# ON THE SINGULARITIES OF THE TRISECANT SURFACE TO A SPACE CURVE 

MARIE-AMÉLIE BERTIN

Let $C$ be a smooth curve in $\mathbb{P}^{3}$. Trisecant lines to the curve $C$ are, in general, sweeping out a (reduced) surface $\Sigma_{C}$ in $\mathbb{P}^{3}$. In this note we attempt to describe some of the singularities of $\Sigma_{C}$, and in particular we show that if the curve $C$ has only a finite number of quadrisecant lines, then the singular locus of $\Sigma_{C}$ contains the quadrisecant lines to $C$, and the points through which pass more trisecants than through a generic point of the trisecant surface. Several explicit examples are discussed in the last section.

## 1. Preliminaries.

A trisecant line to a curve $C$ of $\mathbb{P}^{3}$ can be understood intuitively as a limit of lines cutting the curve in three distinct points.

More precisely, a trisecant $L$ is a line such that the intersection $L \cap C$ has multiplicity at least 3 , that is to say:

$$
\operatorname{dim}_{\mathbb{C}}\left(\frac{\mathcal{O}_{\mathbb{P}^{3}}}{\mathfrak{I}_{L}+\mathscr{I}_{C}}\right) \geq 3
$$

Higher multisecants are defined in a similar way. For a space curve, one expects in general a one-dimensional family of trisecants and only finitely many higher order secants.

The following classical formula due to Cayley, see Le Barz [7] and GrusonPeskine [2], counts (with multiplicity) the number of quadrisecant lines to a smooth curve $C \subset \mathbb{P}^{3}$ of degree $d$ and genus $g$ :

$$
\frac{(d-2)(d-3)^{2}(d-4)}{12}-\frac{\left(d^{2}-7 d+13-g\right) g}{2} .
$$

For example, in the previous formula, a quintisecant line counts in general as $\binom{5}{4}=5$ quadrisecants. It is important to note that the a positive result in Cayley's formula doesn't force $C$ to have finitely many quadrisecants, although a negative result implies that $C$ has an infinite number of quadrisecants.
Example. Let $C$ be a curve of type $(4,4)$ drawn on a smooth quadric surface $Q \subset \mathbb{P}^{3}$. By Bezout any quadrisecant line to $C$ is contained in $Q$ and conversely both rulings of the quadric are quadrisecant to $C . C$ has degree 8 and genus 9 , so the Cayley's formula yields a negative number, -4 , agreeing with what the geometry predicts !

The family of lines in $\mathbb{P}^{3}$ meeting a smooth space curve $C$ has codimension 1 in the four-dimensional Grassmannian of lines in $\mathbb{P}^{3}$, thus by a naive dimension count we expect a one dimensional family of trisecant lines to $C$, finitely many quadrisecant lines to $C$ and no lines meeting $C$ five times or more. The classical trisecant lemma, see [6], asserts that if the family of trisecants is nonempty, then the family has dimension one, unless $C$ is a plane curve of degree $\geq 3$. Thus if the nondegenerate curve $C \subset \mathbb{P}^{3}$ admits trisecant lines, the trisecant lines to $C$ sweep out a surface $\Sigma_{C} \subset \mathbb{P}^{3}$, called the trisecant surface to $C$. A scheme structure on $\Sigma_{C}$ (not always necessarily reduced) may be defined using Fitting ideals, but we will not make use of it in this note.

A classical formula of Berzolari, recasted in modern terms by Le Barz [7] (see also [2]), gives the number of trisecant lines to $C \subset \mathbb{P}^{3}$ meeting a general line in $\mathbb{P}^{3}$ :

$$
\frac{(d-1)(d-2)(d-3)}{3}-(d-2) g .
$$

In case no multiplicities are involved, Berzolari's formula computes the degree of the trisecant surface $\Sigma_{C}$.
Example. The twisted cubic $C$ has no trisecant lines: $C$ is cut out by quadrics (the $2 \times 2$-minors of a $2 \times 3$ matrix with linear entries), thus it has no trisecant line. Berzolari's formula yields 0 confirming this fact.

Proposizione 1. A smooth curve $C \subset \mathbb{P}^{3}$ has no trisecant lines if only if $C$ is either a line, a conic, the twisted cubic, or an elliptic normal quartic curve.

Proof. If such a curve $C$ is planar, then obviously $C$ is either a line or a conic. Assume now that $C$ is nondegenerate of degree $d$. If $C$ has no trisecants the projection of $C$ from a general point of $C$ is an isomorphism onto a smooth plane curve $\bar{C}$ of degree $d-1$. In particular, this allows us to compute the genus of $C$ :

$$
g(C)=\frac{(d-2)(d-3)}{2}
$$

On the other hand, Castelnuovo's inequality (see [3], or [4]) gives

$$
g(C) \leq\left\{\begin{array}{l}
\frac{1}{4} d^{2}-d+1 \text { if } d \text { is even } \\
\frac{1}{4}\left(d^{2}-1\right)-d+1 \text { if } d \text { is odd }
\end{array}\right.
$$

Combining these we deduce that $d^{2}-6 d+8 \leq 0$, which gives $2 \leq d \leq 4$. Since $C$ is not planar, the only possibilities are either $d=3$ and $C$ is the twisted cubic, or $d=4$ and $C$ is either rational or elliptic. In the latter case, if $C$ is elliptic then it is the complete intersection of two quadrics and thus has no trisecants. If $C$ is a rational quartic space curve, then $C$ lies on a smooth quadric surface, where it is a curve of type $(1,3)$, thus has as trisecants all lines in one of the rulings of the quadric. This concludes the proof.

Remark 1. The proof of the preceding proposition shows in fact that a space curve has either infinitely many trisecants or none!

The trisecant surface $\Sigma_{C}$ of a space curve $C \subset \mathbb{P}^{3}$ can be described in terms of the following correspondence:
Let $T$ be the algebraic subset of $C \times C \times C$ defined as the closure of the set of triples of points $(p, q, r)$ of $C \times C \times C$, with $p \neq q, p \neq r, q \neq r$, such that their linear span $<p, q, r>$ is a line. Let $T^{(1)}$ denote the union of all the irreducible components of $T$ of dimension 1 , and let $\mathcal{T}$ be the image of $T^{(1)}$ via the projection $\pi_{1}$ to $C \times C$ defined by omitting the first factor.

The trisecant surface $\Sigma_{C}$ coincides with $\phi\left(\mathcal{T} \times \mathbb{P}^{1}\right)$, where $\phi$ is defined by

$$
\phi: \begin{array}{ll}
\mathcal{T} \times \mathbb{P}^{1} \subset & C \times C \times \mathbb{P}^{1} \quad \longrightarrow \mathbb{P}^{3} \\
& (p, q ;(s, t))
\end{array}
$$

is the natural rational map sending the pair $(p, q)$ to its linear span.

## 2. Singularities of the trisecant surface $\Sigma_{C}$.

We will describe simple geometric properties of $\Sigma_{C}$. We will assume in this section that $C \subset \mathbb{P}^{3}$ is a smooth irreducible nondegenerate curve. Let $n(C)$ be the biggest number $n \geq 3$ such that $C$ has an infinite number of $n$-secant lines. Denote by $m(C)$ the number of $n(C)$-secant lines that pass through a generic point of $\Sigma_{C}$. The first number is well defined being clearly bounded by the degree $d$ of the curve $C$, while the second number is clearly bounded by the number of trisecant lines, counted with multiplicity, which meet a fixed line. Observe also that, for instance, $m(C)=2$ for curves $C$ lying on a smooth quadric in $\mathbb{P}^{3}$, of type $(n(C), n(C)$ ).

The surface $\Sigma_{C}$ is clearly connected being equidimensional of codimension 1 . The following loci are in the singular locus of $\sigma_{C}$ :

Theorem 1. Let $\mathcal{S} \subset \Sigma_{C}$ denote the locus consisting of

- the $(n(C)+1)$-secant lines of $C$
- the points of intersection of at least $m(C)+1 n(C)$-secant lines to $C$.

Then $\mathcal{S} \backslash \mathfrak{B}$ is contained in sing $\left(\Sigma_{C}\right)$, where $\mathscr{B}$ is the set of tangency points of tangential trisecants to $C$.

Proof. We sketch a proof in the case where $n(C)=3$, and thus when there are a finite number of quadrisecant lines to $C$. The general case is similar.

The map $\phi$ introduced in $\S 1$ is generically six to one and fails to be so exactly when the image by $\phi$ of the point $Q \in \mathcal{T} \times \mathbb{P}^{1}$ is either on a quadrisecant line to $C$, or is the point of intersection of two trisecant lines, or is a point of tangency of a tangential trisecant to $C$. Notice that in the last case the fiber over $\phi(Q)$ has dimension 1.

The map $\phi$ is unramified at all points $Q$ of $\mathcal{T} \times \mathbb{P}^{1}$, which are not of the form $\left(p, p ;(s, t)\right.$ ), with $s t=0$, in $C \times C \times \mathbb{P}^{1}$. We have the following diagram:

$$
\begin{array}{ccc}
\mathbb{C}^{10} & \rightarrow & \mathbb{C}^{4} \\
\cup & & \cup \\
T_{Q}\left(C \times C \times \mathbb{P}^{1}\right) & \rightarrow & T_{Q} P^{3} \\
\cup & & \cup \\
T_{Q}\left(\mathcal{T} \times \mathbb{P}^{1}\right) & \rightarrow & T_{Q}\left(\Sigma_{C}\right)
\end{array}
$$

where the differential $d \phi_{Q}$ is thought as a linear map from $\mathbb{C}^{10}$ to $\mathbb{C}^{4}$ induced by the matrix:

$$
\left(\begin{array}{llllllllll}
s & s & s & s & t & t & t & t & p_{0} & q_{0} \\
s & s & s & s & t & t & t & t & p_{1} & q_{1} \\
s & s & s & s & t & t & t & t & p_{2} & q_{2} \\
s & s & s & s & t & t & t & t & p_{3} & q_{3}
\end{array}\right)
$$

with $Q=(p, q ;(s, t))$. It is easy to check that $\operatorname{Ker}\left(d \phi_{Q}\right) \cap T_{Q}\left(\mathcal{T} \times \mathbb{P}^{1}\right)=0$ for points $Q$ not of the form ( $p, p ;(s, t)) s t=0$, and the claim of the theorem follows easily from this.

Corollary 2. If $C \subset \mathbb{P}^{3}$ is a smooth, nodegenerate curve of degree $d \geq 7$ and genus $g$, having only finitely many quadrisecant lines and tangential trisecant lines, then $C \subset \operatorname{sing}\left(\Sigma_{C}\right)$.

Proof. By the Plücker formulas (see [3], p.291) it follows that the number of trisecants through a general point $p$ of $C$ is

$$
\delta(C)=\frac{(d-2)(d-3)}{2}-g .
$$

We look now to the projection from a general point $q$ of $\Sigma_{C}$. Any triple point of the projection drops the genus by 3 , while nodes and tacnodes drop the genus by 1 or 2 , respectively. We deduce that

$$
g \leq \frac{(d-1)(d-2)}{2}-3 m(C),
$$

where $m(C)$ denotes as above the number of trisecant lines through a general point of $\Sigma_{C}$. Combining these two relations with Castelnuovo's inequality, we deduce, for $d \geq 7$, that $\delta(C)>m(C)$, which implies that $\Sigma_{C}$ is singular along the curve $C$.

## 3. Some examples of trisecant surfaces $\boldsymbol{\Sigma}_{\boldsymbol{C}}$.

(1) If $C$ is a curve of bidegree $(a, b)$ drawn on a smooth quadric $Q$ with $b \geq 3$ or $a \geq 3$, then $\Sigma_{C}$ is just the quadric surface. Note also that $m(C)=1$ or 2 depending on wether one or both rulings of $Q$ are trisecant to $C$. In this case $\Sigma_{C}$ has no singularities, but Berzolari's formula counts (usually) the degree of a multiplicity structure on this surface.
(2) If $C$ is the intersection of a quadric cone $Q$ and a smooth cubic surface $V$ in $\mathbb{P}^{3}$, then again $\Sigma_{C}=Q$, the vertex of the cone being the only singularity of the trisecant surface.
(3) Assume now $C$ is a smooth curve of genus 2 and degree 5 , traced on a quadric cone. Then $C$ is linked to a ruling of the cone in the complete intersection of the cone with a cubic surface passing through the vertex. In this case there is only one trisecant line passing through the general point of $C$.

In fact, conversely, assume now $C \subset \mathbb{P}^{3}$ is such that there is a unique (genuine) trisecant line through the general point $p$ of $C$. Then, on one hand $(d-2)(d-3) / 2-g(C)=1$ or 2 (depending on whether the projection of $C$ from $p$ acquires an ordinary node or a tacnode), on the other hand the genus must satisfy Castelnuovo's inequality. Hence $d \leq 6$, and the possibilities are $d=4, g=0, d=5, g=1,2$ or $d=6, g=4,5$. Obviously, the last case doesn't exist! If $C$ is rational quartic curve, then $C$ lies on a smooth quadric as a divisor of type $(1,3)$, and so there is a unique trisecant line through the general point of the curve. If $C$ is a quintic of genus 2 , then again $C$ lies on a quadric surface $Q$ (by Riemann-Roch). Either $Q$ is smooth and $C$ is a divisor of type $(2,3)$, so there is a unique trisecant line through the general point of the curve, or $Q$ is a quadric cone and we are in the previously described case. If $C$ has degree 6 and genus 4 , then either $C$ is either the complete intersection of a quadric cone and a cubic or is a curve of type $(3,3)$ on a smooth quadric, in which case there are two trisecant lines through the general point of the curve.

In conclusion, curves of degree 5 and genus 2 , and curves of degree 6 and genus 4 traced on a quadric cone, are the only space curves with a single (genuine) trisecant through the general point of the curve, such that $\Sigma_{C}$ has a finite non empty singular locus (1 point).
(4) Let $C \subset \mathbb{P}^{3}$ be a smooth rational sextic curve, thus a smooth projection to $\mathbb{P}^{3}$ of the rational normal sextic in $\mathbb{P}^{6}$. We will describe in the sequel the trisecant surface for various such projections. If $C$ is a curve of type $(1,5)$ on a smooth quadric, then as seen above the quadric is the trisecant surface to $C$. We will therefore assume henceforth that $C$ is not contained in any quadric surface.

Lemma 3. The curve C has only a finite number of 4-secant lines.
Proof. Riemann-Roch gives $\chi\left(\mathcal{O}_{C}(3)\right)=19$, while $h^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(3)\right)=20$, so $C$ is contained in a cubic surface $V$, which cannot be a cone over a plane cubic curve since $C$ is rational. Thus either $V$ is smooth or has at most 4 nodes, or $V$ is non-normal in which case it is ruled and has a double line as singular locus. In this last case, the cubic is the projection of a smooth cubic scroll $\tilde{V}$ in $\mathbb{P}^{4}$ from a point outside it. $\tilde{V}$ is the blow-up of $\mathbb{P}^{2}$ in a point, embedded in $\mathbb{P}^{4}$ via the linear system $|H|=|2 l-E|$, where $l$ is the class of a line in $\mathbb{P}^{2}$ and $E$ is the exceptional divisor. Adjunction on $\tilde{V}$ shows that the (pullback of the) curve $C$ belongs to the linear system $|5 l-4 E|$. In particular the double line of $V$ is 5 -secant to $C$, but $C$ has no further 4 -secant lines on $V$. By Bezout all 4 -secant lines to $C$ lie on the cubic so we are done in this case. If the cubic surface $V$ is normal, then it contains only finitely many lines, and Bezout's theorem allows to conclude the proof.

As we have seen in the proof of the previous lemma, the sextic $C$ lies on a cubic surface $V \subset \mathbb{P}^{3}$. By Bezout all 4-secant lines to $C$ lie also on $V$. For simplicity we will assume in the sequel that $V$ is smooth, and thus that it is the embedding in $\mathbb{P}^{3}$ of $\mathbb{P}^{2}$ blown up in 6 points, via the linear system $|H|=\left|3 l-\sum_{i=1}^{6} E_{i}\right|$, where $l$ is the class of a line in $\mathbb{P}^{2}$ and $E_{i}, i=1, \ldots, 6$, are the exceptional divisors.

There are several choices for $C$ on the cubic, and we will discuss here only two of them.

If $C \in\left|4 l-\sum_{i=1}^{3} 2 E_{i}\right|$ is a smooth rational sextic curve, then $C$ has exactly 6 disjoint 4 -secant lines on $V$. (Observe that in this case $V$ is the unique cubic surface containing $C$.) In terms of the basis of the Picard lattice of $V$ the 4secant lines are

$$
2 l-E_{i}-E_{j}-\sum_{k=4}^{6} E_{k}, \quad\{i, j\} \subset\{1,2,3\}, \quad i \neq j
$$

(3 such lines) and

$$
l-E_{i}-E_{j}, \quad\{i, j\} \subset\{4,5,6\}, \quad i \neq j
$$

(again 3 such lines). All the other lines on $V$ have secancy $\leq 2$ with $C$. This agrees with Cayley's formula which gives 6 quadrisecant lines to $C$. These 6 lines are in the singular locus of the trisecant surface $\Sigma_{C}$, which is also singular along $C$.

A more special case, corresponds to $C$ a smooth rational sextic curve in the linear system $\left|3 l-2 E_{1}-E_{2}\right|$. Observe that in this case $C$ is in fact contained in a pencil of cubic surfaces. An analysis as above shows that

$$
2 l-\sum_{i=2}^{6} E_{i}
$$

is a 5 -secant line to $C$, while

$$
2 l-E_{1}-E_{3}-E_{4}-E_{5}-E_{6}
$$

is a genuine quadrisecant line to $C$. There are no further quadrisecant lines since the union of $C$ with the 5 -secant line and "twice" the quadrisecant line is the complete intersection of the pencil of cubics containing $C$ (since $\left.\left(3 l-2 E_{1}-E_{2}\right)+\left(2 l-E_{1}-E_{3}-E_{4}-E_{5}-E_{6}\right)+2\left(2 l-\sum_{i=2}^{6} E_{i}\right)=3 H\right)$. In this case the 5 -secant line counts as 5 quadrisecant lines in Cayley's formula.

Note also that in this case several trisecant lines to $C$ lie on the cubic $V$, for instance $2 l-E_{1}-E_{2}-E_{j}-E_{k}-E_{l}$, where the triplet $\{i, j, k\} \subset\{3,4,5,6\}$, accounts three such trisecant lines.

Finally note that Plücker's formula gives 6 trisecant lines passing through a generic point of $C$, thus the curve $C$ is in the singular locus of $\Sigma_{C}$ in both studied cases. In particular, the singular locus of $\Sigma_{C}$ is not discrete and not irreducible.

I would like to thank Professor Ch. Peskine for suggesting me to study this last example.

I was introduced to this problem, during the PRAGMATIC'97 summer school that took place in Catania. I would like to thank Professors D. Eisenbud and S. Popescu for guidance and for introducing me to the use of the computer algebra softwares Macaulay/Macaulay2. I am also grateful to the organizators of PRAGMATIC'97, and the faculty of the University of Catania for the warm and pleasant atmosphere they provided during the summer school.

## REFERENCES

[1] A. Geramita, Inverse systems of fat points, the curve seminar at Queens, vol. $X$, Queen's university publications, Kingston, ON..
[2] L. Gruson - Ch. Peskine, Courbes de l'espace projectif: variétés de sécantes, in Enumerative geometry and classical algebraic geometry, Nice, 1981, pp. 1-31, Progr. Math., 24, Birkhäuser, Boston, Mass., 1982.
[3] Griffiths-Harris, Principles of algebraic geometry, A. Wiley.
[4] R. Hartshorne, Algebraic geometry, Graduate Text in Math. 52, Springer Verlag.
[5] Johnsen, T, The singularities of the 3-secant curve associated to a space curve, Transactions AMS, 295 (1986), pp. 107-117.
[6] Laudal, A generalised trisecant lemma, Algebraic geometry, Proceedings, Tromsø, Norway 1977, LNM 687.
[7] P.Y. Le Barz, Formules multisécantes pour les courbes gauches quelconques, in Ennumerative geometry and classical algebraic geometry, Progress in math., 24, Birkhaüser, Boston, Mass., 1982.

> Columbia University,
> 2209 Broadway,
> 10027 New York (USA),
> e-mail: bertin@math.columbia.edu

