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AN EXISTENCE RESULT FOR A NONLINEAR

PROBLEM IN A LIMIT CASE

FRANCESCO CHIACCHIO

In this paper we study the problem (1) in the limit case p = N . We
prove that such a problem admits at least a solution u if some suitable norms
of f and g are small enough. Furthermore we show that u is such that the

function w = eµ|u|−1
µ

sign(u) belongs to W 1,N
0 (�), where µ is some costant.

1. Introduction.

Let � be an open bounded set of R
N and let us consider the following

problem:

(1)

�
−div (a(x , u, Du)) = H (x , u, Du) + f − div (g) in D �(�)

u ∈ W
1,p
0 (�).

We suppose that −div(a(x , u, Du)) is a Leray-Lions operator acting on

W
1,p
0 (�), for some p > 1, and H (x , s, ζ ) is a Carathéodory function such that

for a.e. x ∈ �, any s ∈ R and any ζ ∈ R
N it holds

(2) −c0a(x , s, ζ ) · ζ ≤ H (x , s, ζ )sign(s) ≤ γ a(x , s, ζ ) · ζ

for some γ > 0, c0 ≥ 0. By the usual assumptions on a(x , s, ζ ) (see (9) for the
case p = N ), it is clear that H (x , u, Du) is a non linear term which grows at
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most like |Du|p with respect to Du. In this paper we study problem (1) in the
case p = N and we prove that it admits at least a solution if the source terms
( f and g) satisfy a suitable smallness assumption.

The main idea of the proof is to consider a standard approximate problem
(see [4]�[9]), labeled by ε , which always admits a solution uε . Then we
use a suitable function of uε as a test function in the approximate problem
obtaining an apriori estimate for �uε�W 1,N

0
(�) . Finally we prove that, after

passing to a subsequence, uε strongly converges in W 1,N
0 (�) to a function u

which is a solution of (1); moreover this solution is such that the function
w = N−1

γ
(e

γ

N−1 |u| − 1)sign(u) belongs to W 1,N
0 (�). We also show, by an

example, that problem (1) in general does not admit a unique solution. Finally
we compare our hypotheses on f to some others suf�cient to guarantee the
existence of a solution for (1) in W 1,N

0 (�) ∩ L∞(�) (see [11]), and we verify
that the former are less restrictive than the latter.

In the literature problems having the structure of (1) have been widely

studied. There exist some papers where solutions either in W
1,p
0 (�)∩ L∞(�) or

just in W
1,p
0 (�) are found. For the �rst type of results let us recall, e.g., [6], [7],

[8], and [17] where some further structure hypotheses, like sign conditions, on
the zero order term H (x , s, ζ ) are made. Also [2] and [11] are concerned with
bounded solutions. In these papers only a growth condition on H is assumed
and an a priori estimate is obtained by imposing a suitable smallness assumption
on the source terms. On the other hand in [4] and [5] one proves the existence of

a solution in W
1,p
0 (�) (possibly unbounded) for problem similar to (1), where

H satis�es a sign condition; while in [9] problem (1) is studied when p < N .
About this last paper we remark that for p < N it is suf�cient to assume that
the source terms f and g are in LN/p and LN/(p−1) respectively. As we will
show, in the limit case p = N the natural spaces for f and g are not Lebesgue
spaces but the Zygmund ones.

2. Preliminary results.

In this section we recall some de�nitions and classical properties about
rearrangements and then we introduce the Zygmund-spaces.

Let � be an open bounded set of R
N and let φ(x) : � → R be a

measurable function, we de�ne by µφ(t) ≡
�
�{x ∈ � : |φ(x)| > t}

�
� (t ≥ 0) the

distribution function of φ and by φ∗(s) ≡ sup{t > 0 : µφ(t) > s} (s ∈ (0, |�|))

the decreasing rearrangement of φ .

Exhaustive treatments of the theory of rearrangements can be found, e.g.,
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in [12] and [16]; here we only recall the following Hardy-Littlewood inequality:

(3)

�

�

|h(x)k(x)| dx ≤

� |�|

0

h∗(s)k∗(s) ds

for any h,k real measurable function de�ned in �.

The Zigmund-space L p(log L)q , p > 0, q ∈ R (see [3]), consists of all
measurable functions φ : � → R such that the following quantity is �nite

(4) �φ�L p(log L)q ≡

� � |�|

0

��

log
|�|

s

�q

φ∗(s)

�p

ds

�1/p

.

We observe that the following inclusion relations hold:

L p2(log L)q ⊂ L p1(log L)q if 0 < p1 < p2,(5)

L p(log L)q2 ⊂ L p(log L)q1 if q1 < q2.(6)

In particular, L p(log L)q ⊂ L p ∀q > 0, ∀ p > 0.

We �nally recall a result contained in [1] which will be used in the next
section:

Theorem 2.1. If u is a real function in W 1,N
0 (�), then

(7) u∗(s) ≤
�Du�N

NC
1/N
N

�
log

|�|

s

� N−1
N ∀s ∈ (0, |�|),

where CN is the measure of the unit sphere of R
N (CN = π N/2

�(1+N/2)
).

3. Existence theorem.

Let us consider the following problem:

(8)

�
−div(a(x , u, Du)) = H (x , u, Du) + f − div(g) inD

�(�)

u ∈ W 1,N
0 (�)

where:

(i) � is an open bounded set of R
N ;
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(ii) a(x , s, ζ ) : � × R × R
N → R

N is a Carathéodory function which
satis�es, for a.e. x ∈ �, any s ∈ R and any ζ, ζ � ∈ R

N with ζ �= ζ �,

(9)






(a(x , s, ζ )− a(x , s, ζ �))(ζ − ζ �) > 0

a(x , s, ζ ) · ζ ≥ α|ζ |N

|a(x , s, ζ )| ≤ β[b(x) + |s|N−1 + |ζ |N−1]

for some α > 0, β > 0, b ∈ L
N

N−1 (log L)
(N−1)2

N ;
(iii) H (x , s, ζ ) : � × R × R

N → R is a Carathéodory function such that
for some γ > 0, c0 ≥ 0

(10) −c0a(x , s, ζ ) · ζ ≤ H (x , s, ζ )sign(s) ≤ γ a(x , s, ζ ) · ζ

for a.e. x ∈ �, any s ∈ R, any ζ ∈ R
N ;

(iv) g ∈ L
N

N−1 (log L)
(N−1)2

N and f ∈ L1(log L)N−1 ≡ L(log L)N−1 .

Theorem 3.1. If (i)�(iv) hold and moreover

(11)
� f �L(log L)N−1

N N CN
+

1

N N−2C
N−1

N

N

· �g�
L

N
N−1 (log L)

(N−1)2

N

< α
� N − 1

γ

�N−1
,

then there exists at least a solution u of (8). Furthermore this solution is such
that the function

(12) w =
eµ|u| − 1

µ
sign(u)

belongs to W 1,N
0 (�), where µ =

γ

N−1
.

Proof. Step 1: An approximate problem.
Consider two sequences { fε} and {gε} such that:

(13)






fε → f in L1(�) and a.e. in �; gε → g in (L
N

N−1 (�))N

| fε | ≤ | f | a.e. in �; |gε| ≤ |g| a.e. in �

{ fε} and {gε} ∈ L∞(�).

These sequences can be obtained, e.g., by truncation of f and gi respectively
(g = (g1, · · · , gN)).

De�ne, for ε > 0,

(14) Hε(x , s, ζ ) =
H (x , s, ζ )

1+ ε|H (x , s, ζ )|
,
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from which it follows that Hε satis�es (10) as well as |Hε(x , s, ζ )| ≤

|H (x , s, ζ )|. Since, by the very de�nition, |Hε(x , s, ζ )| ≤ 1
ε
, a classical result

on nonlinear problems (see [14] and [15]) allows us to say that the approximate
problem:

(15)

�
−div(a(x , uε, Duε)) = Hε(x , uε, Duε) + fε − div(gε) inD

�(�)

uε ∈ W 1,N
0 (�) ∩ L∞(�)

admits a solution uε .

Step 2: A priori estimate for �uε�W 1,N
0
.

Let us de�ne the functions

wε =
eµ|uε| − 1

µ
sign(uε)(16)

vε = eγ |uε|wε.(17)

We observe that vε ∈ W 1,N
0 (�) ∩ L∞(�) and, since µ + γ = Nµ and

sign(wε) = sign(uε), the following equalities hold

eγ |uε| = (1+ µ|wε|)
N−1,(18)

Dwε = eµ|uε|Duε = (1+ µ|wε|)Duε.(19)

If we use vε as a test function in the weak formulation of (15) we obtain

�

�

a(x , uε, Duε)Dwεeγ |uε| dx =(20)

=

�

�

wε fεeγ |uε| dx +

�

�

(Dwε + γ |wε|Duε)gεeγ |uε| dx +

+

�

�

(Hε(x , uε, Duε)sign(uε) − γ a(x , uε, Duε)Duε)|wε|e
γ |uε| dx .

Now hypotheses (9) and (10), together with identities (18) and (19), give

α�Dwε�
N
N ≤

�

�

|wε|(1+ µ|wε |)
N−1| fε | dx +(21)

+ N

�

�

|Dwε|(1+ µ|wε|)
N−1|gε| dx ≤

≤

�

�

|wε|(1+ µ|wε|)
N−1| f |dx + N

�

�

|Dwε |(1+ µ|wε|)
N−1|g| dx ,
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where the last inequality follows from (13). At this point we recall that for every
θ > 0 and ρ > 1 there exists a constant C̃(ρ, θ) such that

(22) (1+ x)ρ ≤ (1+ θ)xρ + C̃(ρ, θ) ∀x ≥ 0.

Using (22) and Hölder�s inequality in (21), we get

α�Dwε�
N
N ≤ C̃

�

�

|wε|| f | dx + (1+ θ)

�

�

µN−1 |wε|
N | f | dx +(23)

+ NC̃

�

�

|Dwε||g| dx + N(1 + θ)

�

�

µN−1|Dwε||wε|
N−1|g| dx ≤

≤ C̃� f �
N−1

N

1

��

�

|wε|
N | f | dx

� 1
N

+ (1+ θ)µN−1

�

�

|wε|
N | f | dx +

+ NC̃�g� N
N−1

�Dwε�N + N(1 + θ)µN−1�Dwε�N

��

�

|wε|
N |g|

N
N−1 dx

� N−1
N

where C̃ = C̃(N − 1, θ) is the constant appearing in (22). Finally, Hardy-
Littlewood inequality (3) and estimate (7) give

α�Dwε�
N
N ≤ C̃� f �

N−1
N

1

�Dwε�N

NC
1
N

N

� � |�|

0

(log
|�|

s
)N−1 f ∗(s)ds

�1/N

+(24)

+ (1+ θ)µN−1 �Dwε�
N
N

N N CN

� |�|

0

(log
|�|

s
)N−1 f ∗(s) ds + NC̃�Dwε�N �g� N

N−1
+

+ (1+ θ)µN−1 �Dwε�
N
N

N N−2C
N−1

N

N

�� |�|

0

(log
|�|

s
)N−1(|g|∗(s))

N
N−1 ds

� N−1
N

=

= C̃� f �
N−1

N

1

�Dwε�N

NC
1
N

N

� f �
1
N

L(log L)N−1 + (1+ θ)µN−1 �Dwε�
N
N

N N CN
� f �L(log L)N−1+

+NC̃�Dwε�N �g� N
N−1

+ (1+ θ)µN−1 �Dwε�
N
N

N N−2C
N−1

N

N

�g�
L

N
N−1 (log L)

(N−1)2

N

.

By hypothesis, the quantity

(25) η ≡ α −
�� f �L(log L)N−1)

N N CN
+

�g�
L

N
N−1 (log L)

(N−1)2

N

N N−2C
N−1

N

N

�
µN−1
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is positive. Then from (25), choosing for example θ = 1
2
( η

α−η
) ≡ θ̄ , we obtain

�Dwε�N ≤(26)

≤
�2

η
C̃(N − 1, θ̄)

�
N−1C

− 1
N

N � f �
N−1

N

1 � f �
1
N

L(log L)N−1 + N�g� N
N−1

�� 1
N−1

.

Because of the de�nition of wε , the above inequality states also that uε is
a bounded sequence in W 1,N

0 (�) and so, up to a subsequence, we can say

(27)

�
wε → w a.e. in �, uε → u a.e. in �

wε � w weakly in W 1,N
0 (�), uε � u weakly in W 1,N

0 (�),

where

(28) w =
eµ|u| − 1

µ
sign(u).

Step 3: Strong convergence of Duε in (LN (�))N .
Let us de�ne, for k ≥ 0, the functions:

(29) Gk(s) =

�
s − k if s ≥ k
0 if − k < s < k
s + k if s ≤ −k

(30) Tk(s) =

�
k if s ≥ k
s if − k < s < k
−k if s ≤ −k.

Obviously we have:

(31) D(uε − u) = D(Gk(uε)) − D(Gk(u)) + D(Tk(uε)) − D(Tk(u)).

In order to show that Duε strongly converges in (LN (�))N we �rstly prove
that

(32) lim sup
ε→0

�

�

|DGk(uε)|
N dx → 0 as k → ∞.

To this aim we can use the same arguments contained in [9] to say that

α

�

�

|DGk(uε)|
N dx ≤

�

�

Gk(uε)(1+ µ|wε |)
N−1 fε dx +(33)

+

�

�

DGk(uε)(1+µ|wε |)
N−1gε dx +γ

�

�

Duε(1+µ|wε |)
N−1|Gk(uε)|gε dx ≤

≤

�

�

|Gk(uε)|(1+µ|wε |)
N−1| fε | dx +N

�

�

|DGk(wε)|(1+µ|wε |)
N−1|gε| dx .
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Now we can apply Vitali�s Theorem to all terms appearing on the right
hand side of (33). Let us consider, for example, the last integral. If E is any
measurable subset of �, using (13), we get

�

E

|DGk(wε)|(1+ µ|wε|)
N−1|gε| dx ≤(34)

≤ 2N−2
� �

E

|Dwε||g|dx + µN−1

�

E

|Dwε||wε|
N−1|g| dx

�
.

Now the last inequality together with Hölder�s inequality, Hardy-Little-
wood inequality and Theorem 2.1 gives

�

E

|DGk(wε)|(1+ µ|wε|)
N−1|gε| dx ≤(35)

≤ 2N−2

�

�Dwε�N

�
� |E |

0

(|g|∗(s))
N

N−1 ds
� N−1

N +

+ µN−1 �Dwε�
N
N

N N−1C
N−1

N

N

�
� |E |

0

(log
|�|

s
)N−1(|g|∗(s))

N
N−1

� N−1
N ds

�

.

The equiintegrability of the sequence {|DGk(wε)|(1 + µ|wε|)
N−1|gε|}

follows from (26), hypothesis (iv) and the inclusion relations in the Zygmund-
spaces. We can treat analogously the other terms in (33) and so thanks to the
Vitali�s Theorem it holds

α lim sup
ε→0

�

�

|DGk(uε)|
N dx ≤(36)

≤

�

�

|Gk(u)|(1+ µ|w|)N−1 | f | dx + N

�

�

|DGk(w)|(1+ µ|w|)N−1 |g| dx .

By the previous calculations it is also clear that the functions |u|(1 +

µ|w|)N−1 | f | and |Dw|(1 + µ|w|)N−1 |g| belong to L1(�). Then (32) follows
from (36).

Finally, as in [9], one can prove

(37) DTk(uε) → DTk(u) strongly in (LN (�))N

for every �xed k ≥ 0. Indeed (37) can be obtained by suitably adapting the
arguments in [9], taking into account Theorem 2.1.

So step 3 is completely proved.
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Now it is easy to show, passing to the limit in (15), that u is a solution of
problem (8) (see [7]). �

Remark I. We observe that in general problem (8) does not admit a unique
solution. To this aim it is suf�cient to consider problem (8) when N = 2,
a(x , s, ζ ) = ζ , f = 0, g = 0, H (x , s, ζ ) = |ζ |2 and � = BR = {x ∈ R

2 :
|x | < R}:

(38)

�
−�u = |Du|2 inD

�(BR)

u ∈ H 1
0 (BR).

In this case Theorem 3.1 assures the existence of a solution u such that:

(39) w = e|u| − 1∈ H 1
0 (BR).

A function that satis�es (38) as well as (39) is obviously u = 0. Furthermore
(see also [13]) the following family of radial functions:

ψ(x) = ψ(|x |) = −

� R

|x|

1

r log r + Cr
dr =(40)

= log

�
�
�
�
log |x | + C

log R + C

�
�
�
�, ∀C < − log R,

is a solution of problem (38), as a straightforward calculation shows. On the
other hand ψ(x) does not satisfy condition (39), indeed

(41)

�

BR

|D(eψ(|x|) − 1)|2 dx =
2π

(log R + C)2

� R

0

1

r
dr = +∞.

Remark II. If hypothesis (10) is replaced by

(42) |H (x , s, ζ )| ≤ γ |ζ |N ,

the statement of Theorem 3.1 holds true with the same assumption on f and g.

For example if (42) holds, α = γ = 1 and g = 0, then Theorem 3.1 states
that the problem:

(43)

�
−div(a(x , u, Du)) = H (x , u, Du) + f inD

�(�)

u ∈ W 1,N
0 (�)
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admits a solution if f satis�es :

(44) � f �L(log L)N−1 < (N − 1)N−1N N CN .

Under hypothesis (42) the existence of a bounded solution of problem (43)
has been studied, for example, in [10] and [11]. In this last paper it is shown
that if f ∈ L1(�) and moreover f is such that

(45)
�
� |�|

0

1

s

�
� s

0

f ∗(t)dt
� 1

N−1 ds
�N−1

< (N − 1)N−1N N CN ,

then problem (43) admits a solution in W 1,N
0 (�) ∩ L∞(�).

We �rstly observe that for N = 2 conditions (44) and (45) are the same.
If N ≥ 3 assumption (45) is stronger than (44). Indeed it is easy to show

that if the left hand side of (45) is �nite then � f �L(log L)N−1 is �nite too and more
precisely it holds

(46) � f �L(log L)N−1 ≤ (N − 1)N−1
�
� |�|

0

1

s

�
� s

0

f ∗(t) dt
� 1

N−1 ds
�N−1

.
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