=1

q�

j=1

wj f (xj )

�
�
�
�
�
�
≤

2

(2q − 1)!
�g(2q−1)�∞h2q−α +

+

n�

i=1
i �=m

|g(2q)(ζ )|

(2q)!

h2q−α+1

1 − α
,

from which the claim. �

Remark. Note that in (27) we cannot expand the function up to the term of

order 2q − 1, because otherwise the error term of order 2q contains x
2q
j , and

�q
j=1 wj x

2q
j need not be MH

2q . In this situation moreover it is not ensured that
0 < xj < s∗. However using one less term in the expansion does not affect the
overall convergence rate of the algorithm.

5. Examples.

Here we relate our numerical experience. We consider integrals of type (1),
where the integrand function is always f (t) = exp(t). In the tables we give the
numerical evidence for various choices of α and of the number of quadrature
nodes q . One advantage of the proposed rule is that it applies equally well to
the case of noninteger α.
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Table 1 c = .3 α = 2.0 q = 3

nodes value difference order

2 −.45565832726028E + 01

4 −.45565831419417E + 01 .13066E − 06

8 −.45565831274366E + 01 .14505E − 07 3.17

16 −.45565831272926E + 01 .14404E − 09 6.65

32 −.45565831272798E + 01 .12847E − 10 3.49

64 −.45565831272796E + 01 .19895E − 12 6.01

128 −.45565831272795E + 01 .42633E − 13 2.22

Table 2 c = .3 α = 3.0 q = 3

nodes value difference order

2 −.72511974696530E + 01

4 −.72511806456007E + 01 .16824E − 04

8 −.72511778454465E + 01 .28002E − 05 2.59

16 −.72511778039581E + 01 .41488E − 07 6.08

32 −.72511777966793E + 01 .72788E − 08 2.51

64 −.72511777967447E + 01 .65484E − 10 6.80

Table 3 c = .3 α = 4.0 q = 3

nodes value difference order

2 −.14821395736609E + 02

4 −.14820314707160E + 02 .10810E − 02

8 −.14819616622133E + 02 .69809E − 03 .63

16 −.14819542295120E + 02 .74327E − 04 3.23

32 −.14819518768671E + 02 .23526E − 04 1.66

64 −.14819517167844E + 02 .16008E − 05 3.88

128 −.14819516687770E + 02 .48007E − 06 1.74

256 −.14819516621064E + 02 .66706E − 07 2.85
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Table 4 c = .3 α = 2.3 q = 2

nodes value difference order

2 −.39406944207095E + 01

4 −.39383772911318E + 01 .23171E − 02

8 −.39376364230834E + 01 .74087E − 03 1.65

16 −.39375800011181E + 01 .56422E − 04 3.71

32 −.39375624892431E + 01 .17512E − 04 1.69

64 −.39375611513341E + 01 .13379E − 05 3.71

128 −.39375607357169E + 01 .41562E − 06 1.69

256 −.39375607039963E + 01 .31721E − 07 3.71

512 −.39375606941603E + 01 .98360E − 08 1.69

Table 5 c = .3 α = 2.3 q = 3

nodes value difference order

2 −.39375609431062E + 01

4 −.39375607242366E + 01 .21887E − 06

8 −.39375606935678E + 01 .30669E − 07 2.84

16 −.39375606931948E + 01 .37300E − 09 6.36

32 −.39375606931504E + 01 .44338E − 10 3.07

64 −.39375606931498E + 01 .62528E − 12 6.15

Table 6 c = .3 α = 2.3 q = 4

nodes value difference order

2 −.39375606931797E + 01

4 −.39375606931510E + 01 .28715E − 10

8 −.39375606931498E + 01 .11608E − 11 4.63

16 −.39375606931497E + 01 .10303E − 12 3.49

From the numerical experiments carried out, it seems that the weights not
being of one sign have some in�uence on the order of the convergence of the
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method, especially for values of α moderately high. However, convergence
is attained in all the examples, at an average rate at times larger than the one
theoretically predicted by Theorem 4.

6. Extensions.

As mentioned in the introduction, this investigation originates from some
other questions related to the calculation of line integrals, if the parametrization
of the integration path is not analytically known, [1], [2], [16]. The curve needs
evidently to be replaced by a suitable piecewise polynomial interpolant. The
interpolation error then plays an essential role in the algorithm, in the sense
that it would not make sense to have a highly convergent quadrature if the
interpolation scheme is poor, and vice-versa.

Let the integral in consideration be

I HL ≡

�

L

f (Q)

|Q − P |α
dQ =

� 1

0

f (r(t))|r �(t)|

|r(t) − r(t0)|α
dt .

Let rp be the union of the piecewise polynomial interpolants to r , each con-
structed over p + 1 nodes of the interval [0, 1]. The integral I HL is then calcu-
lated by replacing the integration path L with its interpolant Lp , constructed as
outlined above. In other words, we approximate I HL by means of

I HLp
≡

� 1

0

f (rp(t))|r
�
p(t)|

|rp(t) − rp(t0)|α
dt ,

and the latter is then calculated by the algorithm presented in Section 3. The
analysis can be done following the steps of [1] and [15]. For the convergence of
this method, we have then the following result.

Theorem 5. Suppose that the integrationpath L is parametrized by the function
r ∈ Cp+2[0, 1], with |r �| > 0. Assume that the composition map f ◦ r ∈

C2q [0, 1], and is the restriction to L of a twice continuously differentiable
function of several variables, de�ned in an open neighborhood of L. Then
for the calculation of the hypersingular integral I HL by means of a piecewise
gaussian quadrature rule of the type (4), the error is given by the expression

En(I
H
L ) = O(hmin[ p̃,2q−α]), p̃ =

� p p even
p + 1 p odd
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