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ON THE SINGULARITIES OF THE TRISECANT
SURFACE TO A SPACE CURVE

MARIE-AMELIE BERTIN

Let C be a smooth curve in P3. Trisecant lines to the curve C are, in
general, sweeping out a (reduced) surface ¢ in IP3. In this note we attempt to
describe some of the singularities of X, and in particular we show that if the
curve C has only a finite number of quadrisecant lines, then the singular locus
of ¢ contains the quadrisecant lines to C, and the points through which pass
more trisecants than through a generic point of the trisecant surface. Several
explicit examples are discussed in the last section.

1. Preliminaries.

A trisecant line to a curve C of IP* can be understood intuitively as a limit
of lines cutting the curve in three distinct points.

More precisely, a trisecant L is a line such that the intersection L N C has
multiplicity at least 3, that is to say:

) Ops

dime(——) = 3

I, + Ic

Higher multisecants are defined in a similar way. For a space curve, one expects
in general a one-dimensional family of trisecants and only finitely many higher
order secants.
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The following classical formula due to Cayley, see Le Barz [7] and Gruson-
Peskine [2], counts (with multiplicity) the number of quadrisecant lines to a
smooth curve C C IP? of degree d and genus g:

(d—2)d—3)*d—4) (d*—7d+13—g)g
12 - 2 '
For example, in the previous formula, a quintisecant line counts in general as
5
4
Cayley’s formula doesn’t force C to have finitely many quadrisecants, although
a negative result implies that C has an infinite number of quadrisecants.

= 5 quadrisecants. It is important to note that the a positive result in

Example. Let C be a curve of type (4, 4) drawn on a smooth quadric surface
Q C IP3. By Bezout any quadrisecant line to C is contained in Q and conversely
both rulings of the quadric are quadrisecant to C. C has degree 8 and genus 9,
so the Cayley’s formula yields a negative number, —4, agreeing with what the
geometry predicts !

The family of lines in P> meeting a smooth space curve C has codimen-
sion 1 in the four-dimensional Grassmannian of lines in P2, thus by a naive
dimension count we expect a one dimensional family of trisecant lines to C,
finitely many quadrisecant lines to C and no lines meeting C five times or more.
The classical trisecant lemma, see [6], asserts that if the family of trisecants is
nonempty, then the family has dimension one, unless C is a plane curve of de-
gree > 3. Thus if the nondegenerate curve C C P? admits trisecant lines, the
trisecant lines to C sweep out a surface ¥ C P3, called the trisecant surface to
C. A scheme structure on X¢ (not always necessarily reduced) may be defined
using Fitting ideals, but we will not make use of it in this note.

A classical formula of Berzolari, recasted in modern terms by Le Barz [7]
(see also [2]), gives the number of trisecant lines to C C P3 meeting a general
line in P3:

d—1)(d—-2)d—-3)
3
In case no multiplicities are involved, Berzolari’s formula computes the degree
of the trisecant surface Xc.

—(d —2)g.

Example. The twisted cubic C has no trisecant lines: C is cut out by quadrics
(the 2 x 2-minors of a 2 x 3 matrix with linear entries), thus it has no trisecant
line. Berzolari’s formula yields O confirming this fact.

Proposizione 1. A smooth curve C C P? has no trisecant lines if only if C is
either a line, a conic, the twisted cubic, or an elliptic normal quartic curve.
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Proof. 1f such a curve C is planar, then obviously C is either a line or a conic.
Assume now that C is nondegenerate of degree d. If C has no trisecants the
projection of C from a general point of C is an isomorphism onto a smooth
plane curve C of degree d — 1. In particular, this allows us to compute the
genus of C:

(d—2)d-3)

g(0) = >

On the other hand, Castelnuovo’s inequality (see [3], or [4]) gives

}sz —d+1ifdiseven

<
“C)—{iaﬂ—w)—d4-1ﬁdmom1

Combining these we deduce that d*> —6d +8 < 0, which gives 2 < d < 4. Since
C is not planar, the only possibilities are either d = 3 and C is the twisted cubic,
or d = 4 and C is either rational or elliptic. In the latter case, if C is elliptic
then it is the complete intersection of two quadrics and thus has no trisecants.
If C is a rational quartic space curve, then C lies on a smooth quadric surface,
where it is a curve of type (1, 3), thus has as trisecants all lines in one of the
rulings of the quadric. This concludes the proof. ([

Remark 1. The proof of the preceding proposition shows in fact that a space
curve has either infinitely many trisecants or none!

The trisecant surface X of a space curve C C P3 can be described in
terms of the following correspondence:
Let T be the algebraic subset of C x C x C defined as the closure of the set
of triples of points (p, g, r) of C x C x C, with p #¢q, p #r, q # r, such
that their linear span < p, ¢, r > is a line. Let T denote the union of all the
irreducible components of T of dimension 1, and let 7 be the image of 7V via
the projection r; to C x C defined by omitting the first factor.

The trisecant surface X¢ coincides with ¢(7 x P'), where ¢ is defined by

TxP'c CxCxP! — p3

¢: (p,q; (s, 1)) +— sp+qt

is the natural rational map sending the pair (p, ¢) to its linear span.
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2. Singularities of the trisecant surface X..

We will describe simple geometric properties of X-. We will assume in
this section that C C P? is a smooth irreducible nondegenerate curve. Let n(C)
be the biggest number n > 3 such that C has an infinite number of n-secant
lines. Denote by m(C) the number of n(C)-secant lines that pass through a
generic point of X¢. The first number is well defined being clearly bounded
by the degree d of the curve C, while the second number is clearly bounded
by the number of trisecant lines, counted with multiplicity, which meet a fixed
line. Observe also that, for instance, m(C) = 2 for curves C lying on a smooth
quadric in IP?, of type (n(C), n(C)).

The surface X is clearly connected being equidimensional of codimen-
sion 1. The following loci are in the singular locus of o¢:

Theorem 1. Let S C X¢ denote the locus consisting of
o the (n(C) + 1)-secant lines of C
e the points of intersection of at least m(C) + 1 n(C)-secant lines to C.
Then S\ 8B is contained in sing(X¢), where B is the set of tangency points
of tangential trisecants to C.

Proof. We sketch a proof in the case where n(C) = 3, and thus when there are
a finite number of quadrisecant lines to C. The general case is similar.

The map ¢ introduced in § 1 is generically six to one and fails to be so
exactly when the image by ¢ of the point Q € 7 x P! is either on a quadrisecant
line to C, or is the point of intersection of two trisecant lines, or is a point of
tangency of a tangential trisecant to C. Notice that in the last case the fiber over
¢(Q) has dimension 1.

The map ¢ is unramified at all points Q of 7 x P!, which are not of the
form (p, p; (s, 1)), withst =0,in C x C x P'. We have the following diagram:

Cc'o — c*

U U
To(C xC xP) — TP’

U U

To(T x P — To(Z¢)

where the differential d¢ is thought as a linear map from C'° to C* induced
by the matrix:

s s s s t t t t po Qo
s s s s t t t t p q
s s s sttt t pp ¢
s s s s t t t t p3 q3
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with QO = (p, q; (s, 1)). It is easy to check that Ker(dpg) N To(T x Py =0
for points Q not of the form (p, p; (s, t)) st = 0, and the claim of the theorem
follows easily from this.

Corollary 2. If C C P? is a smooth, nodegenerate curve of degree d > 7 and
genus g, having only finitely many quadrisecant lines and tangential trisecant
lines, then C C sing(X¢).

Proof. By the Pliicker formulas (see [3], p.291) it follows that the number of
trisecants through a general point p of C is
(d—-2)(d-23)
3(C) = — 8

We look now to the projection from a general point g of X¢. Any triple point
of the projection drops the genus by 3, while nodes and tacnodes drop the genus
by 1 or 2, respectively. We deduce that

g @M=D 50,
2

where m(C) denotes as above the number of trisecant lines through a general

point of X¢. Combining these two relations with Castelnuovo’s inequality, we

deduce, for d > 7, that §(C) > m(C), which implies that X is singular along

the curve C. (]

3. Some examples of trisecant surfaces X ..

(1) If C is a curve of bidegree (a, b) drawn on a smooth quadric Q with b > 3
or a > 3, then X is just the quadric surface. Note also that m(C) = 1 or 2
depending on wether one or both rulings of Q are trisecant to C. In this case
Y.¢ has no singularities, but Berzolari’s formula counts (usually) the degree of
a multiplicity structure on this surface.

(2) If C is the intersection of a quadric cone Q and a smooth cubic surface V in
IP3, then again X = Q, the vertex of the cone being the only singularity of the
trisecant surface.

(3) Assume now C is a smooth curve of genus 2 and degree 5, traced on
a quadric cone. Then C is linked to a ruling of the cone in the complete
intersection of the cone with a cubic surface passing through the vertex. In
this case there is only one trisecant line passing through the general point of C.
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In fact, conversely, assume now C C P? is such that there is a unique
(genuine) trisecant line through the general point p of C. Then, on one hand
(d —2)d —3)/2 — g(C) = 1 or 2 (depending on whether the projection of C
from p acquires an ordinary node or a tacnode), on the other hand the genus
must satisfy Castelnuovo’s inequality. Hence d < 6, and the possibilities are
d=4,g=0,d=5,g=1,20rd = 6,g = 4,5. Obviously, the last case
doesn’t exist! If C is rational quartic curve, then C lies on a smooth quadric
as a divisor of type (1, 3), and so there is a unique trisecant line through the
general point of the curve. If C is a quintic of genus 2, then again C lies on a
quadric surface Q (by Riemann-Roch). Either Q is smooth and C is a divisor
of type (2, 3), so there is a unique trisecant line through the general point of the
curve, or Q is a quadric cone and we are in the previously described case. If
C has degree 6 and genus 4, then either C is either the complete intersection of
a quadric cone and a cubic or is a curve of type (3, 3) on a smooth quadric, in
which case there are two trisecant lines through the general point of the curve.

In conclusion, curves of degree 5 and genus 2, and curves of degree 6
and genus 4 traced on a quadric cone, are the only space curves with a single
(genuine) trisecant through the general point of the curve, such that ¥, has a
finite non empty singular locus (1 point).

(4) Let C C P? be a smooth rational sextic curve, thus a smooth projection to P
of the rational normal sextic in P®. We will describe in the sequel the trisecant
surface for various such projections. If C is a curve of type (1, 5) on a smooth
quadric, then as seen above the quadric is the trisecant surface to C. We will
therefore assume henceforth that C is not contained in any quadric surface.

Lemma 3. The curve C has only a finite number of 4-secant lines.

Proof. Riemann-Roch gives x(O¢(3)) = 19, while h°(Ops(3)) = 20, so C is
contained in a cubic surface V, which cannot be a cone over a plane cubic curve
since C is rational. Thus either V' is smooth or has at most 4 nodes, or V is
non-normal in which case it is ruled and has a double line as singular locus. In
this last case, the cubic is the projection of a smooth cubic scroll V in P* from
a point outside it. V is the blow-up of P? in a point, embedded in P* via the
linear system |H| = |2] — E|, where [ is the class of a line in P? and E is the
exceptional divisor. Adjunction on V shows that the (pullback of the) curve C
belongs to the linear system |5/ — 4E]|. In particular the double line of V is
5-secant to C, but C has no further 4-secant lines on V. By Bezout all 4-secant
lines to C lie on the cubic so we are done in this case. If the cubic surface V is
normal, then it contains only finitely many lines, and Bezout’s theorem allows
to conclude the proof. (]
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As we have seen in the proof of the previous lemma, the sextic C lies on
a cubic surface V. C P3. By Bezout all 4-secant lines to C lie also on V.
For simplicity we will assume in the sequel that V is smooth, and thus that
it is the embedding in P> of P? blown up in 6 points, via the linear system
|H| =13l — Z?:l E;|, where [ is the class of alinein P> and E;, i = 1, ..., 6,
are the exceptional divisors.

There are several choices for C on the cubic, and we will discuss here only
two of them.

IfCeldl— Zi3=1 2E;| is a smooth rational sextic curve, then C has exactly
6 disjoint 4-secant lines on V. (Observe that in this case V is the unique cubic
surface containing C.) In terms of the basis of the Picard lattice of V' the 4-
secant lines are

6

2l—E,~—Ej—ZEk, (i, j} C{1,2,3}, i#],
k=4

(3 such lines) and
[ - Ei - Ej, {i, j} C{4,5.6}, i#],

(again 3 such lines). All the other lines on V have secancy < 2 with C. This
agrees with Cayley’s formula which gives 6 quadrisecant lines to C. These 6
lines are in the singular locus of the trisecant surface ¥, which is also singular
along C.

A more special case, corresponds to C a smooth rational sextic curve in the
linear system |3/ — 2E; — E;|. Observe that in this case C is in fact contained
in a pencil of cubic surfaces. An analysis as above shows that

6
21 —ZEi,
=2

is a 5-secant line to C, while
20— E,—E;— E4— Es— Eg

is a genuine quadrisecant line to C. There are no further quadrisecant lines
since the union of C with the 5-secant line and “twice” the quadrisecant
line is the complete intersection of the pencil of cubics containing C (since
(Bl-2E,—E)+ Q2 —E\—Es—Es—Es—E¢)+221 — 2?22 E;))=3H).
In this case the 5-secant line counts as 5 quadrisecant lines in Cayley’s formula.
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Note also that in this case several trisecant lines to C lie on the cubic V, for
instance 2] — E; — E» — E; — E; — E;, where the triplet {i, j, k} C {3, 4,5, 6},
accounts three such trisecant lines.

Finally note that Pliicker’s formula gives 6 trisecant lines passing through
a generic point of C, thus the curve C is in the singular locus of X in both
studied cases. In particular, the singular locus of X is not discrete and not
irreducible.

I would like to thank Professor Ch. Peskine for suggesting me to study this
last example.
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and S. Popescu for guidance and for introducing me to the use of the computer
algebra softwares Macaulay/Macaulay2. I am also grateful to the organizators
of PRAGMATIC’97, and the faculty of the University of Catania for the warm
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