LE MATEMATICHE
Vol. LIII (1998) — Fasc. 11, pp. 319-329

MINIMAL MODELS AND THE VIRTUAL DEGREE
OF SEIFERT FIBERED SPACES

GABRIELA PUTINAR

We compute the minimal models (in the sense of Sullivan) of Seifert
fibered spaces and show that they are classified by the virtual degree.

As a consequence, we reobtain the results of Neumann-Raymond (1978)
on the virtual degree of Seifert fibered spaces.

1. Introduction.

The topology of Seifert fibered spaces has been completely understood
since the work of Seifert; it is described by a set of integers, called the Seifert
invariants (modulo a certain equivalence relation) ([6]). In particular, the
homotopy types of these spaces are classified by an invariant ¢, which is a
rational number expressed in terms of the Seifert invariants (cf.§ 2.2 for the
definitions).

This suggests that a rational homotopy approach should suffice for dis-
tinguishing, at least weakly, between Seifert fibered spaces. In this paper, we
compute the minimal models of Seifert fibered spaces; we relate the invariants
of these models with Seifert’s invariant y; and we discuss several known [4]
results on y from the point of view of rational homotopy.

As is well-known, rational homotopy is a weaker version of homotopy,
in which the coefficients of all the homology (or homotopy etc) groups of the
spaces are extended from Z to Q (and the torsion is deleted). The advantage
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of this reduction is that everything can be translated (dualized) into a purely
algebraic framework. One such framework is that of minimal models and was
developed by Sullivan [7]: a minimal model is a c.g.d.a (commutative-graded
differential algebra) which is free as an algebra and satisfies a certain minimality
condition.

For K (G, 1)-spaces (where G is a group), the rational homotopy type
is determined by the one-minimal model, which is the part of the minimal
model generated by elements in degree one. An equivalent object, in terms of
groups G, of the one-minimal model, is the Malcev completion G ® Q, which
“completes” G with respect to root extraction.

There are many applications of minimal models to topological or geometric
questions. Among the first were: the computation (Serre) of the homotopy
groups of the spheres up to torsion (the torsion case is still open); and the rational
version of Bott’s periodicity. Further examples may be found for instance in [3].

Because Seifert fibered spaces are (with one exception) K (i, 1)-spaces,
their rational homotopy is equivalent with the Malcev completion; we compute
this completion in § 3, using Seifert’s presentation for the fundamental group.
An alternative computation is obtained in § 4, using fibrations. Next we reobtain
(§ 5, Thm. 1) the result [4] that a Seifert fibered spaces is (rationally) not the
link of an isolated C*-singularity if and only if y = 0. We show that this is
equivalent with formality of the rational homotopy type.

Another theorem of [4] shows that y transforms well under certain maps.
We see (§ 6, Thm. 2) that in rational homotopic terms, this is precisely the
equivalence of Hirsch extensions for Serre fibrations with fibre S!.

Finally, y is related with another invariant, the virtual degree. The first
proof that these invariants are equal was needed for the study of the resolutions
of isolated C*-singularities [5]; the topological interpretation of the virtual
degree became clear with [2], [4]. On the geometric side, [8] shows that the
model of the geometry of a hyperbolic 3-orbifold is also determined by the
genus of the base and the virtual degree; this is based on the construction of a
rational connection underlying the virtual degree.

Acknowledgement. I wish to take this opportunity to express my warm thanks
to Michael Freedman and Richard Stong for stimulating conversations on this
subject.

2. Preliminaries.

2.1. Rational homotopy. We recall first the few facts of rational homotopy that
we use in this section.
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If G is a nilpotent group, localizing with respect to Q is the same as
completing G with respect to (unique) extraction of roots, and defines the
Malcev completion G — G ® Q. Alternatively, G ® Q can be defined
(roughly) by induction, tensoring with Q the central extensions associated to
the quotient groups G/I',, n > 2. Here I';, denotes the n-th term of the
lower central series of G (I', = [G, G], ', = [G, I',—1], with [, ] denoting
commutators).

Dually, for nilpotent spaces X (i.e. spaces for which m; is nilpotent
and acts nilpotently on m,,n > 2) the Malcev completion corresponds by
a functorial equivalence to the one-minimal model, which is a commutative-
graded algebra (c.g.d.a), free as a commutative-graded algebra and which comes
with a map to the P L-forms on the space, inducing an isomorphismon H' ® Q
and an injection on H? ® Q.

The one-minimal model contains the degree one elements of a larger
c.g.d.a, the minimal model in the sense of Sullivan ([7], [3]); this is a free c.g.d.a
with a map as above which induces an isomorphism on all of H* ® Q.

The minimal model is the algebraic equivalent of the (usual) homotopy of a
certain space X g, called the rationalisation of X. Therefore it contains the
rational homotopy type of X.

If the space X is not nilpotent, we can still consider ([1]) a minimal model,
filtered according to the lower central series of 71 (X) and its action on 7, (X),
n > 2. The dual of this filtered minimal model is the so-called Q-completion of
X, which for nilpotent spaces coincides with the rational homotopy type.

In the case of Riemann surfaces, because (excepting S?) these spaces are
K (7, 1)'s and because the lower central series is countable, the filtered model
mentioned above is in fact the one-minimal model; therefore (except for S?) the
Malcev completion of Riemann surfaces is (dual to) their QQ-completion. The
same discussion applies for Seifert fibered spaces.

In what follows “rational homotopy” is used as a paraphrase for Q-
completion. The cohomology is taken with rational coefficients throughout.

2.2. Seifert invariants. We recall next some standard facts about Seifert fibered
spaces, ([6], [4]). A 3-manifold M is Seifert fibered if it admits a map M — §
which locally over S is of the form:

ey D? x [0, 11/(x,0) ~ (¢(x), 1) — D?

where ¢ rotates D? by an angle of 277v/u (with v, i relatively prime integers,
0<v<p).

If u > 1, the fibre is called singular. We assume M closed, connected and
M and S orientable. Then S is a closed Riemann surface and the number of
singular fibers is finite.
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The topology of Seifert fibered spaces was determined by Seifert [6], up
to orientation and fibre preserving homeomorphism, and is given by the set of
Seifert invariants (modulo a certain equivalence relation [4], under which the
number y defined below is invariant). The Seifert invariants are:

2) (8: b5 (i, Bi),i=1,...,1)

where g is the genus of S, r is the number of singular fibers. To define the
remaining invariants, we delete small neighbourhoods of all the singular fibers,
lying as in (1) over some disks Dy, ..., D, in §. We do the same for a regular
fibre, lying over a disk Dy. Then given arbitrary sections over dD;,0 < i <,
there exists an extension of these to a section over Sy = S\ Dy U ... U D,.
The invariant b is defined as the degree of a section relative to the regular fiber.
In the same way, §;, (when not normalized, as in [4]), is defined as the degree of
the fibration restricted over dD;, i = 1, ..., r; while «; is equal to the order of
the isotropy subgroup at the i-th singular fiber. Note that these are related with
the invariants defined in (1) by o; = pu;, fivi =1 (mod ;), 1 <i <r.

Further, a standard presentation for 1 (M) in terms of the Seifert invariants
is given by:

(3) ﬂl(M) - (AlvBlv ---7Ag7Bg7 QOv e ooy Qrle[AlvBl]"'
. [Ag. BJJQo...Qr =1,00H" =1,0'HP =1, j=1,....r, H central ).

Here H denotes any regular fiber, Q; are sections above the boundaries of
D;,j=0,...,r;while A;, B;,i =1, ... g are standard generators for 7,.

3. Malcev completion.

Let M be a Seifert fibered as in § 2.2. Using the above presentation we
will compute the Malcev completion 77 (M) ® Q of 7;(M). We shall denote by
R, the Riemann surface of genus g and by , its fundamental group.

Proposition 1. Let M — R, be a Seifert fibered space with Seifert invariants
(g:b; (o, Bi),i=1,...,r) and let

@) y=-b-) -

i) ify =0, thenti(M)® Q = G’ ® Q, where G° = e X L}
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i) ify 20, then (M) ® Q = G' ® Q, where

(5) G' = (A1, By, ... A, Bg| [Ai, [A1, Bil...[A,, Bl =1,
[Bi, [A1, Bi]...[Ag, Bl =1,1<i<g).

Proof. Let us denote for uniformity og = 1, By = b. In the above presentation
for (M), assuming root extraction is possible, we can write

Qj:H_/Sj/OU’ j:()"”’r'
Therefore
6) (A1, Bi]...[Ag, BgH 2mP/% — 1.

If y =0, the equality i) is therefore true mod I',,, for any # so it is true for
the completions themselves. If y # 0, then replacing H with H ™7 gives a new
presentation for 771 (M) ® Q, in which H is redundant; eliminating H we obtain
the presentation ii).

In conclusion we have the following:

Corollary 1. The Malcev completions of wi(M), M any Seifert fibered space,
are classified by the set

{(g,7); §=>0,y=0 orl}

where g is the genus of the base, and y (defined by (4) above) is regarded mod
Q.

4. Minimal models.

By dualizing the above Corollary, we see that, when the genus g of the base
is fixed, the one-minimal models of Seifert fibered spaces M — R, depend on
y (mod Q). Alternatively, this follows using fibrations, as shown below.

Let .#x denote the Sullivan minimal model of the space X. The Serre
fibration S(lo) — M) — Ry (o) is principal because the fibre is central, so .#
is an extension

M R, = My — M.

Therefore .#) is obtained by adding to .#¢, and element /& such that dh €
HZ(Rg; Q) = Q. By construction ([3]), dh = k, where k is the k-invariant at
this stage of the minimal model. Because up to isomorphism of models, either
dh = 0 or dh = the fundamental class of R, we reobtain the above two cases
of Proposition 1, but in terms of the k-invariant instead of y. In particular it
follows that y = k (mod Q*) (cf. § 6 for full equality). Threfore:
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Proposition 2. If M — R, is a Seifert fibered space, then its minimal model
My is given by:

i) ify =0, My = Mr, ® (Ah), dh =0),

i) if y #0, My = Mr, @4 A(h), where dh =generator ofHZ(Rg; Q.

Recall [7] that the minimal model .#, of the Riemann surface R, is formal
i.e. that it is determined by the cohomology ring. The model of .#, begins with

(7) @i bi, .. ag, b)) @ N\, &),

where d§; = a; ANb; —a;11 Abiy1, 1 <i < g. We get the first two stages if we
add elements in degree one that kill all the 2-cocycles a;b;, a;a;, bib;, i # j.
After the first two stages the model is built by adding elements to kill all the
new generating 2-cocycles.

Remark. If the base R, is fixed, then by varying the k-invariant (a rational
number) in H 2(Rg; Q) = Q we obtain all the possible S principal fibrations,
i.e. all the homotopy types of Seifert fibered spaces over R,.

Note that this regards 1 € Q as fixed. By contrast, to obtain the rational
homotopy types of Seifert fibered spaces of base R,, we must allow c.g.d.a.-
s isomorphism, i.e. we must allow the base 1 of Q* to be changed freely. This
distinction will be important in § 6.

In conclusion we can state:

Corollary 2. The homotopy (resp. rational homotopy) types of Seifert fibered
spaces are classified by the set

{(g.k); g=>0,keQ},

where g is the genus of the base, k is the k-invariant of the S'-fibration
(respectively k regarded mod Q*).

The above corollaries are also obvious from Seifert’s description, since by
a (rational) homotopy, the singular fibers can be added to form a single singular
fiber.

5. Massey products.

Since (triple) Massey products are defined in terms of the differential
algebra of forms on M, they can be determined from the minimal model.

Case y = 0. In this case all (triple) Massey products are 0. The following
lemma is a version of the formality of the tensor product of formal models:
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Lemma 1. If .# and AV are (one)-minimal models for which all the Massey
products are 0, then the same holds for # Q@ N .

Proof. 1Indeed, let (o, B, y) = av + uy, be a Massey product of 1-forms in
the model .# ® ¥, where o A B = du, B Ay = dv. Since Massey products
are multilinear, we may assume o = a*? 4+ o@D with «"9 € #Z ® Q,
a®D e Q® .+, and similarly for B etc. From this decomposition it is clear that
du has only pure terms indexed (2,0) and (0,2), so the (1,1) term in @ A S is O,
therefore:

210 @ gOD = g0 g (O

This implies « € QB unless § = 0; similarly for y. So for all 8 we get
(a, By) € Q(B, B, B) = 0, and this ends the proof.

Case y # 0. In this case, the opposite is true:

Lemma 2. If y # 0 and g > 1 then the Massey products generate H*(M; Q)
as a Q-vector space.

Proof. 1Indeed, we know by (7) that dh = a; A by, and we may choose
(on M), for i # j, a; AN a; = dO and similarly for b. Then, if i # 1,
we have (a;,b;,a;) = h Aa; +a N0 = h A a;; while if i = 1 then
(ai, b1, a;) = h Aay +a; A (—h) = 2h A a;. And similarly replacing a; with
b;. This shows that (disregarding for a moment the indeterminacy) the Massey
products generate the vector space V = @;_, Q(h A a;) ® D5, Qh A by).

We claim that V = H?*(M). Indeed, the forms h A a;, h A b; are Q-
independent, since & is added in the last stage. Also, these elements are Q-
independent in H?(M) since H*(.#) <> H?*(M). Moreover they generate
H?(M) because by (3) we see that H*(M) = H;(M) = Ab m;(M) has 2g
generators a;, b;, i =1,..., g.

To end the proof we note that the indeterminacy in the Massey products is
0. The indeterminacy of say (a;, by, a;) is a;.H' (M) +a;.H'(M). It is enough
to check on the generators a;, b; of H'(M). This is clear because a; Ab; = dh.

Theorem 1. If M is (rationally homotopic to) a Seifert fibered space with g > 1
then the following are equivalent:

i)y =0;

ii) all (triple) Massey products on M are O;

iii) the Massey products do not generate H*(M; Q);

iv) the minimal model of M is formal;

v) M is not the link of an isolated singularity with C*-action.
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Proof. The equivalences i) — iv) follow from the above lemmas, Proposition 2
and the formality of Riemann surfaces.

i) = v): a computation (as above or as in [6) shows that y is the
determinant of the intersection matrix; but for an isolated C*-singularity this
matrix must be negative-definite.

v) = i): By contradiction, since (up to iso of models) dh =the fundamental
class of R, the space M is obtained as the boundary of the 4D-plumbing of
D, x D, (where Dy and D, are 2-disks) with (R, \ D) x Dy, under which the
subsets D; x S! and (respectively) (Rg\ Dy) x S I are glued by a zero-framed
Dehn surgery. This plumbing can be made S'-equivariant and can be chosen
analytical (because the degree is > 0); next, since after plumbing, the above
S's become dD]s, (i = 1,2) this S'-action extends to a C*-action which is
locally analytic and glues to an analytic C*-action. As is well-known the blow-
down of the central curves can be made equivariant, giving the link structure on
M.

Remark. The statementi) < v) above (for any g) can be easily strengthened to
a statement about the homeomorphy class of M. Then the equivalence becomes
iy < 0 < non v), which is a theorem of [4]. Indeed, the Q-completion
of a Seifert fibered space coincides with its homotopy type and is given by y,
while the surgeries which build the space up to homeomorphism can be glued
analytically if y < 0. (If y # O then by changing the orientation on M we may
assume y < 0.)

6. Virtual degree.

Throughout this section we fix 1 € Q as in the remark in § 4 above. In
particular the k-invariant at the last stage in the minimal model of a Seifert
fibered space is a fixed rational number. We prove that the equivalence of Hirsch
extensions ([3]) implies the following theorem of [4]:

Theorem 2. Let M and M' be Seifert fibered over S and S’ respectively and let
f M — M’ be an orientation and fiber preserving homeomorphism. Let the
degree of the induced map on a typical fiber be n and the degree of the induced
map f : S —> S' be m. Then

®) y (M) = %y(M’).
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Proof. Step 1. Let us note first that this is true if we replace y by the k-
invariant k. Indeed, since the minimal model of a Seifert fibered space is a
Hirsch extension (i.e. one stage) over the model of a Riemann surface, the maps
in the statement of Theorem 2 dualize to an equivalence of Hirsch extensions
with isomorphic bases (by definition). Further, as in [3], this translates to a
commutative diagram of transgressions:

h-Q —1> H%S; Q)

W-Q—1> HX(5 Q)

Because in general k(M) = d(h), we have mk(M’) = k(M)n, i.e. the theorem
for k.

Step I1. To end the proof, we will show below that y = k. We will see
first (Lemma 3) that k = e by a classifying space argument, where e is the
rational Euler number. Next, the fact that e = y follows easily by localizing
at the singular fibers and comparing degrees. For the sake of completeness we
also discuss the virtual degree and include the proofs, which are more or less
implicit in [4]:

Definition. The rational Euler class (resp. number) of a Seifert fibration is by

definition the Euler class (resp. number) of the bundle obtained by replacing
the fibre S' with the rationalized fibre S (10).

Lemma 3. The rational Euler class is equal to the k-invariant:
e=ke H*(Ry; Q).
Proof. If the fibration is a genuine S'-bundle, the k-invariant
ke H*(Ry; 7) = [Rg, K(Z,2)].

It happens that K (Z,2) = CP*® = Grassm;(C*®) = BU, = BS'. So the
k-invariant k € [R,, BS'] is the classifying map of the bundle, i.e., via the
identifications above, it is its Euler class. In the general case, we can make
the fibration into a genuine bundle by rationalizing the fibers to S (10). Then the
above argument goes through rationally.

Next we discuss the relation with the virtual degree. This invariant is de-
fined using the existence of a regular branched cover of the base, of automor-
phism group a certain group G, via which the Seifert fibration pulls back to a
genuine bundle o.
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Definition. The virtual degree d of a Seifert fibration is the quotient e(o')/order
(G), where e(o0) is the Euler number of o .

Theorem 3. (cf. [2], [4], [5]). For a Seifert fibered space, the following invari-
ants are equal:

D)y =—b—XI_ B/

ii) k = the k-invariant of the fibration;

iii) e = the Euler number of the fibration,

iv) d = the virtual degree.

Proof. To prove y = d, note that this true for genuine bundles, and also for
Seifert fibered tori, by definition; because both invariants can be localized (at
the singular fibres) we are done. Similarly to prove y = e: for a fibered torus,
by replacing S! with the rationalized S(IO), the i-th fibre becomes divisible by
«;, and its rational Euler number is minus its previous degree §;, divided by «;.
Finally, kK = e is Lemma 3.
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