HÖLDER CONTINUITY FOR SECOND ORDER

NON VARIATIONAL PARABOLIC SYSTEMS

MARIA STELLA FANCIULLO

Let Q be the cylinder $\Omega \times(-T, 0)$, with $T>0$, we prove that if $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)(N$ integer $\geq 1)$ is a solution in Q of the system

$$
a(X, H(u))-\frac{\partial u}{\partial t}=0,
$$

where $X=(x, t), a(X, \xi)$ is a vector of \mathbb{R}^{N}, measurable in X, continuous in ξ and satisfying the conditions $a(X, 0)=0$ and (A), then u and $D u$ are Hölder continuous in Q, if $n \leq 4$ and $n=2$, respectively.

We obtain similar results for the solutions in Q of the systems

$$
a(X, H(u))-\frac{\partial u}{\partial t}=f(X)
$$

and

$$
a(X, H(u))-\frac{\partial u}{\partial t}=b(X, u, D u),
$$

where $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$ and $b(X, u, p)$ is a vector of \mathbb{R}^{N} with linear growth.

1. Introduction.

Let Ω be an open bounded set of $\mathbb{R}^{n}, n \geq 2$, of generic point $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, let T be a real positive number, we denote the cylinder $\Omega \times$ $(-T, 0)$ by Q and the point $(x, t) \in \mathbb{R}_{x}^{n} \times \mathbb{R}_{t}$ by X.

If $u(X): Q \rightarrow \mathbb{R}^{N}, N$ integer ≥ 1, we set

$$
\begin{gathered}
D_{i} u=\frac{\partial u}{\partial x_{i}}, \\
D u=\left(D_{1} u, D_{2} u, \ldots, D_{n} u\right), \\
H(u)=\left\{D_{i} D_{j} u\right\}=\left\{D_{i j} u\right\}, \quad i, j=1,2, \ldots, n ;
\end{gathered}
$$

$D u$ is an element of $\mathbb{R}^{n N}$ and $H(u)$ is an element of $\mathbb{R}^{n^{2} N}$.
We denote by

$$
W^{p}\left(Q, \mathbb{R}^{k}\right)=\left\{u: u \in L^{p}\left(-T, 0, H^{2, p}\left(\Omega, \mathbb{R}^{k}\right)\right), \frac{\partial u}{\partial t} \in L^{p}\left(Q, \mathbb{R}^{k}\right)\right\}
$$

and
$W_{0}^{p}\left(Q, \mathbb{R}^{k}\right)=\left\{u \in W^{p}\left(Q, \mathbb{R}^{k}\right): u \in L^{p}\left(-T, 0, H_{0}^{1, p}\left(\Omega, \mathbb{R}^{k}\right)\right), u(x,-T)=0\right\}$,
where $p \in\left[1,+\infty\left[, k\right.\right.$ is an integer $\geq 1, H^{2, p}\left(\Omega, \mathbb{R}^{k}\right)$ and $H_{0}^{1, p}\left(\Omega, \mathbb{R}^{k}\right)$ are the usual Sobolev spaces.

We consider the system

$$
\begin{equation*}
a(X, H(u))-\frac{\partial u}{\partial t}=0 \tag{1.1}
\end{equation*}
$$

where $a(X, \xi)$ is a vector in \mathbb{R}^{N}, measurable in X, continuous in ξ and satisfying the conditions

$$
\begin{equation*}
a(X, 0)=0 \tag{1.2}
\end{equation*}
$$

(A) there exist three positive constants α, γ and δ, with $\gamma+\delta<1$, such that, $\forall \tau, \xi \in \mathbb{R}^{n^{2} N}$ and for a.e. $X \in Q$, it results

$$
\left\|\sum_{i=1}^{n} \tau_{i i}-\alpha[a(X, \tau+\xi)-a(X, \xi)]\right\|^{2} \leq \gamma\|\tau\|^{2}+\delta\left\|\sum_{i=1}^{n} \tau_{i i}\right\|^{2}
$$

(B) there exists a bounded non-negative function $\omega(t)$, defined for $t>0$, which is non-decreasing and goes to zero as $t \rightarrow 0^{+}$, such that, $\forall X, Y \in Q$ and $\forall \xi \in \mathbb{R}^{n^{2} N}$

$$
\|a(X, \xi)-a(Y, \xi)\|^{2} \leq \omega(d(X, Y))\|\xi\|^{2}
$$

where $d(X, Y)=\max \left\{\|x-y\|,|t-\tau|^{\frac{1}{2}}\right\}, X=(x, t)$ and $Y=(y, \tau)$.
A solution of the system (1.1) is a function $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ which satisfies (1.1) for a.e. $X \in Q$.

In [3] and [6] there are Hölder continuity results in Q for the solutions of the basic system

$$
a(H(u))-\frac{\partial u}{\partial t}=0
$$

these results are been obtained by S. Campanato in [3], using the Sobolev imbedding Theorem and, with different technique (using fundamental estimates for $H(D u), \frac{\partial(D u)}{\partial t}, H(u)$ and $\left.\frac{\partial u}{\partial t}\right)$ by M. Marino and A. Maugeri in [6].

Furthermore, in [6] M. Marino and A. Maugeri obtained similar results for the following systems

$$
a(H(u))-\frac{\partial u}{\partial t}=f(X)
$$

and

$$
a(H(u))-\frac{\partial u}{\partial t}=b(X, u, D u)
$$

with $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$ and $b(X, u, p)$ vector in \mathbb{R}^{N} with linear growth, i.e.

$$
\|b(X, u, p)\| \leq c(1+\|u\|+\|p\|)
$$

for a.e. $X \in Q, \forall u \in \mathbb{R}^{N}$ and $\forall p \in \mathbb{R}^{n N}$.
In this paper, for system (1.1), thanks to the hypothesis (B), we obtain $L_{\text {loc }}^{2,2+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon}$ regularity results for $H(u)$ and $\frac{\partial u}{\partial t}$ and then we prove that u and $D u$ are Hölder continuous in Q, if $n \leq 4$ and $n=2$, respectively.

In Section 3 we obtain similar results for the following system

$$
\begin{equation*}
a(X, H(u))-\frac{\partial u}{\partial t}=f(X) \tag{1.3}
\end{equation*}
$$

with $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$. At last in Section 4 we study the Hölder continuity in Q for system

$$
\begin{equation*}
a(X, H(u))-\frac{\partial u}{\partial t}=b(X, u, D u) \tag{1.4}
\end{equation*}
$$

where $b(X, u, p)$ is a vector of \mathbb{R}^{N} with linear growth.

2. Hölder continuity for systems of type (1.1).

Let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution in Q of the following parabolic system

$$
a(X, H(u))-\frac{\partial u}{\partial t}=0
$$

In this section we shall give some Hölder continuity results in Q for u and $D u$.
Theorem 2.1. If the vector $a(X, \xi)$ satisfies the hypothesis (1.2), (A) and (B), then, $\forall \varepsilon>0$ an $\forall q \in(2, \min (\tilde{q}, n+2))\left({ }^{1}\right)$, it results:

$$
H(u) \in L_{\text {loc }}^{2,2+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon}\left(Q, \mathbb{R}^{n^{2} N}\right)
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t} \in L_{\mathrm{loc}}^{2,2+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon}\left(Q, \mathbb{R}^{N}\right) \tag{2.1}
\end{equation*}
$$

Proof. Fixed $Q\left(X^{0}, \sigma\right)=Q(\sigma) \subset \subset Q\left({ }^{2}\right)$, with $0<\sigma<1$, let w be the solution of the Cauchy-Dirichlet problem (the existence and uniqueness are ensured by Theorem 1.2 in [6]):

$$
\left\{\begin{array}{l}
w \in W_{0}^{2}\left(Q(\sigma), \mathbb{R}^{N}\right) \\
a\left(X^{0}, H(u)+H(w)\right)-\frac{\partial w}{\partial t}=\frac{\partial u}{\partial t} \quad \text { in } \quad Q(\sigma)
\end{array}\right.
$$

For this solution, (1.8) of [6] ensures the following inequality

$$
\begin{align*}
& \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq \tag{2.2}\\
& \quad \leq c \int_{Q(\sigma)}\left\|\frac{\partial u}{\partial t}-a\left(X^{0}, H(u)\right)\right\|^{2} d X
\end{align*}
$$

Set $v=u+w$ in $Q(\sigma)$, it results: $v \in W^{2}\left(Q(\sigma), \mathbb{R}^{N}\right)$ and

$$
a\left(X^{0}, H(v)\right)-\frac{\partial v}{\partial t}=0 \quad \text { in } \quad Q(\sigma)
$$

[^0]Thanks to Theorem 3.2 in [6], for v the following inequality holds

$$
\begin{align*}
\int_{Q(\tau \sigma)} & \left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X \leq \tag{2.3}\\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

$\forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))$.
Now, thanks to (2.2) and (2.3), since $u=v-w$ and is solution of system (1.1) and thanks to the hypothesis (B), it follows, $\forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))$

$$
\leq 2 \int_{Q(\tau \sigma)}\left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X+2 \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq
$$

$$
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X+
$$

$$
+2 \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq
$$

$$
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+
$$

$$
+c \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq
$$

$$
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+
$$

$$
+c \int_{Q(\sigma)}\left\|\frac{\partial u}{\partial t}-a\left(X^{0}, H(u)\right)\right\|^{2} d X \leq
$$

$$
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+
$$

$$
+c \int_{Q(\sigma)}\left\|a(X, H(u))-a\left(X^{0}, H(u)\right)\right\|^{2} d X \leq
$$

$$
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+c \omega(\sigma) \int_{Q(\sigma)}\|H(u)\|^{2} d X
$$

and hence

$$
\begin{align*}
& \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{2.5}\\
& \quad \leq c\left[\tau^{2+(n+2)\left(1-\frac{2}{q}\right)}+\omega(\sigma)\right] \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

From (2.5) and Lemma 1.III in [1] it deduces that $\forall \varepsilon>0$ there exists $\sigma_{\varepsilon} \in(0,1)$ such that $\forall \tau \in(0,1)$ and $\forall \sigma \in\left(0, \sigma_{\varepsilon}\right]$

$$
\begin{align*}
\int_{Q(\tau \sigma)} & \left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{2.6}\\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

$\forall q \in(2, \min (\tilde{q}, n+2))$.
From (2.6) the thesis follows.
Thanks to Theorem 2.1 and Lemma 2.II in [4] it deduces that

$$
\begin{equation*}
D u \in \mathscr{L}_{\mathrm{loc}}^{2,4+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon}\left(Q, \mathbb{R}^{n N}\right) \tag{2.7}
\end{equation*}
$$

$\forall \varepsilon>0$ and $\forall q \in(2, \min (\tilde{q}, n+2))$.
If $n<2 \tilde{q}-2$ (and in particular if $n=2$), there exist $\varepsilon>0$ and $q \in(2, \min (\tilde{q}, n+2))$ such that $4+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon>n+2$ and (2.7) holds (with this choice of ε and q), and then

Du is Hölder continuous in Q.

On the other hand, from Lemma 2.I in [4] and from conditions (2.1) and (2.7), it follows:

$$
u \in \mathcal{L}_{\mathrm{loc}}^{2,6+(n+2)\left(1-\frac{2}{q}\right)-\varepsilon}\left(Q, \mathbb{R}^{N}\right)
$$

$\forall \varepsilon>0$ and $\forall q \in(2, \min (\tilde{q}, n+2))$, from which we have that, if $n<3 \tilde{q}-2$ (and in particular if $n \leq 4$), the vector
u is Hölder continuous in Q.

3. Hölder continuity for system of type (1.3)..

Let $f: Q \rightarrow \mathbb{R}^{N}$ be a function of class $L^{2}\left(Q, \mathbb{R}^{N}\right)$ and let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution in Q of the parabolic system

$$
\begin{equation*}
a(X, H(u))-\frac{\partial u}{\partial t}=f(X) \tag{3.1}
\end{equation*}
$$

with $a(X, \xi): Q \times \mathbb{R}^{n^{2} N} \rightarrow \mathbb{R}^{N}$ measurable in X, continuous in ξ and satisfying conditions (1.2), (A) and (B).
Lemma 3.1. For every cylinder $Q\left(X^{0}, \sigma\right)=Q(\sigma) \subset Q$, with $\sigma<1$, $\forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))^{1}$, one has:

$$
\begin{align*}
& \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{3.2}\\
& \leq c\left[\tau^{2+(n+2)\left(1-\frac{2}{q}\right)}+\omega(\sigma)\right] \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+ \\
& \quad+c \int_{Q(\sigma)}\|f\|^{2} d X
\end{align*}
$$

where the constant c does not depend on σ and τ.
Proof. Fixed $Q\left(X^{0}, \sigma\right)=Q(\sigma) \subset Q$, with $\sigma<1$, let us denote, as in the proof of Theorem 2.1, by w the solution of the Cauchy-Dirichlet problem

$$
\left\{\begin{array}{l}
w \in W_{0}^{2}\left(Q\left(X^{0}, \sigma\right), \mathbb{R}^{N}\right) \\
a\left(X^{0}, H(u)+H(w)\right)-\frac{\partial w}{\partial t}=\frac{\partial u}{\partial t} \quad \text { in } \quad Q(\sigma)
\end{array}\right.
$$

Set $v=w+u$ in $Q(\sigma)$, it results: $v \in W^{2}\left(Q(\sigma), \mathbb{R}^{N}\right)$ and

$$
a\left(X^{0}, H(v)\right)-\frac{\partial v}{\partial t}=0 \quad \text { in } \quad Q(\sigma)
$$

For w and v the estimates (2.2) and (2.3) hold, respectively. Making use of these estimates and proceeding as in the proof of Theorem 2.1, one gets, $\forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))$

$$
\begin{align*}
& \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{3.3}\\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+ \\
& \quad+c \int_{Q(\sigma)}\left\|\frac{\partial u}{\partial t}-a\left(X^{0}, H(u)\right)\right\|^{2} d X .
\end{align*}
$$

Now let us estimate the last integral in the right hand side of the (3.3).
Since u is solution of system (3.1), one has:

$$
\frac{\partial u}{\partial t}-a\left(X^{0}, H(u)\right)=a(X, H(u))-a\left(X^{0}, H(u)\right)-f(X) \quad \text { in } \quad Q(\sigma),
$$

and then, thanks to hypothesis (B)

$$
\begin{gather*}
\int_{Q(\sigma)}\left\|\frac{\partial u}{\partial t}-a\left(X^{0}, H(u)\right)\right\|^{2} d X \leq \tag{3.4}\\
\leq 2 \int_{Q(\sigma)}\left\|a(X, H(u))-a\left(X^{0}, H(u)\right)\right\|^{2} d X+2 \int_{Q(\sigma)}\|f(X)\|^{2} d X \leq \\
\leq c \omega(\sigma) \int_{Q(\sigma)}\|H(u)\|^{2} d X+2 \int_{Q(\sigma)}\|f(X)\|^{2} d X .
\end{gather*}
$$

(3.2) is a trivial consequence of inequalities (3.3) and (3.4).

The next theorem follows easily from Lemma 3.1:
Theorem 3.1. If $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ is a solution of system (3.1), if the vector $a(X, \xi)$ satisfies conditions (1.2), (A) and (B) and if $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right), 0<$ $\mu<\tilde{\lambda}=\min \left\{2+(n+2)\left(1-\frac{2}{\tilde{q}}\right), n+2\right\}$, then

$$
\begin{equation*}
D u \in \mathcal{L}_{\mathrm{loc}}^{2, \mu+2}\left(Q, \mathbb{R}^{n N}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u \in \mathcal{L}_{\mathrm{loc}}^{2, \mu+4}\left(Q, \mathbb{R}^{N}\right) . \tag{3.6}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem 4.1 in [6]. Fixed $Q(\sigma) \subset Q$, with $\sigma<1, \forall \tau \in(0,1)$ and for every $q \in(2, \min (\tilde{q}, n+2))$, in virtue of Lemma 3.1 and from the hypothesis $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$, one has:

$$
\begin{align*}
& \quad \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{3.7}\\
& \leq c\left[\tau^{2+(n+2)\left(1-\frac{2}{4}\right)}+\omega(\sigma)\right] \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+c \sigma^{\mu}\|f\|_{\mathcal{L}^{2}, \mu}^{2}\left(Q, \mathbb{R}^{N}\right)
\end{align*}
$$

From (3.7) the thesis follows proceeding as in the proof of Theorem 4.1 in [6] and using Lemma 2.VII in [2], instead of Lemma 1.I in [1].

From (3.5) it follows, as in [6], that, if $n<2 \tilde{q}-2$ (and in particular if $n=2)$ and if $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$, with $\mu \in(n, \tilde{\lambda})$,

$$
D u \in \mathcal{L}_{\text {loc }}^{2, \mu+2}\left(Q, \mathbb{R}^{n N}\right),
$$

with $\mu+2>n+2$, and then
$D u$ is Hölder continuous in Q.
If $n<3 \tilde{q}-2$ (and in particular if $n \leq 4)$ and if $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$, with $\mu \in(n-2, \tilde{\lambda})$, for (3.6) one has

$$
u \in \mathcal{L}_{\mathrm{loc}}^{2, \mu+4}\left(Q, \mathbb{R}^{N}\right)
$$

with $\mu+4>n+2$, and then

$$
\text { u is Hölder continuous in } Q .
$$

4. Hölder continuity for systems of type (1.4).

Let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution in Q of the system

$$
\begin{equation*}
a(X, H(u))-\frac{\partial u}{\partial t}=b(X, u, D u) \tag{4.1}
\end{equation*}
$$

where $a(X, \xi)$ is a vector in \mathbb{R}^{N}, measurable in X, continuous in ξ and satisfying conditions (1.2), (A) and (B).

Let $b(X, u, p)$ be a vector in \mathbb{R}^{N}, measurable in X, continuous in (u, p) and satisfying the condition

$$
\begin{equation*}
\|b(X, u, p)\| \leq c(1+\|u\|+\|p\|) \tag{4.2}
\end{equation*}
$$

for a.e. $X \in Q, \forall u \in \mathbb{R}^{N}$ and $\forall p \in \mathbb{R}^{n N}$.
Theorem 3.1 in [5] ensures that there exists $\bar{q} \in\left(2, \frac{2(n+2)}{n}\right]$ such that, $\forall q \in(2, \bar{q})$,

$$
u \in W_{\mathrm{loc}}^{q}\left(Q, \mathbb{R}^{N}\right)
$$

hence, thanks to Lemma 2.II in [4], one has, $\forall Q(\sigma) \subset \subset Q$ and $\forall q \in(2, \bar{q})$:

$$
\begin{aligned}
& \int_{Q(\sigma)}\left\|D u-(D u)_{Q(\sigma)}\right\|^{2} d X \leq c \sigma^{2} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \\
& \leq c \sigma^{2+(n+2)\left(1-\frac{2}{q}\right)}\left[\int_{Q(\sigma)}\left(\|H(u)\|^{q}+\left\|\frac{\partial u}{\partial t}\right\|^{q}\right) d X\right]^{\frac{2}{q}}
\end{aligned}
$$

from which

$$
D u \in \mathscr{L}_{\mathrm{loc}}^{2,2+(n+2)\left(1-\frac{2}{q}\right)}\left(Q, \mathbb{R}^{n N}\right)
$$

$\forall q \in(2, \bar{q})$.
On the other hand, making use of Lemma 2.1 in [5] (with $p=2$), it deduces

$$
u \in \mathcal{L}_{\mathrm{loc}}^{2,4+(n+2)\left(1-\frac{2}{q}\right)}\left(Q, \mathbb{R}^{N}\right)
$$

$\forall q \in(2, \bar{q})$.
Then u and $D_{i} u, i=1,2, \ldots, n$, belong to the space $\mathcal{L}^{2, \mu}\left(Q^{*}, \mathbb{R}^{N}\right)$, $\forall \mu \in\left(0,2+(n+2)\left(1-\frac{2}{\bar{q}}\right)\right)$ and $\forall Q^{*} \subset \subset Q$, from which, for condition (4.2), it follows that the vector $f(X)=b(X, u, D u) \in \mathcal{L}^{2, \mu}\left(Q^{*}, \mathbb{R}^{N}\right), \forall \mu \in$ $\left(0,2+(n+2)\left(1-\frac{2}{\bar{q}}\right)\right)$ and $\forall Q^{*} \subset \subset Q$.

For Theorem 3.1 one has

$$
\begin{aligned}
D u & \in \mathcal{L}_{\text {loc }}^{2, \mu+2}\left(Q, \mathbb{R}^{n N}\right), \\
u & \in \mathcal{L}_{\text {loc }}^{2, \mu+4}\left(Q, \mathbb{R}^{N}\right),
\end{aligned}
$$

$\forall \mu \in\left(0, \lambda^{*}\right)$, where $\lambda^{*}=\min \left\{2+(n+2)\left(1-\frac{2}{q^{*}}\right), n+2\right\}, q^{*}=\min (\bar{q}, \tilde{q})$.
Now reasoning exactly as in Section 5 of [6] it follows that

$$
D u \text { is Hölder continuous in } Q \text { if } n<2 q^{*}-2
$$

and

$$
u \text { is Hölder continuous in } Q \text { if } n<3 q^{*}-2 \text {. }
$$

REFERENCES

[1] S. Campanato, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni Scuola Norm. Sup. Pisa, 1980.
[2] S. Campanato, Hölder Continuity of the Solutions of Some Non-linear Elliptic Systems, Advances Math., 48 (1983), pp. 16-43.
[3] S. Campanato, Non variational basic parabolic systems of second order, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Natur., (9) 2 (1991), pp. 129-136.
[4] P. Cannarsa, Second order non variational parabolic systems, Boll. U.M.I., (5) 18-C (1981), pp. 291-315.
[5] M. Marino - A. Maugeri, Second order non linear non variational parabolic systems, Rend. Mat., (7) 13 (1993), pp. 499-527.
[6] M. Marino - A. Maugeri, Second order non variational basic parabolic systems, Le Matematiche, 51 (1996), pp. 349-368.

Dipartimento di Matematica,
Università di Catania, Viale Andrea Doria 6,

95125 Catania

[^0]: ${ }^{1}$) \tilde{q} is the constant (>2) that occurs in (2.19) of [6].
 $\left(^{2}\right)$ If $X^{0}=\left(x^{0}, t^{0}\right) \in Q$ and if $\rho>0$, the symbol $Q\left(X^{0}, \rho\right)$ denotes the cylinder $B\left(x^{0}, \rho\right) \times\left(t^{0}-\rho^{2}, t^{0}\right)$.

