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SEMILINEAR EQUATIONS ON NILPOTENT LIE GROUPS:

GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS

ANDREA PASCUCCI

In this note we consider a semilinear Cauchy problem on a nilpotent Lie
group. We extend a classical result by Fujita about the global existence and
the blow-up of solutions.

1. Introduction.

The aim of this note is to extend to the case of nilpotent Lie groups some
classical result [4], [15] concerning global existence and blow-up of solutions
to a semilinear Cauchy problem. We assume that (RN , ◦) is a Lie group with

strati�ed Lie algebra G =
s0
⊕
j=1

Gj . Let {X1, . . . , Xm} be a basis of G1 and let L

be the second order differential operator in R
N+1

(1.1) L =

m�

j=1

X 2
j − ∂t .

We refer to Section 2 where more precise hypotheses and additional de�nitions
and notations are given. We stress that L is an hypoelliptic operator since the
vector �elds X1, . . . , Xm verify Hörmander condition (2.1). In this paper, we
consider the following semilinear Cauchy problem

(1.2)

�
Lu = −u p in R

N×]0, T [
u(x , 0) = a(x) x ∈ R

N .
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Here p > 1, (x , t) denotes the point in R
N × R and the initial data a is a

continuous, bounded, non-negative and non identically zero function. We study
problem (1.2) via the integral equation

u(x , t) =

�

RN

�(x , t; y, 0)a(y) dy +(1.3)

+

� t

0

�

RN

�(x , t; y, s)u p(y, s) dyds ≡ u0(x , t) + �u(x , t),

where �(·, ·; y, s) denotes the fundamental solution of L with pole in (y, s).
More precisely, we call a solution of (1.2) a function u ∈ C ∩ L∞(RN ×

[0, T [; [0, +∞[) which solves the integral equation (1.3) in the strip R
N ×

[0, T [. A function u which is a solution of (1.2) for every positive T is said a
global solution of (1.2). We remark that, actually, a solution of (1.2) is a smooth
positive function in R

N×]0, T [ and it is a solution of (1.2) in the classical sense.

In the following statement Q denotes the homogeneous dimension of
(RN , ◦) (see (2.3)). Our main result reads

Theorem 1.1. Let p∗ = 1 + 2
Q
. If 1 < p ≤ p∗ then no global solution of (1.2)

exists for any initial data. If p > p∗ and if the initial data a is suitably small
(see (3.13)) then there exists a unique global solution to (1.2).

The simpltest example of nilpotent strati�ed Lie group is (RN , +). In this
case L in (1.1) is the heat operator and the theorem is a classical result by Fujita
[4] for p �= p∗ and by Hayakawa [5] for p = p∗ . Actually, our method is
closely inspired by the papers [4], [15] and it relies on the remarkable global
estimates (2.7) and (2.8) of the fundamental solution given by Varopoulos [13].
A classical example of non-abelian strati�ed Lie group is the Heisenberg group
H

n = (R2n+1, ◦). The group law in H
n is given by

(x , y, s) ◦ (x �, y �, s �) =
�
x + x �, y + y �, s + s � +

1

2
(x · y � − x � · y)

�
,

for every (x , y, s), (x �, y �, s �) ∈ R
2n+1 . In this case

L =
�
∂x −

y

2
∂s

�2
+

�
∂y +

x

2
∂s

�2
− ∂t

is a degenerate parabolic operator in R
2n+2 . The homogeneous dimension of

H
n is Q = 2n + 2.

Fujita�s results have been extended in several directions over the past years. In
[7] and [12] a wide survey of the related literature is presented. Recently, in
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[9], the author has considered problem (1.2) with L in a class of Kolmogorov-
Fokker- Planck type operators.
The paper is organized as follows. In Section 2 we present the necessary
background material concerning homogeneous structures on nilpotent strati�ed
Lie groups. In Section 3 we prove Theorem 1.1.

Acknowledgments. This paper forms a part of my Tesi di Dottorato di Ricerca
[10]. I am very grateful to my adviser Professor E. Lanconelli for proposing the
problem and for his guidance.

2. Notations and preliminary results.

By reader�s convenience and in order to present a reasonably self-contained
exposition, in this section we brie�y recall some known facts about strati�ed Lie
groups. More details about this topic can be found, for example, in [10] and in
[2], [11], [14].

Let (RN , ◦) be a Lie group and let (G, [, ]) denote the Lie algebra of the
◦-left-invariant vector �elds with the usual Lie bracket. We assume the two
following hypotheses:

(H1) G is nilpotent of step s0, i.e. G
(s0) �= {0} and G

(s0+1) = {0}, where
G

(1) ≡ G and G
(k+1) ≡ [G, G

(k)] for k ≥ 1;
(H2) G is strati�ed, i.e. G admits a direct sum decomposition

G =

s0�

k=1

Gk

such that Gk+1 = [G1, Gk] for 1 ≤ k < s0.

For a �xed basis {X1, . . . , Xm} of G1, we consider the differential operator

L =

m�

j=1

X 2
j − ∂t .

L is an hypoelliptic operator since, by (H2), the vector �elds X1, . . . , Xm verify
the classical Hörmander condition (see [6])

(2.1) rankL(X1, . . . , Xm)(x) = N, ∀x ∈ R
N ,

where L(X1, . . . , Xm) denotes the Lie algebra generated by X1, . . . , Xm .
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We de�ne in R
N a distance d suitable for the study of L: the Carnot-

Caratheodory (or control) distance. Condition (2.1) allows to prove that it is
always possible to join two points x , y ∈ R

N by a curve that stays tangent to the
�elds X1, . . . , Xm . Let us denote by C(T ) the class of all absolutely continuous
curves γ : [0, T ] → R

N that almost everywhere satisfy

γ �(t) =

m�

j=1

aj (t)Xj (γ (t))

for some aj , 1 ≤ j ≤ m, a.e. continuous functions such that

m�

j=1

a2j (t) ≤ 1, ∀ t ∈ [0, T ].

Then, for every x , y ∈ R
N , we de�ne

d(x , y) = inf{T | ∃γ ∈C(T ) s.t. γ (0) = x , γ (T ) = y}.

It was proved in [1] that d(x , y) < ∞ for every x , y ∈ R
N and that, actually, d is

a distance. Moreover, for every compact subset K of R
N , there exist constants

C1,C2 such that

C1�x − y� ≤ d(x , y) ≤ C2�x − y�
1
s0 , ∀x , y ∈ K ,

where � ·� denotes the Euclidean norm. More details about distances associated
to vector �elds can be found in [8].

We de�ne a family of dilations (δλ)λ>0 of R
N by setting, for 1 ≤ j ≤ s0

and λ > 0,
δλ(v) = λ jv, ∀v ∈ exp(Gj ).

For every λ > 0, δλ is a Lie automorphism of (RN , ◦). In particular, we have

δλ(x ◦ y) = δλ(x) ◦ δλ(y), ∀x , y ∈ R
N , λ > 0.

Moreover, the differential dδλ ≡ Dλ de�nes a family of Lie automorphisms of
G adapted to its strati�cation, in the sense that

(2.2) Dλ(X )(h) = λ j X (δλ(h)) ∀X ∈ Gj , h ∈ R
N , λ > 0.

In particular the principal part of L is homogeneous of degree two w.r.t.
(Dλ)λ>0 .
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For every λ > 0, the Jacobian determinant of δλ equals λQ where

(2.3) Q =

s0�

j=1

j · dimGj .

Therefore it seems natural to call Q homogeneous dimension of R
N w.r.t.

(δλ)λ>0 . Clearly Q ≥ N .
There is a remarkable link between the control distance d and the homo-

geneous Lie group structure on R
N . Indeed, we have

d(h ◦ x , h ◦ y) = d(x , y) ∀x , y, h ∈ R
N ,

d(0, δλ(x)) = λd(0, x) ∀x ∈ R
N , λ > 0.

By setting

(2.4) |x | = d(0, x), x ∈ R
N ,

we de�ne a homogeneous norm on R
N , i.e. a function | · | ∈ C(RN ; [0, +∞[)

such that
i) |x | = 0 if and only if x = 0;
ii) |x | = |x−1|;
iii) |δλ(x)| = λ|x |.

Moreover | · | satis�es the triangle inequality

(2.5) |x ◦ y| ≤ |x | + |y| ∀x , y ∈ R
N .

We denote by
Bd (x , r) = {y | d(x , y) < r}

the d -ball of center x and radius r > 0. Since the Lebesgue measure is a Haar
measure in (RN , ◦), we have that

(2.6) |Bd (x , r)| = r Q |Bd(0, 1)|.

The following polar coordinates formula holds:

�

Bd (0,r)

f (|x |) dx = Q|Bd(0, 1)|

� r

0

f (ρ)ρQ−1 dρ,

for every measurable function f .



350 ANDREA PASCUCCI

Let �(·, ·) = �(·, ·; 0, 0) denote the fundamental solution to the operator L
in (1.1) with pole in (0, 0). Let us recall that � is a positive solution of Lu = 0
in R

N×]0, +∞[, �(·, t) = 0 for t ≤ 0 and ��(·, t)�1 = 1 for every t > 0.
The following remarkable global estimates of � and Xj� hold (see [13]):

there exists a positive constant C such that

(2.7)
1

Ct
Q
2

exp
�

− C
|x |2

t

�
≤ �(x , t) ≤

C

t
Q
2

exp
�

−
|x |2

Ct

�
,

and

(2.8) |Xj�(x , t)| ≤
C

t
Q+1
2

exp
�

−
|x |2

Ct

�
,

for every x ∈ R
N and t > 0.

3. Proof of Theorem 1.1.

The aim of this section is the proof of Theorem 1.1. The following estimate
of the solutions of (1.2) is the key step in proving the non-existence part of
Theorem 1.1.

Lemma 3.1. If u is a solution to (1.2), then

(3.1) tu
p−1
0 (0, t) ≤

1

p − 1
, ∀ t ∈ [0, T [,

where u0 is de�ned by

u0(x , t) =

�

RN

�(x , t; y, 0)a(y) dy.

Proof. For �xed t, 0 < t < T , and ε > 0, we set

Vε(x , s) = �(0, t + ε; x , s), (x , s) ∈ R
N × [0, t],

and

Jε(s) =

�

RN

Vε(x , s)u(x , s) dx, s ∈ [0, t].

We claim that

(3.2)
d

ds
Jε(s) =

�

RN

Vε(x , s)u p(x , s) dx , s ∈ ]0, t[.
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Let us prove (3.2). We �rst observe that Vε ∈ C∞(RN × [0, t]; ]0, +∞[)
and �Vε(·, s)�1 = 1 for every s ∈ [0, t]. We also remark that X ∗

j = −Xj ,
1 ≤ j ≤ m, and �∗(x , t; y, s) = �(y, s; x , t) is a fundamental solution of L∗ ,
formal adjoint of L . Therefore

(3.3) L∗Vε =

�
m�

j=1

X 2
j + ∂s

�

Vε = 0

in R
N×]0, t[.
Now, we consider a cut-off function ρ ∈C∞

0 (R; [0, 1]) such that ρ(τ) = 1
for |τ | ≤ 1 and ρ(τ) = 0 for |τ | ≥ 2. We set, for n ∈ N,

(3.4) χn(x) = ρ

�
|x |

n

�

= ρ
��
�δ 1

n
(x)

�
�
�
, x ∈ R

N ,

and

J (n)
ε (s) =

�

RN

Vε(x , s)u(x , s)χn(x) dx , s ∈ [0, t].

In (3.4), | · | denotes the homogeneous norm de�ned in (2.4). By the monotone
convergence theorem, we have

lim
n→∞

J (n)
ε (s) = Jε(s), ∀s ∈ [0, t].

Next, we prove that d
ds
J (n)
ε converges uniformly in [0, t] to the right hand side

of (3.2) as n goes to in�nity. Indeed, we have

d

ds
J (n)
ε =

�

RN

(u∂sVε + Vε∂su)χn dx

=

�

RN

Vεu
pχn dx +

�

RN

�

uχn∂sVε + Vεχn

m�

j=1

X 2
j u

�

dx

≡ I
(n)
1 + I

(n)
2 .

Using the upper estimate of the fundamental solution, we obtain that, for some
positive constant C ,

0 ≤

�

RN

Vε(x , s)u p(x , s) dx − I (n)
1 (s)(3.5)

≤ �u�p
∞

�

RN

C

(t + ε − s)
Q
2

exp
�

− C
|x |2

t + ε − s

�
(1− χn(x)) dx → 0(3.6)
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by the dominated convergence theorem, as n tends to in�nity uniformly in s .
Concerning I (n)

2 , by (3.3) and by some integration by parts, we get

I
(n)
2 =

m�

j=1

�

RN

(uVεX
2
j χn + 2uX j VεXjχn) dx .

We observe that, by (2.2),

(3.7) Xjχn(x) =
1

n
(Xjχ1)(δ 1

n
(x)).

Thus, by the estimate (2.8), for some positive constant C , we have

�
�
�
�

�

RN

u(x , s)XjVε(x , s)Xjχn(x) dx

�
�
�
� ≤

≤ �u�∞

�

RN

C

ε
Q+1
2

exp
�

−
|x |2

C(t + ε)

�
|Xjχn(x)| dx

(by (3.7) and by changing variable of integration y = δ 1
n
(x))

=
CnQ−1�u�∞

ε
Q+1
2

�

RN

exp
�

−
|δn(y)|

2

C(t + ε)

�
|(Xjχ1)(y)| dy

≤
CnQ−1�u�∞�Xjχ1�∞

ε
Q+1
2

�

RN

exp
�

−
|δn(y)|

2

C(t + ε)

�
dy

(by changing the variable of integration x = δn(y))

=
1

n

�
C�u�∞�Xjχ1�∞

ε
Q+1
2

�

RN

exp
�

−
|x |2

C(t + ε)

�
dx

�

.

In the same way one can handle the term

�

RN

uVεX
2
j χn dx ,

in order to show that I (n)
2 converges uniformly to 0 as n goes to in�nity. This

concludes the proof of (3.2).
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By means of Hölder�s inequality, from (3.2) we get

(3.8)
d

ds
Jε ≥ (Jε)

p.

Finally, integrating (3.8) on [0, t] and letting ε go to zero we obtain (3.1). �

Proof of Theorem 1.1.

[The case 1 < p < p∗]. Let u be a solution of (1.2). It is non-restrictive to
consider the case a(0) > 0, so we can choose a0, δ > 0 such that a(x) ≥ a0 for
x ∈ Bd(0, δ). Thus, for every t ∈ [δ, T [, we have

u0(0, t) ≥ a0

�

Bd (0,δ)

�(y−1, t) dy

(by the lower estimate of the fundamental solution)

(3.9) ≥
a0

C1 t
Q
2

�

Bd (0,δ)

exp
�

− C1
|y|2

δ

�
dy =

C2

t
Q
2

,

for some positive constants C1,C2 depending only on L . Combining (3.1) with
(3.9), one has that, if 1 < p < p∗ , then u cannot be a global solution.

[The case p = p∗]. By contradiction, we suppose that there exists a global
solution u to (1.2). From (3.1) for p = p∗ , by the lower estimate of the
fundamental solution, we get

(3.10)

�

RN

exp
�

− C1
|y−1 ◦ x |2

t

�
a(y) dy ≤ C1t

Q
2 u0(x , t) ≤ C2,

for some positive constants C1,C2 depending only on L . Thus, as t tends to
in�nity in (3.10), by the monotone convergence theorem, we obtain

�a�1 ≤ C2 .

Regarding u(·, t) as initial value, we have

(3.11) �u(·, t)�1 ≤ C2, ∀ t ≥ 0.

For �xed α > 0, we set v(·, t) = u(·, t + α). Once more using the estimates of
the fundamental solution, it is not dif�cult to verify that v dominates a Gaussian
function.
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Precisely, there exists a positive constant C3 such that

(3.12) v(x , t) ≥
1

C3(t + α)
Q
2

exp
�

−
C3 |x |2

t + α

�
, ∀(x , t) ∈ R

N×]0, +∞[.

Since v is a solution to the integral equation (1.3), by (3.12), we have

�v(·, t)�1 ≥

�

RN

� t

0

�

RN

�(x , t; y, s)

�
1

C3(s + α)
Q
2

exp
�
−
C3 |y|

2

s + α

�
�1+ 2

Q

dydsdx

(by Tonelli�s theorem and since ��(·, t − s)�1 = 1 for t > s)

= C
−1− 2

Q

3

� t

0

(s + α)−
Q
2 −1

�

RN

exp
�

−

�
1 +

2

Q

�C3|y|
2

s + α

�
dyds

(performing the change of variable ξ = δ
(s+α)

− 1
2
(y) and by a straightforward

computation)

= C4 log
� t + α

α

�
,

for some C4 > 0. On the other hand, obviously, estimate (3.11) also holds for
the function v. Thus we have a contradiction.

[The case p > p∗]. We are looking for a solution in the class of bounded,
continuous functions. Therefore the uniqueness of the solution follows from
standard arguments. We refer, for example, to [3], Chap. 2.

Concerning the existence, we claim that there exist some positive constants
δ0, α such that, if the following estimate of the initial data holds

(3.13) a ≤ δ0�(·, α)

then a global solution u to (1.2) exists. Moreover

u(x , t) ≤ M�(x , t + α), ∀(x , t) ∈ R
N × [0, +∞[,

for some constant M > 0.
Indeed, we �rst observe that, if (3.13) holds, then for every (x , t) ∈

R
N × [0, +∞[,

(3.14) u0(x , t) ≤ δ0

�

RN

�(y−1 ◦ x , t)�(y, α) dy = δ0�(x , t + α).
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Here we have used the so-called reproduction property of the fundamental
solution. Next, we de�ne the recurrent sequence (un)n∈N as follows

un+1 = u0 + �un,

where �u is a s in (1.3). The sequence (un)n∈N is monotone increasing as it can
be easily veri�ed by induction. We want to show that it is possible to choose
δ0, α > 0 in (3.13) in such a way that

(3.15) un(x , t) ≤ M�(x , t + α), ∀(x , t) ∈ R
N × [0, +∞[, n ∈ N,

for some positive constant M . If (3.15) holds then, by the monotone conver-
gence theorem, u = sup

n∈N

un is the global solution of (1.2).

In order to prove (3.15), we set δn+1 = δ0 + δ
p
n , n ∈ N, and we claim that,

for suitable α,

(3.16) un(x , t) ≤ δn�(x , t + α), (x , t) ∈ R
N × [0, +∞[, n ∈ N.

Now, for small δ0, (δn)n∈N is convergent. Therefore (3.15) follows from (3.16).
We prove (3.16) by induction.

For n = 1, we have

u1(x , t) ≤ δ0�(x , t + α) + δ
p
0

� t

0

�

RN

�(x , t; y, s)� p(y, s + α) dyds

≤ δ1�(x , t + α),

since, by estimate (2.7) of the fundamental solution,

� t

0

�

RN

�(x , t; y, s)� p(y, s + α) dyds

≤

� t

0

�

RN

�(x , t; y, s)�(y, s + α)

� C

(s + α)
Q
2

�p−1

exp
�

−
(p − 1)|y|2

C(s + α)

�
dyds

(by the reproduction property of �)

(3.17) ≤ �(x , t + α)

� +∞

0

�
C

(s + α)
Q
2

�p−1

ds ≤ �(x , t + α),

since p > p∗ and by choosing α suf�ciently great.
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Finally, supposing that (3.16) holds for a �xed n ∈ N, we have

un+1(x , t) = u0(x , t) + �un(x , t)

≤ δ0�(x , t + α) + δ p
n ��(x , t + α)

(by (3.17))
≤ δn+1�(x , t + α).

This proves (3.16) and thus concludes the proof of the theorem. �
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