CONVERGENCE IN GENERALIZED SCHATTEN CLASSES OF OPERATORS

J.M. ALMIRA - F. PÉREZ ACOSTA

In this paper we give definitions for several generalized Schatten classes of operators and prove that several properties from the classes S_{p} can be generalized to them. The main goal is characterization of convergence in these classes. We also will prove that they are quasi-Banach spaces.

1. Introduction.

Let H be a Hilbert space and consider $B(H, H)$, the algebra of bounded linear operators $T: H \rightarrow H$. Let $T \in B(H, H)$ be a compact operator. Then the numbers

$$
\alpha_{n}(T)=\inf _{x_{1}, \ldots, x_{n-1} \in H} \sup _{\|x\|=1,\left(x, x_{1}\right)=\ldots=\left(x, x_{n-1}\right)=0}\|T x\|
$$

and

$$
\lambda_{n}(T)=\inf _{\operatorname{rank}(S)<n}\|T-S\|
$$

both coincide with the n-th s-number of T (which is the n-th eigenvalue of $\left.\left(T^{*} T\right)^{\frac{1}{2}}\right)$ ([3]). The Schatten class of operators $S_{p}(1 \leq p<\infty)$ is then defined (see [3]) by

$$
S_{p}=\left\{T \in B(H, H):\left\{\lambda_{n}(T)\right\}_{n=1}^{\infty} \in l_{p}\right\}
$$

Entrato in Redazione il 30 aprile 1998.
The first author was supported by Gobierno Autónomo de Canarias.

This is a Banach algebra with the norm

$$
\|T\|_{S_{p}}=\left\|\left\{\lambda_{n}(T)\right\}_{n=1}^{\infty}\right\|_{L_{p}}
$$

In this paper we give definitions for several generalized Schatten classes of operators and prove that several properties from the classes S_{p} can be generalized to them. The main goal is characterization of convergence in these classes. We also will prove that they are quasi-Banach spaces.

2. Generalized Schatten classes of operators.

Let X, Y be two Banach spaces. Denote by $\boldsymbol{B}(X, Y)$ the space of bounded linear operators $T: X \rightarrow Y$, by $K(X, Y)$ the subspace of compact operators and by $F(X, Y)$ the closure of the space of finite rank bounded operators. Then $T \in F(X, Y)$ if and only if $\lim _{n \rightarrow \infty} \delta_{n}(T)=0$, where

$$
\delta_{n}(T)=\inf _{\operatorname{rank}(S) \leq n, S \in \boldsymbol{B}(X, Y)}\|T-S\|
$$

is the n-th linear width of T (see [2]). On the other hand, if

$$
d^{n}(T)=\inf _{L_{1}, \ldots, L_{n} \in X^{*}} \sup _{\|x\|=1, L_{1} x=\ldots=L_{n} x=0}\|T x\| ; d^{0}(T)=\|T\|
$$

is the n-th width of T in the sense of Gelfand, it is well known that $T \in K(X, Y)$ if and only if $\lim _{n \rightarrow \infty} d^{n}(T)=0$ (see [2]).

Observe that $d^{n}(T)$ generalizes $\alpha_{n+1}(T)$ (use the Riesz-Fischer representation theorem) and $\delta_{n}(T)$ generalizes $\lambda_{n+1}(T)$.
Definition 2.1. Let X, Y be Banach spaces and let $\beta=\left\{b_{n}\right\}$ be a sequence of non negative real numbers. We define

$$
\begin{aligned}
& \sum_{p}^{\beta}(X, Y)=\left\{T \in \boldsymbol{B}(X, Y):\|T\|_{\Sigma_{p}^{\beta}(X, Y)}=\left\|\left\{b_{n} d^{n}(T)\right\}_{n=0}^{\infty}\right\|_{l_{p}}<\infty\right\} \\
& S_{p}^{\beta}(X, Y)=\left\{T \in \boldsymbol{B}(X, Y):\|T\|_{S_{p}^{\beta}(X, Y)}=\left\|\left\{b_{n} \delta_{n}(T)\right\}_{n=0}^{\infty}\right\|_{l_{p}}<\infty\right\}
\end{aligned}
$$

Remark 2.1. In what follows we will use the following notation: $\Sigma_{p}^{\beta}(X)$ denotes the set $\Sigma_{p}^{\beta}(X, X)$ and $S_{p}^{\beta}(X)$ denotes the set $S_{p}^{\beta}(X, X)$.

Now we list several well known properties of the sequences $\left\{d^{n}(T)\right\}_{n=1}^{\infty}$ and $\left\{\delta_{n}(T)\right\}_{n=1}^{\infty}$:

Proposition 2.1. Let $T \in \boldsymbol{B}(X, X)$. Then the sequence $\left\{d^{n}(T)\right\}_{n=1}^{\infty}$ is nonincreasing. Furthermore $d^{n}(T) \leq \delta_{n}(T)$ for all n.

Proof. See [2].
Proposition 2.2. Let $T_{1}, T_{2} \in \boldsymbol{B}(X, Y)$. Then
(1) $d^{n+m}\left(T_{1}+T_{2}\right) \leq d^{n}\left(T_{1}\right)+d^{m}\left(T_{2}\right)$
(2) $\left|d^{n}\left(T_{1}\right)-d^{n}\left(T_{2}\right)\right| \leq\left\|T_{1}-T_{2}\right\|$
(3) $\delta_{n+m}\left(T_{1}+T_{2}\right) \leq \delta_{n}\left(T_{1}\right)+\delta_{m}\left(T_{2}\right)$
(4) $\left|\delta_{n}\left(T_{1}\right)-\delta_{n}\left(T_{2}\right)\right| \leq\left\|T_{1}-T_{2}\right\|$
for all $n, m \in \mathbb{N}$. Furthermore, if $T_{1} \in \boldsymbol{B}(Y, Z), T_{2} \in \boldsymbol{B}(X, Y)$, and $T_{3} \in$ $\boldsymbol{B}(W, X)$ then
(5) $d^{n+m}\left(T_{1} T_{2}\right) \leq d^{n}\left(T_{1}\right) d^{m}\left(T_{2}\right)$
(6) $d^{n}\left(T_{1} T_{2} T_{3}\right) \leq\left\|T_{1}\right\| d^{n}\left(T_{2}\right)\left\|T_{3}\right\|$
(7) $\delta_{n}\left(T_{1} T_{2} T_{3}\right) \leq\left\|T_{1}\right\| \delta_{n}\left(T_{2}\right)\left\|T_{3}\right\|$

Proof. See [1].
Corollary 2.3. Let $\beta=\left(b_{n}\right) \subset(0, \infty)$ such that $\sup _{n \in \mathbb{N}}\left\{\frac{\max \left\{b_{2 n}, b_{2 n+1}\right\}}{b_{n}}\right\}<\infty$.
Then $\left(\Sigma_{p}^{\beta}(X, Y),\|\cdot\|_{\Sigma_{p}^{\beta}(X, Y)}\right)$ and $\left(S_{p}^{\beta}(X, Y),\|\cdot\|_{S_{p}^{\beta}(X, Y)}\right)$ are quasinormed spaces.
Proof. Let $\sup _{n \in N}\left\{\frac{\max \left\{b_{2 n}, b_{2 n+1}\right\}}{b_{n}}\right\}=C<\infty$. Then

$$
\begin{aligned}
& {\left[\sum_{n=0}^{\infty} b_{2 n}^{p} d^{2 n}\left(T_{1}+T_{2}\right)^{p}\right]^{\frac{1}{p}} \leq\left[\sum_{n=0}^{\infty} C^{p} b_{n}^{p}\left(d^{n}\left(T_{1}\right)+d^{n}\left(T_{2}\right)\right)^{p}\right]^{\frac{1}{p}}} \\
& \leq C\left[\left(\sum_{n=0}^{\infty} b_{n}^{p} d^{n}\left(T_{1}\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=0}^{\infty} b_{n}^{p} d^{n}\left(T_{2}\right)^{p}\right)^{\frac{1}{p}}\right] \\
& =C\left(\left\|T_{1}\right\|_{\Sigma_{p}^{\beta}(X, Y)}+\left\|T_{2}\right\|_{\Sigma_{p}^{\beta}(X, Y)}\right)
\end{aligned}
$$

and

$$
\left[\sum_{n=0}^{\infty} b_{2 n+1}^{p} d^{2 n+1}\left(T_{1}+T_{2}\right)^{p}\right]^{\frac{1}{p}} \leq C\left(\left\|T_{1}\right\|_{\Sigma_{p}^{\beta}(X, Y)}+\left\|T_{2}\right\|_{\Sigma_{p}^{\beta}(X, Y)}\right)
$$

Hence

$$
\left\|T_{1}+T_{2}\right\|_{\Sigma_{p}^{\beta}(X, Y)}^{p} \leq 2 C^{p}\left(\left\|T_{1}\right\|_{\Sigma_{p}^{\beta}(X, Y)}+\left\|T_{2}\right\|_{\Sigma_{p}^{\beta}(X, Y)}\right)^{p}
$$

and

$$
\left\|T_{1}+T_{2}\right\|_{\Sigma_{p}^{\beta}(X, Y)} \leq 2^{\frac{1}{p}} C\left(\left\|T_{1}\right\|_{\Sigma_{p}^{\beta}(X, Y)}+\left\|T_{2}\right\|_{\Sigma_{p}^{\beta}(X, Y)}\right)
$$

so that $\|\cdot\|_{\Sigma_{p}^{\beta}(X, Y)}$ is a quasinorm. The same arguments prove that $\|\cdot\|_{\Sigma_{p}^{\beta}(X, Y)}$ is also a quasinorm.
Corollary 2.4. $\left(\Sigma_{p}^{\beta}(X),\|\cdot\|_{\Sigma_{p}^{\beta}(X)}\right)$ and $\left(S_{p}^{\beta}(X),\|\cdot\|_{S_{p}^{\beta}(X)}\right)$ are algebras. Furthermore, if $b_{0}>0$,

$$
\begin{aligned}
& \left\|T_{1} T_{2}\right\|_{S_{p}^{\beta}(X)} \leq \frac{1}{b_{0}}\left\|T_{1}\right\|_{S_{p}^{\beta}(X)}\left\|T_{2}\right\|_{S_{p}^{\beta}(X)} \\
& \left\|T_{1} T_{2}\right\|_{\Sigma_{p}^{\beta}(X)} \leq \frac{1}{b_{0}}\left\|T_{1}\right\|_{\Sigma_{p}^{\beta}(X)}\left\|T_{2}\right\|_{\Sigma_{p}^{\beta}(X)} .
\end{aligned}
$$

Proof. Let $T_{1}, T_{2} \in S_{p}^{\beta}(X)$. Then

$$
\begin{aligned}
& \left\|T_{1} T_{2}\right\|_{S_{p}^{\beta}(X)}=\left\|\left\{b_{n} \delta_{n}\left(T_{1} T_{2}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}} \\
& \leq\left\|\left\{b_{n}\left\|T_{1}\right\| \delta_{n}\left(T_{2}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}}=\left\|T_{1}\right\|\left\|\left\{b_{n} \delta_{n}\left(T_{2}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}} \\
& \leq \frac{1}{b_{0}}\left\|T_{1}\right\|_{S_{p}^{\beta}(X)}\left\|T_{2}\right\|_{S_{p}^{\beta}(X)} .
\end{aligned}
$$

The same arguments are valid on $\left(\Sigma_{p}^{\beta}(X),\|\cdot\|_{\Sigma_{p}^{\beta}(X)}\right)$.
Corollary 2.5. Let $T_{1} \in \Sigma_{p_{1}}^{\beta}(X)$ and $T_{2} \in \Sigma_{p_{2}}^{\beta^{*}}(X)$, where $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}$ and $\beta=\left\{b_{n}\right\}_{n=0}^{\infty} \subset(0, \infty), \beta^{*}=\left\{\frac{1}{b_{n}}\right\}_{n=0}^{\infty}$ and set $\delta=\{1\}_{n \in \mathbb{N}}$. Then

$$
\left\|T_{1} T_{2}\right\|_{\Sigma_{p}^{\delta}(X)} \leq 2^{\frac{1}{p}}\left\|T_{1}\right\|_{\Sigma_{p_{1}}^{\beta}(X)}\left\|T_{2}\right\|_{\Sigma_{p_{2}}^{\beta^{*}(X)}} .
$$

Proof. We have that

$$
\begin{aligned}
& {\left[\sum_{n=0}^{\infty} d^{2 n}\left(T_{1} T_{2}\right)^{p}\right]^{\frac{1}{p}} \leq\left[\sum_{n=0}^{\infty} d^{n}\left(T_{1}\right)^{p} d^{n}\left(T_{2}\right)^{p}\right]^{\frac{1}{p}}} \\
& =\left[\sum_{n=0}^{\infty} b_{n}^{p} d^{n}\left(T_{1}\right)^{p}\left(\frac{1}{b_{n}}\right)^{p} d^{n}\left(T_{2}\right)^{p}\right]^{\frac{1}{p}} \\
& \leq\left[\sum_{n=0}^{\infty} b_{n}^{p_{1}} d^{n}\left(T_{1}\right)^{p_{1}}\right]^{\frac{1}{p_{1}}}\left[\sum_{n=0}^{\infty}\left(\frac{1}{b_{n}}\right)^{p_{2}} d^{n}\left(T_{2}\right)^{p_{2}}\right]^{\frac{1}{p_{2}}} \\
& =\left\|T_{1}\right\|_{\sum_{p_{1}}^{\beta}(X)}\left\|T_{2}\right\|_{\Sigma_{p_{2}}^{p^{*}}(X)}
\end{aligned}
$$

and, by an analogous argument,

$$
\left[\sum_{n=0}^{\infty} d^{2 n+1}\left(T_{1} T_{2}\right)^{p}\right]^{\frac{1}{p}} \leq\left\|T_{1}\right\|_{\Sigma_{p_{1}}^{\beta}(X)}\left\|T_{2}\right\|_{\Sigma_{p_{2}}^{\beta^{*}}(X)}
$$

also holds. Hence

$$
\left\|T_{1} T_{2}\right\|_{\Sigma_{p}^{\delta}(X)}^{p} \leq 2\left[\left\|T_{1}\right\|_{\Sigma_{p_{1}}^{\beta}(X)}\left\|T_{2}\right\|_{\Sigma_{p_{2}}^{p^{*}(X)}}\right]^{p}
$$

and the proof follows.
It is clear that if $\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\| l_{l_{p}}<\infty$ then

$$
\left\|\left\{b_{n} d^{n}(T)\right\}_{n=1}^{\infty}\right\|_{l_{p}} \leq\left\|\left\{b_{n}\|T\|\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\|T\|\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}<\infty
$$

and

$$
\left\|\left\{b_{n} \delta_{n}(T)\right\}_{n=1}^{\infty}\right\|_{l_{p}} \leq\left\|\left\{b_{n}\|T\|\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\|T\|\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}<\infty
$$

for all $T \in B(X, Y)$. Hence we have the following.
Proposition 2.6. If $\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}<\infty$ then $\Sigma_{p}^{\beta}(X, Y)=S_{p}^{\beta}(X, Y)=\boldsymbol{B}(X, Y)$.
Definition 2.2. We say that $\Sigma_{p}^{\beta}(X, Y)\left(S_{p}^{\beta}(X, Y)\right.$, respectively) is a proper generalized Schatten Class of Operators if $\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\infty$.

Proposition 2.7. If $\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\infty$ then $\Sigma_{p}^{\beta}(X, Y) \subseteq K(X, Y)$ and $S_{p}^{\beta}(X, Y) \subseteq F(X, Y)$.
Proof. Let $T \in \Sigma_{p}^{\beta}(X, Y)$. If $T \notin K(X, Y)$ then the sequence $\left\{d^{n}(T)\right\}$ does not converge to zero. Hence there exists some $c>0$ such that $d^{n}(T) \geq c$ for all n. Hence

$$
\|T\|_{\Sigma_{p}^{\beta}(X, Y)}=\left\|\left\{b_{n} d^{n}(T)\right\}_{n=0}^{\infty}\right\|_{l_{p}} \geq c\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{L_{p}}=\infty
$$

which is in contradiction with $T \in \Sigma_{p}^{\beta}(X, Y)$.
The second claim has an analogous proof.
Proposition 2.8. For all compact operator $T \in K(X, Y)$ there exists some sequence $\beta=\left\{b_{n}\right\} \subset\left[0, \infty\left[\right.\right.$ such that $\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\infty$ for all $p \geq 1$ and $T \in \Sigma_{p}^{\beta}(X, Y)$.

Proof. $T \in K(X, Y)$ implies that $\lim _{n \rightarrow \infty} d^{n}(T)=0$. Hence we may choose a sequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ such that $n_{k}<n_{k+1}$ and $d^{n_{k}}(T)<2^{-k}$ for all k. We set $\beta=\left\{b_{n}\right\}$, where

$$
b_{n}= \begin{cases}1 & \text { if } \exists k, n=n_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\infty$ for all $p \geq 1$ and

$$
\|T\|_{\Sigma_{p}^{\beta}(X, Y)}=\left\|\left\{b_{n} d^{n}(T)\right\}_{n=0}^{\infty}\right\|_{l_{p}}=\left\{\sum_{k=0}^{\infty} d^{n_{k}}(T)^{p}\right\}^{\frac{1}{p}}<\infty .
$$

The same arguments are valid to prove the following.
Proposition 2.9. For all $T \in F(X, Y)$ there exists some sequence $\beta=\left\{b_{n}\right\} \subset$ $\left[0, \infty\left[\right.\right.$ such that $T \in S_{p}^{\beta}(X, Y),\left\|\left\{b_{n}\right\}_{n=1}^{\infty}\right\|_{l_{p}}=\infty$ for all $p \geq 1$.

From the fact that for any subspace X_{n} of dimension $\leq n$ of a Banach space X there exists a projection $P_{n}: X \rightarrow X$ on X_{n} of norm $\leq \sqrt{n}+1$, it can be deduced that (see [2]).

Proposition 2.10. For all $T \in \boldsymbol{B}(X, Y)$ and all n,

$$
\delta_{n}(T) \leq(1+\sqrt{n}) d^{n}(T)
$$

Hence we have the following

Corollary 2.11.

$$
S_{p}^{\left(b_{n}\right)}(X, Y) \subseteq \Sigma_{p}^{\left(b_{n}\right)}(X, Y) \subseteq S_{p}^{\left(\frac{b_{n}}{1+\sqrt{n}}\right)}(X, Y)
$$

Corollary 2.12. Let us assume that $\left\|\left\{\frac{b_{n}}{1+\sqrt{n}}\right\}_{n=0}^{\infty}\right\|_{l_{p}}=\infty$. Then

$$
\Sigma_{p}^{\left(b_{n}\right)}(X, Y) \subseteq F(X, Y)
$$

Proposition 2.13. Let X be an infinite dimensional Banach space. Let $\left\{\varepsilon_{n}\right\}$ be a non-increasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. Then there exists an operator (with no finite rank) $T \in F(X, X)$ such that $\delta_{n}(T) \leq \varepsilon_{n}$ (hence, $d^{n}(T) \leq \varepsilon_{n}$) for all n.

Proof. We choose a sequence $\left\{a_{n}\right\}$ such that $\sum_{k=n}^{\infty} a_{k}=\varepsilon_{n}$ for all n and let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a free subset of X. Set $X_{n}=\operatorname{span}\left\{x_{k}\right\}_{k=1}^{n}$ for $n \geq 1$ and $X_{0}=\{0\}$.

Denote by P_{n} a projection of X on X_{n}. Then the series $\sum_{n=1}^{\infty} a_{n} \frac{1}{\left\|P_{n}\right\|} P_{n}$ is absolutely convergent, so that it converges to some operator

$$
T=\sum_{n=1}^{\infty} a_{n} \frac{1}{\left\|P_{n}\right\|} P_{n} .
$$

Now it is clear that $\operatorname{rank}\left(S_{n}\right) \leq n$ for all n, where $S_{0}=P_{0}$ and

$$
S_{n}=\sum_{k=1}^{n} a_{k} \frac{1}{\left\|P_{k}\right\|} P_{k}
$$

since $X_{0} \subset \ldots \subset X_{n-1} \subset X_{n} \subset \ldots$. Hence

$$
\delta_{n}(T) \leq \| T-S_{n} \mid \leq \sum_{k=n+1}^{\infty} a_{k}=\varepsilon_{n} \text { for all } n .
$$

Corollary 2.14. Let X be a Banach space. Then for all $\beta=\left\{b_{n}\right\} \subset[0, \infty)$ there are $T \in \Sigma_{p}^{\beta}(X, X)$ and $S \in S_{p}^{\beta}(X, X)$, operators with no finite rank.

A normed linear space Y has the extension property (cf. [2]) if for all normed linear space X and all M linear subspace of X and $T \in \boldsymbol{B}(M, Y)$, there exists an extension $\bar{T} \in \boldsymbol{B}(X, Y)$ with $\|\bar{T}\|=\|T\|$. It is well known that if Y has the extension property then all $T \in \boldsymbol{B}(X, Y)$ satisfy the relation $d^{n}(T)=\delta_{n}(T)$ for all n. Hence we have the following
Proposition 2.15. If Y has the extension property then $\Sigma_{p}^{\beta}(X, Y)=S_{p}^{\beta}(X, Y)$ for all X and β.

3. Convergence in generalized Schatten classes of operators.

In what follows we will assume that $\left\{b_{n}\right\} \subset(0, \infty)$ and

$$
\sup _{n \in \mathbb{N}}\left\{\frac{\max \left\{b_{2 n}, b_{2 n+1}\right\}}{b_{n}}\right\}=C<\infty,
$$

to be sure hat the generalized Schatten classes are quasinormed spaces.

Theorem 3.1. The sequence of operators $\left\{T_{m}\right\}$ converges to T in the topology of $S_{p}^{\beta}(X)$ if and only if $\left\|T_{m}-T\right\| \rightarrow 0$ and the family of series $\left\{\left\|\left\{b_{n} \delta_{n}\left(T_{m}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}}^{p}\right\}_{m \in \mathbb{N}}$ is equiconvergent.
Proof. $(\Rightarrow)\left\|T_{m}-T\right\|_{S_{p}^{\beta}(X)} \rightarrow 0$ implies $\left\|T_{m}-T\right\| \rightarrow 0$, since $\left\|T_{m}-T\right\| \leq$ $\frac{1}{b_{0}}\left\|T_{m}-T\right\|_{S_{p}^{\beta}(X)}$.

Let $\varepsilon>0$. Then there exists some $n_{0} \in \mathbb{N}$ such that $\left\|T_{m}-T\right\|_{S_{p}^{\beta}(X)}<\varepsilon^{\frac{1}{p}}$ for all $m \geq n_{0}$. On the other hand $\left\|T_{m}-T\right\|_{S_{p}^{\beta}(X)} \leq \infty$ for all $m<n_{0}$. Hence there exists some $k_{0} \in \mathbb{N}$ such that

$$
\left[\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p}\right]^{\frac{1}{p}}<\varepsilon^{\frac{1}{p}} \quad \text { for all } \quad m \in \mathbb{N}
$$

and

$$
\left[\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p}\right]^{\frac{1}{p}}<\varepsilon^{\frac{1}{p}} .
$$

But

$$
\begin{aligned}
& {\left[\sum_{k=k_{0}}^{\infty} b_{2 k}^{p}\left(T_{m}\right)^{p}\right]^{\frac{1}{p}}} \\
& \leq C\left[\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p}\right)^{\frac{1}{p}}\right] \\
& \leq 2 C \varepsilon^{\frac{1}{p}}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\sum_{k=k_{0}}^{\infty} b_{2 k+1}^{p}\left(T_{m}\right)^{p}\right]^{\frac{1}{p}}} \\
& \leq C\left[\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p}\right)^{\frac{1}{p}}\right] \\
& \leq 2 C \varepsilon^{\frac{1}{p}} .
\end{aligned}
$$

Hence

$$
\sum_{k=2 k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}\right)^{p} \leq(2 C)^{p} \varepsilon
$$

and the family of series $\left\{\left\|\left\{b_{n} \delta_{n}\left(T_{m}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}}^{p}\right\}_{m \in \mathbb{N}}$ is equiconvergent.
(\Leftarrow) Let $\left\{T_{m}\right\} \cup\{T\} \subset S_{p}^{\beta}(X)$ such that $\left\|T_{m}-T\right\| \rightarrow 0$ and the family of series $\left\{\left\|\left\{b_{n} \delta_{n}\left(T_{m}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}}^{p}\right\}_{m \in \mathbb{N}}$ is equiconvergent, and let $\varepsilon>0$. Then there exists some $k_{0} \in \mathbb{N}$ such that

$$
\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}\right)^{p} \leq \varepsilon \quad \text { for all } m \in \mathbb{N}
$$

and

$$
\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p} \leq \varepsilon
$$

Hence

$$
\begin{aligned}
& {\left[\sum_{k=k_{0}}^{\infty} b_{2 k}^{p} \delta_{2 k}\left(T_{m}-T\right)^{p}\right]^{\frac{1}{p}}} \\
& \leq C\left[\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p}\right)^{\frac{1}{p}}\right] \\
& \leq 2 C \varepsilon^{\frac{1}{p}}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\sum_{k=k_{0}}^{\infty} b_{2 k+1}^{p} \delta_{2 k+1}\left(T_{m}-T\right)^{p}\right]^{\frac{1}{p}}} \\
& \leq C\left[\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p}\right)^{\frac{1}{p}}\right] \\
& \leq 2 C \varepsilon^{\frac{1}{p}} .
\end{aligned}
$$

Hence

$$
\sum_{k=2 k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p} \leq(2 C)^{p} \varepsilon
$$

and

$$
\begin{aligned}
& \left\|T_{m}-T\right\|_{S_{p}^{p}(X)}^{p}=\sum_{k=0}^{2 k_{0}-1} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p}+\sum_{k=2 k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p} \\
& \leq\left[\sum_{k=0}^{2 k_{0}-1} b_{k}^{p}\right]\left\|T_{m}-T\right\|^{p}+\sum_{k=2 k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(T_{m}-T\right)^{p} \\
& \leq\left[\sum_{k=0}^{2 k_{0}-1} b_{k}^{p}\right]\left\|T_{m}-T\right\|^{p}+(2 C)^{p} \varepsilon
\end{aligned}
$$

which approaches to zero since $\left\|T_{m}-T\right\| \rightarrow 0$.

Theorem 3.2. The sequence of operators $\left\{T_{m}\right\}$ converges to T in the topology of $\Sigma_{p}^{\beta}(X)$ if and only if $\left\|T_{m}-T\right\| \rightarrow 0$ and the family of series $\left\{\left\|\left\{b_{n} d^{n}\left(T_{m}\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}}^{p}\right\}_{m \in \mathbb{N}}$ is equiconvergent.

Proof. The proof follows the same arguments as in Theorem 3.1.
Proposition 3.3. Let $T \in S_{p}^{\beta}(X)$ and set $S(t)=\exp (t T)-I$ for all $t \geq 0$. Then $S(t) \in S_{p}^{\beta}(X)$ and

$$
\lim _{m \rightarrow \infty}\left\|S(t)-S_{m}(t)\right\|_{S_{p}^{\beta}(X)}=0
$$

where

$$
S_{m}(t)=\sum_{k=1}^{m} \frac{t^{k} T^{k}}{k!} .
$$

Proof. $\left\|S(t)-S_{m}(t)\right\| \rightarrow 0$ is clear. To prove that $\left\{\left\|\left\{b_{n} \delta_{n}\left(S_{m}(t)\right)\right\}_{n=0}^{\infty}\right\|_{l_{p}}^{p}\right\}_{m \in \mathbb{N}}$ is equiconvergent, we note that if $\operatorname{rank}(R) \leq n$ with $R \in \boldsymbol{B}(X, X)$ then
$T R \in \boldsymbol{B}(X, X)$ and $\operatorname{rank}(T R) \leq n$ for any $T \in \boldsymbol{B}(X, X)$. Hence

$$
\begin{aligned}
& \delta_{n}\left(S_{m}(t)\right) \leq \inf _{\operatorname{rank}(R) \leq n}\left\|\sum_{k=1}^{m} \frac{t^{k}}{k!} T^{k}-\sum_{k=1}^{m} \frac{t^{k}}{k!} T^{k-1} R\right\| \\
& \leq \inf _{\operatorname{rank}(R) \leq n}\left\|\sum_{k=1}^{m} \frac{t^{k}}{k!} T^{k-1}(T-R)\right\| \\
& \leq \sum_{k=1}^{m} \frac{t^{k}}{k!}\|T\|^{k-1} \inf _{\operatorname{rank}(R) \leq n}\|T-R\| \\
& =\left[\sum_{k=1}^{m} \frac{t^{k}}{k!}\|T\|^{k-1}\right] \delta_{n}(T) \\
& \leq t e^{t\|T\|} \delta_{n}(T)
\end{aligned}
$$

and

$$
\sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}\left(S_{m}(t)\right)^{p} \leq t^{p} e^{t\|T\| p} \sum_{k=k_{0}}^{\infty} b_{k}^{p} \delta_{k}(T)^{p}
$$

and the equiconvergence follows, since $T \in S_{p}^{\beta}(X)$.
To finalize the proof we must show that $S(t) \in S_{p}^{\beta}(X)$. To do this, we observe that the inequality

$$
\left|\delta_{n}\left(S_{m}(t)\right)-\delta_{n}(S(t))\right| \leq\left\|S_{m}(t)-S(t)\right\|
$$

implies

$$
\delta_{n}(S(t))=\lim _{m \rightarrow \infty} \delta_{n}\left(S_{m}(t)\right) \leq \sup _{m \in \mathbb{N}} \delta_{n}\left(S_{m}(t)\right) \leq t e^{t\|T\|} \delta_{n}(T)
$$

for all $n \in \mathbb{N}$ and now it is clear that $T \in S_{p}^{\beta}(X)$ implies $S(t) \in S_{p}^{\beta}(X)$.
Theorem 3.4. $\left(\Sigma_{p}^{\beta}(X),\|\cdot\|_{\Sigma_{p}^{\beta}(X)}\right)$ and $\left(S_{p}^{\beta}(X),\|\cdot\|_{S_{p}^{\beta}(X)}\right)$ are complete.
Proof. Let $\left\{T_{m}\right\}$ be a Cauchy sequence in $S_{p}^{\beta}(X)$ and suppose (without loss of generality) that $\sup _{m \in \mathbb{N}}\left\|T_{m}\right\|_{S_{p}^{\beta}(X)} \leq M<\infty$. Then $\left\{T_{m}\right\}$ is also Cauchy in $\boldsymbol{B}(X, X)$ because of the inequality $\left\|T_{m_{1}}-T_{m_{2}}\right\| \leq \frac{1}{b_{0}}\left\|T_{m_{1}}-T_{m_{2}}\right\|_{S_{p}^{\beta}(X)}$. Since $\boldsymbol{B}(X, X)$ is complete, there exists an operator $T \in \boldsymbol{B}(X, X)$ such that

$$
\lim _{m \rightarrow \infty}\left\|T-T_{m}\right\|=0
$$

Let $N \in \mathbb{N}$ and $\varepsilon>0$ be arbitrarily chosen. Then there exists some $n=$ $n(\varepsilon, N) \in \mathbb{N}$ such that

$$
\left[\sum_{k=0}^{N} b_{k}^{p}\right]\left\|T-T_{n}\right\|^{p}<\varepsilon
$$

Hence

$$
\begin{aligned}
\sum_{k=0}^{N} b_{2 k}^{p} \delta_{2 k}(T)^{p} & \leq C^{p} \sum_{k=0}^{N} b_{k}^{p}\left(\delta_{k}\left(T-T_{n}\right)+\delta_{k}\left(T_{n}\right)\right)^{p} \\
& \leq 2^{p-1} C^{p} \sum_{k=0}^{N} b_{k}^{p} \delta_{k}\left(T-T_{n}\right)^{p}+2^{p-1} C^{p} \sum_{k=0}^{N} b_{k}^{p} \delta_{k}\left(T_{n}\right)^{p} \\
& \leq 2^{p-1} C^{p}\left[\sum_{k=0}^{N} b_{k}^{p}\right]\left\|T-T_{n}\right\|^{p}+2^{p-1} C^{p} \sum_{k=0}^{N} b_{k}^{p} \delta_{k}\left(T_{n}\right)^{p} \\
& \leq 2^{p-1} C^{p}\left(\varepsilon+M^{p}\right)
\end{aligned}
$$

On the other hand

$$
\sum_{k=0}^{N} b_{2 k+1}^{p} \delta_{2 k+1}(T)^{p} \leq 2^{p-1} C^{p}\left(\varepsilon+M^{p}\right)
$$

has an analogous proof. It follows that

$$
\sum_{k=0}^{2 N+1} b_{k}^{p} \delta_{k}(T)^{p} \leq 2^{p} C^{p}\left(\varepsilon+M^{p}\right)
$$

for all N and ε. Hence

$$
\|T\|_{S_{p}^{\beta}(X)} \leq 2 C M
$$

and $T \in S_{p}^{\beta}(X)$. Let $\varepsilon>0$. Then there exists an $m_{0} \in \mathbb{N}$ such that $\left\|T_{k}-T_{m}\right\|_{S_{p}^{\beta}(X)} \leq \varepsilon$ for all $k, m \geq m_{0}$. Using the same arguments as above and noticing that $T-T_{m}=T-T_{k}+T_{k}-T_{m}$, it is clear that for all $m \geq m_{0}$,

$$
\left\|T-T_{m}\right\|_{S_{p}^{\beta}(X)} \leq 2 C \varepsilon
$$

This proves that $S_{p}^{\beta}(X)$ is complete. The proof for $\Sigma_{p}^{\beta}(X)$ is analogous.

Acknowledgments. The authors thanks the referee for his valuable comments and suggestions (specially for his remarks to Proposition 2.13, Corollary 2.14 and Proposition 3.3).

REFERENCES

[1] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, 1987.
[2] A. Pinkus, n-Widths in Approximation Theory, Springer-Verlag, 1985.
[3] K.H. Zhu, Operator Theory in Function Spaces, Marcel-Dekker, 1990.

Department of Mathematical Analysis,
La Laguna University,
38271 La Laguna, Tenerife (SPAIN)

