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MINIMAL MODELS AND THE VIRTUAL DEGREE

OF SEIFERT FIBERED SPACES

GABRIELA PUTINAR

We compute the minimal models (in the sense of Sullivan) of Seifert
�bered spaces and show that they are classi�ed by the virtual degree.

As a consequence, we reobtain the results of Neumann-Raymond (1978)
on the virtual degree of Seifert �bered spaces.

1. Introduction.

The topology of Seifert �bered spaces has been completely understood
since the work of Seifert; it is described by a set of integers, called the Seifert
invariants (modulo a certain equivalence relation) ([6]). In particular, the
homotopy types of these spaces are classi�ed by an invariant γ , which is a
rational number expressed in terms of the Seifert invariants (cf.§ 2.2 for the
de�nitions).

This suggests that a rational homotopy approach should suf�ce for dis-
tinguishing, at least weakly, between Seifert �bered spaces. In this paper, we
compute the minimal models of Seifert �bered spaces; we relate the invariants
of these models with Seifert�s invariant γ ; and we discuss several known [4]
results on γ from the point of view of rational homotopy.

As is well-known, rational homotopy is a weaker version of homotopy,
in which the coef�cients of all the homology (or homotopy etc) groups of the
spaces are extended from Z to Q (and the torsion is deleted). The advantage
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of this reduction is that everything can be translated (dualized) into a purely
algebraic framework. One such framework is that of minimal models and was
developed by Sullivan [7]: a minimal model is a c.g.d.a (commutative-graded
differential algebra) which is free as an algebra and satis�es a certain minimality
condition.

For K (G, 1)-spaces (where G is a group), the rational homotopy type
is determined by the one-minimal model, which is the part of the minimal
model generated by elements in degree one. An equivalent object, in terms of
groups G , of the one-minimal model, is the Malcev completion G ⊗ Q, which
�completes� G with respect to root extraction.

There are many applications ofminimal models to topological or geometric
questions. Among the �rst were: the computation (Serre) of the homotopy
groups of the spheres up to torsion (the torsion case is still open); and the rational
version of Bott�s periodicity. Further examples may be found for instance in [3].

Because Seifert �bered spaces are (with one exception) K (π, 1)-spaces,
their rational homotopy is equivalent with the Malcev completion; we compute
this completion in § 3, using Seifert�s presentation for the fundamental group.
An alternative computation is obtained in § 4, using �brations. Next we reobtain
(§ 5, Thm. 1) the result [4] that a Seifert �bered spaces is (rationally) not the
link of an isolated C∗-singularity if and only if γ = 0. We show that this is
equivalent with formality of the rational homotopy type.

Another theorem of [4] shows that γ transforms well under certain maps.
We see (§ 6, Thm. 2) that in rational homotopic terms, this is precisely the
equivalence of Hirsch extensions for Serre �brations with �bre S1.

Finally, γ is related with another invariant, the virtual degree. The �rst
proof that these invariants are equal was needed for the study of the resolutions
of isolated C∗-singularities [5]; the topological interpretation of the virtual
degree became clear with [2], [4]. On the geometric side, [8] shows that the
model of the geometry of a hyperbolic 3-orbifold is also determined by the
genus of the base and the virtual degree; this is based on the construction of a
rational connection underlying the virtual degree.

Acknowledgement. I wish to take this opportunity to express my warm thanks
to Michael Freedman and Richard Stong for stimulating conversations on this
subject.

2. Preliminaries.

2.1. Rational homotopy. We recall �rst the few facts of rational homotopy that
we use in this section.
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If G is a nilpotent group, localizing with respect to Q is the same as
completing G with respect to (unique) extraction of roots, and de�nes the
Malcev completion G −→ G ⊗ Q. Alternatively, G ⊗ Q can be de�ned
(roughly) by induction, tensoring with Q the central extensions associated to
the quotient groups G/�n , n ≥ 2. Here �n denotes the n-th term of the
lower central series of G (�2 = [G,G], �n = [G, �n−1], with [ , ] denoting
commutators).

Dually, for nilpotent spaces X (i.e. spaces for which π1 is nilpotent
and acts nilpotently on πn, n ≥ 2) the Malcev completion corresponds by
a functorial equivalence to the one-minimal model, which is a commutative-
graded algebra (c.g.d.a), free as a commutative-graded algebra and which comes
with a map to the PL-forms on the space, inducing an isomorphism on H 1⊗Q

and an injection on H 2 ⊗ Q.
The one-minimal model contains the degree one elements of a larger

c.g.d.a, the minimal model in the sense of Sullivan ([7], [3]); this is a free c.g.d.a
with a map as above which induces an isomorphism on all of H ∗ ⊗ Q.
The minimal model is the algebraic equivalent of the (usual) homotopy of a
certain space X (0), called the rationalisation of X . Therefore it contains the
rational homotopy type of X .

If the space X is not nilpotent, we can still consider ([1]) a minimal model,
�ltered according to the lower central series of π1(X ) and its action on πn(X ),
n ≥ 2. The dual of this �ltered minimal model is the so-called Q-completion of
X , which for nilpotent spaces coincides with the rational homotopy type.

In the case of Riemann surfaces, because (excepting S2) these spaces are
K (π, 1)�s and because the lower central series is countable, the �ltered model
mentioned above is in fact the one-minimal model; therefore (except for S2) the
Malcev completion of Riemann surfaces is (dual to) their Q-completion. The
same discussion applies for Seifert �bered spaces.

In what follows �rational homotopy� is used as a paraphrase for Q-
completion. The cohomology is taken with rational coef�cients throughout.

2.2. Seifert invariants.We recall next some standard facts about Seifert �bered
spaces, ([6], [4]). A 3-manifold M is Seifert �bered if it admits a map M → S
which locally over S is of the form:

(1) D2 × [0, 1]/(x , 0) ∼ (φ(x), 1) −→ D2

where φ rotates D2 by an angle of 2πν/µ (with ν, µ relatively prime integers,
0 ≤ ν < µ).

If µ > 1, the �bre is called singular. We assume M closed, connected and
M and S orientable. Then S is a closed Riemann surface and the number of
singular �bers is �nite.
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The topology of Seifert �bered spaces was determined by Seifert [6], up
to orientation and �bre preserving homeomorphism, and is given by the set of
Seifert invariants (modulo a certain equivalence relation [4], under which the
number γ de�ned below is invariant). The Seifert invariants are:

(2) (g; b; (αi, βi), i = 1, . . . , r)

where g is the genus of S , r is the number of singular �bers. To de�ne the
remaining invariants, we delete small neighbourhoods of all the singular �bers,
lying as in (1) over some disks D1, . . . , Dr in S . We do the same for a regular
�bre, lying over a disk D0. Then given arbitrary sections over ∂Di, 0 ≤ i ≤ r ,
there exists an extension of these to a section over S0 = S \ D0 ∪ . . . ∪ Dr .
The invariant b is de�ned as the degree of a section relative to the regular �ber.
In the same way, βi , (when not normalized, as in [4]), is de�ned as the degree of
the �bration restricted over ∂Di , i = 1, . . . , r ; while αi is equal to the order of
the isotropy subgroup at the i-th singular �ber. Note that these are related with
the invariants de�ned in (1) by αi = µi , βiνi ≡ 1 (mod αi ), 1 ≤ i ≤ r .

Further, a standard presentation for π1(M) in terms of the Seifert invariants
is given by:

π1(M) = �A1, B1, . . . , Ag, Bg, Q0, . . . , Qr , H |[A1, B1] . . .(3)

. . . [Ag , Bg]Q0 . . . Qr = 1,Q0H
b = 1,Q

α j
j H βj = 1, j = 1, . . . , r, H central �.

Here H denotes any regular �ber, Qj are sections above the boundaries of
Dj , j = 0, . . . , r ; while Ai , Bi, i = 1, . . . g are standard generators for πg .

3. Malcev completion.

Let M be a Seifert �bered as in § 2.2. Using the above presentation we
will compute the Malcev completion π1(M)⊗Q of π1(M). We shall denote by
Rg the Riemann surface of genus g and by πg its fundamental group.

Proposition 1. Let M → Rg be a Seifert �bered space with Seifert invariants
(g; b; (αi, βi), i = 1, . . . , r) and let

(4) γ = −b −

r�

j=1

βj

αj
∈ Q.

i) if γ = 0, then π1(M) ⊗ Q = G0 ⊗ Q, where G0 = πg × Z;
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ii) if γ �= 0, then π1(M) ⊗ Q = G1 ⊗ Q, where

G1 = �A1, B1, . . . Ah , Bg| [Ai , [A1, B1] . . . [Ag, Bg]] = 1,(5)

[Bi , [A1, B1] . . . [Ag , Bg]] = 1, 1 ≤ i ≤ g�.

Proof. Let us denote for uniformity α0 = 1, β0 = b. In the above presentation
for π1(M), assuming root extraction is possible, we can write

Qj = H−βj/αj , j = 0, . . . , r.

Therefore

(6) [A1, B1] . . . [Ag , Bg]H
−
�r

j=0
βj /αj

= 1.

If γ = 0, the equality i) is therefore true mod �n , for any n so it is true for
the completions themselves. If γ �= 0, then replacing H with H−γ gives a new
presentation for π1(M)⊗Q, in which H is redundant; eliminating H we obtain
the presentation ii).

In conclusion we have the following:

Corollary 1. The Malcev completions of π1(M), M any Seifert �bered space,
are classi�ed by the set

{(g, γ ); g ≥ 0, γ = 0 or 1}

where g is the genus of the base, and γ (de�ned by (4) above) is regarded mod
Q∗ .

4. Minimal models.

By dualizing the above Corollary, we see that, when the genus g of the base
is �xed, the one-minimal models of Seifert �bered spaces M → Rg depend on
γ (mod Q∗). Alternatively, this follows using �brations, as shown below.

Let MX denote the Sullivan minimal model of the space X . The Serre
�bration S1(0) → M(0) → Rg(0) is principal because the �bre is central, soMM

is an extension
MRg

→MM →MS1.

Therefore MM is obtained by adding to MRg
and element h such that dh ∈

H 2(Rg; Q) = Q. By construction ([3]), dh = k, where k is the k-invariant at
this stage of the minimal model. Because up to isomorphism of models, either
dh = 0 or dh = the fundamental class of Rg , we reobtain the above two cases
of Proposition 1, but in terms of the k-invariant instead of γ . In particular it
follows that γ = k (mod Q∗) (cf. § 6 for full equality). Threfore:
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Proposition 2. If M → Rg is a Seifert �bered space, then its minimal model
MM is given by:
i) if γ = 0,MM =MRg

⊗ (�(h), dh = 0),
ii) if γ �= 0,MM =MRg

⊗d �(h), where dh =generator of H 2(Rg; Q).

Recall [7] that the minimal modelMg of the Riemann surface Rg is formal
i.e. that it is determined by the cohomology ring. The model ofMg begins with

(7)
�

(a1, b1, . . . ag, bg) ⊗
�

(ξ1, . . . ξg−1),

where dξi = ai ∧ bi − ai+1 ∧ bi+1 , 1 ≤ i < g. We get the �rst two stages if we
add elements in degree one that kill all the 2-cocycles aibj , aiaj , bibj , i �= j .
After the �rst two stages the model is built by adding elements to kill all the
new generating 2-cocycles.

Remark. If the base Rg is �xed, then by varying the k-invariant (a rational
number) in H 2(Rg; Q) = Q we obtain all the possible S1 principal �brations,
i.e. all the homotopy types of Seifert �bered spaces over Rg .
Note that this regards 1 ∈ Q as �xed. By contrast, to obtain the rational
homotopy types of Seifert �bered spaces of base Rg , we must allow c.g.d.a.-
s isomorphism, i.e. we must allow the base 1 of Q∗ to be changed freely. This
distinction will be important in § 6.

In conclusion we can state:

Corollary 2. The homotopy (resp. rational homotopy) types of Seifert �bered
spaces are classi�ed by the set

{(g, k); g ≥ 0, k ∈ Q},

where g is the genus of the base, k is the k-invariant of the S1-�bration
(respectively k regarded mod Q∗).

The above corollaries are also obvious from Seifert�s description, since by
a (rational) homotopy, the singular �bers can be added to form a single singular
�ber.

5. Massey products.

Since (triple) Massey products are de�ned in terms of the differential
algebra of forms on M , they can be determined from the minimal model.

Case γ = 0. In this case all (triple) Massey products are 0. The following
lemma is a version of the formality of the tensor product of formal models:
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Lemma 1. If M and N are (one)-minimal models for which all the Massey
products are 0, then the same holds forM ⊗N .

Proof. Indeed, let �α, β, γ � = αv + uγ , be a Massey product of 1-forms in
the modelM ⊗N , where α ∧ β = du, β ∧ γ = dv. Since Massey products
are multilinear, we may assume α = α(1,0) + α(0,1), with α(1,0) ∈M ⊗ Q,
α(0,1) ∈ Q⊗N , and similarly for β etc. From this decomposition it is clear that
du has only pure terms indexed (2,0) and (0,2), so the (1,1) term in α ∧ β is 0,
therefore:

α(1,0) ⊗ β(0,1) = β(1,0) ⊗ α(0,1).

This implies α ∈ Qβ unless β = 0; similarly for γ . So for all β we get
�α, βγ � ∈ Q�β, β, β� = 0, and this ends the proof.

Case γ �= 0. In this case, the opposite is true:

Lemma 2. If γ �= 0 and g ≥ 1 then the Massey products generate H 2(M; Q)

as a Q-vector space.

Proof. Indeed, we know by (7) that dh = a1 ∧ b1, and we may choose
(on M ), for i �= j , ai ∧ aj = d0 and similarly for b. Then, if i �= 1,
we have �a1, b1, ai� = h ∧ ai + a1 ∧ 0 = h ∧ ai ; while if i = 1 then
�a1, b1, ai� = h ∧ a1 + a1 ∧ (−h) = 2h ∧ a1. And similarly replacing ai with
bi . This shows that (disregarding for a moment the indeterminacy) the Massey
products generate the vector space V =

�g
i=1 Q(h ∧ ai ) ⊕

�g
i=1 Q(h ∧ bi).

We claim that V = H 2(M). Indeed, the forms h ∧ ai , h ∧ bi are Q-
independent, since h is added in the last stage. Also, these elements are Q-
independent in H 2(M) since H 2(M) �→ H 2(M). Moreover they generate
H 2(M) because by (3) we see that H 2(M) = H1(M) = Ab π1(M) has 2g
generators ai , bi, i = 1, . . . , g.

To end the proof we note that the indeterminacy in the Massey products is
0. The indeterminacy of say �a1, b1, ai� is a1.H

1(M)+ai .H
1(M). It is enough

to check on the generators aj , bj of H
1(M). This is clear because a1∧b1 = dh.

Theorem 1. If M is (rationally homotopic to) a Seifert �bered space with g ≥ 1
then the following are equivalent:

i) γ = 0;

ii) all (triple) Massey products on M are 0;

iii) the Massey products do not generate H 2(M; Q);

iv) the minimal model of M is formal;

v) M is not the link of an isolated singularity with C∗-action.
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Proof. The equivalences i) � iv) follow from the above lemmas, Proposition 2
and the formality of Riemann surfaces.

i) ⇒ v): a computation (as above or as in [6) shows that γ is the
determinant of the intersection matrix; but for an isolated C∗ -singularity this
matrix must be negative-de�nite.

v) ⇒ i): By contradiction, since (up to iso of models) dh = the fundamental
class of Rg , the space M is obtained as the boundary of the 4D-plumbing of
D1 × D2 (where D1 and D2 are 2-disks) with (Rg \ D2) × D1, under which the
subsets D1 × S1 and (respectively) (Rg \ D2) × S1 are glued by a zero-framed
Dehn surgery. This plumbing can be made S1-equivariant and can be chosen
analytical (because the degree is > 0); next, since after plumbing, the above
S1,s become ∂D�

i s , (i = 1, 2) this S1-action extends to a C∗-action which is
locally analytic and glues to an analytic C∗ -action. As is well-known the blow-
down of the central curves can be made equivariant, giving the link structure on
M .

Remark. The statement i) ⇔ v) above (for any g) can be easily strengthened to
a statement about the homeomorphy class of M . Then the equivalence becomes
i �) γ < 0 ⇔ non v), which is a theorem of [4]. Indeed, the Q-completion
of a Seifert �bered space coincides with its homotopy type and is given by γ ,
while the surgeries which build the space up to homeomorphism can be glued
analytically if γ < 0. (If γ �= 0 then by changing the orientation on M we may
assume γ < 0.)

6. Virtual degree.

Throughout this section we �x 1 ∈ Q as in the remark in § 4 above. In
particular the k-invariant at the last stage in the minimal model of a Seifert
�bered space is a �xed rational number. We prove that the equivalence of Hirsch
extensions ([3]) implies the following theorem of [4]:

Theorem 2. Let M and M � be Seifert �bered over S and S � respectively and let
f : M −→ M � be an orientation and �ber preserving homeomorphism. Let the
degree of the induced map on a typical �ber be n and the degree of the induced
map f : S −→ S � be m. Then

(8) γ (M) =
m

n
γ (M �).
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Proof. Step I. Let us note �rst that this is true if we replace γ by the k-
invariant k. Indeed, since the minimal model of a Seifert �bered space is a
Hirsch extension (i.e. one stage) over the model of a Riemann surface, the maps
in the statement of Theorem 2 dualize to an equivalence of Hirsch extensions
with isomorphic bases (by de�nition). Further, as in [3], this translates to a
commutative diagram of transgressions:

h · Q
d �� H 2(S; Q)

h� · Q
d �

��

·n

��

H 2(S �; Q)

·m

��

Because in general k(M) = d(h), we have mk(M �) = k(M)n, i.e. the theorem
for k.

Step II. To end the proof, we will show below that γ = k. We will see
�rst (Lemma 3) that k = e by a classifying space argument, where e is the
rational Euler number. Next, the fact that e = γ follows easily by localizing
at the singular �bers and comparing degrees. For the sake of completeness we
also discuss the virtual degree and include the proofs, which are more or less
implicit in [4]:

De�nition. The rational Euler class (resp. number) of a Seifert �bration is by
de�nition the Euler class (resp. number) of the bundle obtained by replacing
the �bre S1 with the rationalized �bre S1(0).

Lemma 3. The rational Euler class is equal to the k-invariant:

e = k ∈ H 2(Rg; Q).

Proof. If the �bration is a genuine S1-bundle, the k-invariant

k ∈ H 2(Rg; Z) = [Rg, K (Z, 2)].

It happens that K (Z, 2) = CP∞ = Grassm1(C
∞) = BU1 = BS1. So the

k-invariant k ∈ [Rg, BS
1] is the classifying map of the bundle, i.e., via the

identi�cations above, it is its Euler class. In the general case, we can make
the �bration into a genuine bundle by rationalizing the �bers to S1(0). Then the
above argument goes through rationally.

Next we discuss the relation with the virtual degree. This invariant is de-
�ned using the existence of a regular branched cover of the base, of automor-
phism group a certain group G , via which the Seifert �bration pulls back to a
genuine bundle σ .
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De�nition. The virtual degree d of a Seifert �bration is the quotient e(σ )/order
(G), where e(σ ) is the Euler number of σ .

Theorem 3. (cf. [2], [4], [5]). For a Seifert �bered space, the following invari-
ants are equal:

i) γ = −b − �r
i=1βi/αi ;

ii) k = the k-invariant of the �bration;

iii) e = the Euler number of the �bration;

iv) d = the virtual degree.

Proof. To prove γ = d , note that this true for genuine bundles, and also for
Seifert �bered tori, by de�nition; because both invariants can be localized (at
the singular �bres) we are done. Similarly to prove γ = e: for a �bered torus,
by replacing S1 with the rationalized S1(0), the i-th �bre becomes divisible by
αi , and its rational Euler number is minus its previous degree βi , divided by αi .
Finally, k = e is Lemma 3.
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pp. 147�238.

[7] D. Sullivan, In�nitesimal computations in topology, Publ. Math. I.H.E.S., 47
(1977), pp. 269�331.



MINIMAL MODELS AND THE VIRTUAL DEGREE. . . 329

[8] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Prince-
ton Univ., 1991.

Department of Mathematics,
University of California,

Santa Barbara, CA-93106 (USA)


