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THEORY OF MULTIVARIABLE BESSEL FUNCTIONS

AND ELLIPTIC MODULAR FUNCTIONS

G. DATTOLI - A.TORRE - S. LORENZUTTA

The theory of multivariable Bessel functions is exploited to establish
further links with the elliptic functions. The starting point of the present
investigations is the Fourier expansion of the theta functions, which is used to
derive an analogous expansion for the Jacobi functions (sn,dn,cn...) in terms
of multivariable Bessel functions, which play the role of Fourier coef�cients.
An important by product of the analysis is an unexpected link with the elliptic
modular functions.

1. Introduction.

The theory of generalized Bessel function (GBF) has been reviewed in
Ref. [6]. The importance of these functions stems from their wide use in
application [10], [7] and from their implications in different �elds of pure
and applied mathematics, ranging from the theory of generalized Hermite
polynomials [2] to the theory of elliptic functions [1], [5].

As to this last point, it has been shown that [5] exponents of the Jacobi
functions exhibit expansions of the Jacobi-Anger type in which the ordinary
B.F. is replaced by an in�nite variable GBF.

This paper is addressed to a further investigation on the link exixting
between multivariable GBF and elliptic functions. In particular we will prove
that the Jacobi functions can be written in terms of a trigonometric series
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whose expansion coef�cients are in�nite variable GBF. We will also prove that
these functions provide a natural basis for the expansion of the elliptic modular
functions.

Before entering into the speci�c details of the problem, we will review the
main points of the multivariable GBF theory. The few elements we will discuss
in the following are both aimed at making the paper self-contained and �xing
the notation we will exploit in the following.

A two variable one index GBF is speci�ed by the following generating
function
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fact
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In a similar way we can construct GBF with 4, 5, . . . , m variables. The
recurrence relations of a m-variable GBF can be written as
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The extension to in�nite variables has been shown possible, under the

assumption that the series
∞�

s=1

s|xs| be convergent ([9]). The link of many-

variable GBFs with trigonometric series is almost natural, since the following
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generalized form of the Jacobi Anger expansion holds [9]
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Modi�ed forms of many variable GBF can be introduced as well using the
following Jacobi-Anger expansion (1)
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which is valid under the same restriction on the {xs} as in the J -case. Function
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A particular type of many-variable GBF which will be largely exploited in
the following sections is de�ned below
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where the superscript (0) stands for odd. In the case of m = 2 the function
(0) Jn(x1, x3) is speci�ed by the series

(9a) (0)Jn(x1, x3) =
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Jn−3�(x1)J�(x3)

and the extension to a larger number of variables is obvious.
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functions are modi�ed GBF of �rst kind and play the same role as

In(x) in the one variable case.
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Analogously, one can de�ne the modi�ed version, (0) In ({x2s−1}
m
s=1) of

(0) Jn({x2s−1}
m
s=1) and then consider the relevant extensions to the in�nite-

variable case denoted by (0) Jn({x2s−1}s≥1) and
(0) In ({x2s−1}s≥1), respectively,

for which the following Jacobi-Anger expansions hold true
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under the assumption that the series
∞�

s=1

(2s − 1)|x2s−1| be convergent.

An interesting result, to be immediately quoted, is the possibility of ex-
ploiting functions of the above type, to establish �non-linear� Jacobi-Anger ex-
pansions, i.e. expansions relevant to the generating functions
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F(x , θ ; n) = eix(sin θ)n ,
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In the speci�c cases of n = 3 we obtain
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After these few remarks we are able to introduce the speci�c topic of the
paper namely the link between GBFs and elliptic functions of the Jacobi-type.

2. Generalized Bessel functions and theta elliptic functions.

In a previous paper ([5]) it has been proved that the Jacobi functions sn u,
dn u and cn u are linked to the in�nite variable GBF by Jacobi-Anger like
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expansion. In other words, using the Fourier expansions of the elliptic functions,
for real z it can be shown that
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and K and iK � are the quarter periods of the elliptic functions, speci�ed by the
integrals
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Expansion analogous to (12) can be derived for the theta-functions too.
It is to be noted that Eqs. (12) can be viewed as trigonometric series

associated to the exponents of the Jacobi functions. In this paper we will derive
trigonometric series of cn u, dn u etc. whose coef�cients are provided by
in�nite variable GBFs.

The starting point of our analysis is the following representation of theta-
functions in terms of in�nite products, namely
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Taking the logarithm of the �rst of Eqs. (15) we obtain
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The r.h.s. of the above equation can be cast in a more convenient form by
means of the expansion [11]
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(q = eiπτ ).

Inserting therefore Eq. (19) into Eq. (16) we end up with
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which, according to Eq. (20), holds for
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Using the same reasoning we are able to write
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Finally exploiting the identities
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According to the previous results, for z real we can express the theta
functions (ϑi (z) = ϑi (z)τ ) in terms of in�nite variable GBF as reported below
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The above formulae provide the direct link between GBF and theta elliptic
functions. In the next section we will show how similar expression can be
obtained for sn u, cn u, dn u, . . ., Jacobi functions.
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3. Generalized Bessel function and Jacobi elliptic functions.

The principal Jacobi function sn, cn and dn, are quotient of θ theta
functions, indeed [11]
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Exploiting the previous relations for the logarithm of the theta-functions,
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Analogous expression relevant to the product of elliptic function can be
found keeping e.g. the derivatives of both sides of Eqs. (30) with respect to u,
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thus getting
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We can now specialize the above relations for particular values of u to get
further interesting identities. By setting u = 0 in Eq. (30) we �nd
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These last relations provide the basis for the link between multivariable GBF
and elliptic modular functions.
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4. Concluding remarks.

In the previous sections we have analyzed the link existing between GBF
and Jacobi elliptic functions. Further interesting relations will be discussed
in these concluding remarks. We believe that an important by product of the
already developed analysis is the possibility of expressing the so called elliptic
modular functions (EMF) in series of GBF with in�nite variables.

The EMF are usually denoted by ([11], [8])
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while Eqs. (32b) provide the identities
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By keeping the fourth power of both sides of Eqs. (36) and (37) and by
using the Jacobi-Anger expansion for the GBF we get
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It is worth noting that the properties of the EMF can be directly inferred
from the above series de�nition, in fact
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namely, the last of Eqs. (34).
By noting that, the last of eqs. (32a) yields
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it appears convenient to introduce the further EMF
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and note that

(42) l(τ + 1) = g(τ ).

Furthermore, from the Jacobi-Anger expansion of multivariable GBF it
also follows that

(43) h(τ ) = −16eiπτ exp
�
4
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and similarly for the other functions.
A more general treatment regarding EMF and GBF will be presented

elsewhere. Before closing this paper it is worth giving further identities, which
albeit an almost direct consequence of the considerations developed in the
previous sections, provide a deeper insight into the link between GBF and
elliptic functions.

By integrating both sides of Eqs. (30) we obtain
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Analogous relations involving the theta functions can also be obtained, thus
getting e.g.
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This paper is a further contribution to the theory of GBF and to their
link with elliptic functions. All the possible implications are far from being
completely understood, a forthcoming note will be devoted to a deeper insight.
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