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ON THE SINGULARITIES OF THE TRISECANT

SURFACE TO A SPACE CURVE

MARIE-AMÉLIE BERTIN

Let C be a smooth curve in P
3. Trisecant lines to the curve C are, in

general, sweeping out a (reduced) surface�C in P
3. In this note we attempt to

describe some of the singularities of �C , and in particular we show that if the
curve C has only a �nite number of quadrisecant lines, then the singular locus
of �C contains the quadrisecant lines to C , and the points through which pass
more trisecants than through a generic point of the trisecant surface. Several
explicit examples are discussed in the last section.

1. Preliminaries.

A trisecant line to a curve C of P
3 can be understood intuitively as a limit

of lines cutting the curve in three distinct points.

More precisely, a trisecant L is a line such that the intersection L ∩ C has
multiplicity at least 3, that is to say:

dimC(
OP3

IL + IC
) ≥ 3.

Higher multisecants are de�ned in a similar way. For a space curve, one expects
in general a one-dimensional family of trisecants and only �nitely many higher
order secants.
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The following classical formula due to Cayley, see Le Barz [7] and Gruson-
Peskine [2], counts (with multiplicity) the number of quadrisecant lines to a
smooth curve C ⊂ P

3 of degree d and genus g:

(d − 2)(d − 3)2(d − 4)

12
−
(d2 − 7d + 13− g)g

2
.

For example, in the previous formula, a quintisecant line counts in general as�
5
4

�

= 5 quadrisecants. It is important to note that the a positive result in

Cayley�s formula doesn�t force C to have �nitely many quadrisecants, although
a negative result implies that C has an in�nite number of quadrisecants.

Example. Let C be a curve of type (4, 4) drawn on a smooth quadric surface
Q ⊂ P3. By Bezout any quadrisecant line to C is contained in Q and conversely
both rulings of the quadric are quadrisecant to C . C has degree 8 and genus 9,
so the Cayley�s formula yields a negative number, −4, agreeing with what the
geometry predicts !

The family of lines in P
3 meeting a smooth space curve C has codimen-

sion 1 in the four-dimensional Grassmannian of lines in P
3, thus by a naive

dimension count we expect a one dimensional family of trisecant lines to C ,
�nitely many quadrisecant lines to C and no lines meeting C �ve times or more.
The classical trisecant lemma, see [6], asserts that if the family of trisecants is
nonempty, then the family has dimension one, unless C is a plane curve of de-
gree ≥ 3. Thus if the nondegenerate curve C ⊂ P3 admits trisecant lines, the
trisecant lines to C sweep out a surface �C ⊂ P

3, called the trisecant surface to
C . A scheme structure on �C (not always necessarily reduced) may be de�ned
using Fitting ideals, but we will not make use of it in this note.

A classical formula of Berzolari, recasted in modern terms by Le Barz [7]
(see also [2]), gives the number of trisecant lines to C ⊂ P

3 meeting a general
line in P

3:
(d − 1)(d − 2)(d − 3)

3
− (d − 2)g.

In case no multiplicities are involved, Berzolari�s formula computes the degree
of the trisecant surface �C .

Example. The twisted cubic C has no trisecant lines: C is cut out by quadrics
(the 2× 2-minors of a 2× 3 matrix with linear entries), thus it has no trisecant
line. Berzolari�s formula yields 0 con�rming this fact.

Proposizione 1. A smooth curve C ⊂ P3 has no trisecant lines if only if C is
either a line, a conic, the twisted cubic, or an elliptic normal quartic curve.
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Proof. If such a curve C is planar, then obviously C is either a line or a conic.
Assume now that C is nondegenerate of degree d . If C has no trisecants the
projection of C from a general point of C is an isomorphism onto a smooth
plane curve C̄ of degree d − 1. In particular, this allows us to compute the
genus of C:

g(C) =
(d − 2)(d − 3)

2
.

On the other hand, Castelnuovo�s inequality (see [3], or [4]) gives

g(C) ≤

�
1
4
d2 − d + 1 if d is even

1
4
(d2 − 1)− d + 1 if d is odd.

Combining these we deduce that d2−6d+8 ≤ 0, which gives 2 ≤ d ≤ 4. Since
C is not planar, the only possibilities are either d = 3 and C is the twisted cubic,
or d = 4 and C is either rational or elliptic. In the latter case, if C is elliptic
then it is the complete intersection of two quadrics and thus has no trisecants.
If C is a rational quartic space curve, then C lies on a smooth quadric surface,
where it is a curve of type (1, 3), thus has as trisecants all lines in one of the
rulings of the quadric. This concludes the proof. �

Remark 1. The proof of the preceding proposition shows in fact that a space
curve has either in�nitely many trisecants or none!

The trisecant surface �C of a space curve C ⊂ P
3 can be described in

terms of the following correspondence:

Let T be the algebraic subset of C × C × C de�ned as the closure of the set
of triples of points (p, q, r) of C × C × C , with p �= q , p �= r , q �= r , such
that their linear span < p, q, r > is a line. Let T (1) denote the union of all the
irreducible components of T of dimension 1, and let T be the image of T (1) via
the projection π1 to C × C de�ned by omitting the �rst factor.

The trisecant surface �C coincides with φ(T × P
1), where φ is de�ned by

φ :
T × P

1 ⊂ C × C × P
1 −→ P

3

(p, q; (s, t)) �−→ sp + qt

is the natural rational map sending the pair (p, q) to its linear span.
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2. Singularities of the trisecant surface �C .

We will describe simple geometric properties of �C . We will assume in
this section that C ⊂ P3 is a smooth irreducible nondegenerate curve. Let n(C)
be the biggest number n ≥ 3 such that C has an in�nite number of n-secant
lines. Denote by m(C) the number of n(C)-secant lines that pass through a
generic point of �C . The �rst number is well de�ned being clearly bounded
by the degree d of the curve C , while the second number is clearly bounded
by the number of trisecant lines, counted with multiplicity, which meet a �xed
line. Observe also that, for instance, m(C) = 2 for curves C lying on a smooth
quadric in P

3, of type (n(C), n(C)).
The surface �C is clearly connected being equidimensional of codimen-

sion 1. The following loci are in the singular locus of σC :

Theorem 1. Let S ⊂ �C denote the locus consisting of
• the (n(C) + 1)-secant lines of C
• the points of intersection of at least m(C) + 1 n(C)-secant lines to C.

Then S\B is contained in sing(�C), where B is the set of tangency points
of tangential trisecants to C.

Proof. We sketch a proof in the case where n(C) = 3, and thus when there are
a �nite number of quadrisecant lines to C . The general case is similar.

The map φ introduced in § 1 is generically six to one and fails to be so
exactly when the image by φ of the point Q ∈ T ×P1 is either on a quadrisecant
line to C , or is the point of intersection of two trisecant lines, or is a point of
tangency of a tangential trisecant to C . Notice that in the last case the �ber over
φ(Q) has dimension 1.

The map φ is unrami�ed at all points Q of T × P
1, which are not of the

form (p, p; (s, t)), with st = 0, in C ×C ×P1. We have the following diagram:

C
10 → C

4

∪ ∪

TQ(C × C × P
1) → TQ P3

∪ ∪

TQ(T × P
1) → TQ(�C )

where the differential dφQ is thought as a linear map from C10 to C4 induced
by the matrix:






s s s s t t t t p0 q0
s s s s t t t t p1 q1
s s s s t t t t p2 q2
s s s s t t t t p3 q3





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with Q = (p, q; (s, t)). It is easy to check that Ker(dφQ) ∩ TQ(T × P1) = 0
for points Q not of the form (p, p; (s, t)) st = 0, and the claim of the theorem
follows easily from this.

Corollary 2. If C ⊂ P3 is a smooth, nodegenerate curve of degree d ≥ 7 and
genus g, having only �nitely many quadrisecant lines and tangential trisecant
lines, then C ⊂ sing(�C).

Proof. By the Plücker formulas (see [3], p.291) it follows that the number of
trisecants through a general point p of C is

δ(C) =
(d − 2)(d − 3)

2
− g.

We look now to the projection from a general point q of �C . Any triple point
of the projection drops the genus by 3, while nodes and tacnodes drop the genus
by 1 or 2, respectively. We deduce that

g ≤
(d − 1)(d − 2)

2
− 3m(C),

where m(C) denotes as above the number of trisecant lines through a general
point of �C . Combining these two relations with Castelnuovo�s inequality, we
deduce, for d ≥ 7, that δ(C) > m(C), which implies that �C is singular along
the curve C . �

3. Some examples of trisecant surfaces �C .

(1) If C is a curve of bidegree (a, b) drawn on a smooth quadric Q with b ≥ 3
or a ≥ 3, then �C is just the quadric surface. Note also that m(C) = 1 or 2
depending on wether one or both rulings of Q are trisecant to C . In this case
�C has no singularities, but Berzolari�s formula counts (usually) the degree of
a multiplicity structure on this surface.

(2) If C is the intersection of a quadric cone Q and a smooth cubic surface V in
P
3, then again �C = Q , the vertex of the cone being the only singularity of the
trisecant surface.

(3) Assume now C is a smooth curve of genus 2 and degree 5, traced on
a quadric cone. Then C is linked to a ruling of the cone in the complete
intersection of the cone with a cubic surface passing through the vertex. In
this case there is only one trisecant line passing through the general point of C .
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In fact, conversely, assume now C ⊂ P3 is such that there is a unique
(genuine) trisecant line through the general point p of C . Then, on one hand
(d − 2)(d − 3)/2 − g(C) = 1 or 2 (depending on whether the projection of C
from p acquires an ordinary node or a tacnode), on the other hand the genus
must satisfy Castelnuovo�s inequality. Hence d ≤ 6, and the possibilities are
d = 4, g = 0, d = 5, g = 1, 2 or d = 6, g = 4, 5. Obviously, the last case
doesn�t exist! If C is rational quartic curve, then C lies on a smooth quadric
as a divisor of type (1, 3), and so there is a unique trisecant line through the
general point of the curve. If C is a quintic of genus 2, then again C lies on a
quadric surface Q (by Riemann-Roch). Either Q is smooth and C is a divisor
of type (2, 3), so there is a unique trisecant line through the general point of the
curve, or Q is a quadric cone and we are in the previously described case. If
C has degree 6 and genus 4, then either C is either the complete intersection of
a quadric cone and a cubic or is a curve of type (3, 3) on a smooth quadric, in
which case there are two trisecant lines through the general point of the curve.

In conclusion, curves of degree 5 and genus 2, and curves of degree 6
and genus 4 traced on a quadric cone, are the only space curves with a single
(genuine) trisecant through the general point of the curve, such that �C has a
�nite non empty singular locus (1 point).

(4) Let C ⊂ P
3 be a smooth rational sextic curve, thus a smooth projection to P

3

of the rational normal sextic in P6. We will describe in the sequel the trisecant
surface for various such projections. If C is a curve of type (1, 5) on a smooth
quadric, then as seen above the quadric is the trisecant surface to C . We will
therefore assume henceforth that C is not contained in any quadric surface.

Lemma 3. The curve C has only a �nite number of 4-secant lines.

Proof. Riemann-Roch gives χ (OC(3)) = 19, while h0(OP3 (3)) = 20, so C is
contained in a cubic surface V , which cannot be a cone over a plane cubic curve
since C is rational. Thus either V is smooth or has at most 4 nodes, or V is
non-normal in which case it is ruled and has a double line as singular locus. In
this last case, the cubic is the projection of a smooth cubic scroll Ṽ in P

4 from
a point outside it. Ṽ is the blow-up of P2 in a point, embedded in P4 via the
linear system |H | = |2l − E |, where l is the class of a line in P

2 and E is the
exceptional divisor. Adjunction on Ṽ shows that the (pullback of the) curve C
belongs to the linear system |5l − 4E |. In particular the double line of V is
5-secant to C , but C has no further 4-secant lines on V . By Bezout all 4-secant
lines to C lie on the cubic so we are done in this case. If the cubic surface V is
normal, then it contains only �nitely many lines, and Bezout�s theorem allows
to conclude the proof. �
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As we have seen in the proof of the previous lemma, the sextic C lies on
a cubic surface V ⊂ P3. By Bezout all 4-secant lines to C lie also on V .
For simplicity we will assume in the sequel that V is smooth, and thus that
it is the embedding in P3 of P2 blown up in 6 points, via the linear system
|H | = |3l −

�6
i=1 Ei |, where l is the class of a line in P

2 and Ei , i = 1, . . . , 6,
are the exceptional divisors.

There are several choices for C on the cubic, and we will discuss here only
two of them.

If C ∈ |4l−
�3

i=1 2Ei | is a smooth rational sextic curve, then C has exactly
6 disjoint 4-secant lines on V . (Observe that in this case V is the unique cubic
surface containing C .) In terms of the basis of the Picard lattice of V the 4-
secant lines are

2l − Ei − Ej −

6�

k=4

Ek, {i, j } ⊂ {1, 2, 3}, i �= j,

(3 such lines) and

l − Ei − Ej , {i, j } ⊂ {4, 5, 6}, i �= j,

(again 3 such lines). All the other lines on V have secancy ≤ 2 with C . This
agrees with Cayley�s formula which gives 6 quadrisecant lines to C . These 6
lines are in the singular locus of the trisecant surface �C , which is also singular
along C .

A more special case, corresponds to C a smooth rational sextic curve in the
linear system |3l − 2E1 − E2|. Observe that in this case C is in fact contained
in a pencil of cubic surfaces. An analysis as above shows that

2l −

6�

i=2

Ei ,

is a 5-secant line to C , while

2l − E1 − E3 − E4 − E5 − E6

is a genuine quadrisecant line to C . There are no further quadrisecant lines
since the union of C with the 5-secant line and �twice� the quadrisecant
line is the complete intersection of the pencil of cubics containing C (since
(3l − 2E1 − E2)+ (2l − E1 − E3 − E4 − E5 − E6)+ 2(2l −

�6
i=2 Ei) = 3H ).

In this case the 5-secant line counts as 5 quadrisecant lines in Cayley�s formula.
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Note also that in this case several trisecant lines to C lie on the cubic V , for
instance 2l − E1 − E2 − Ej − Ek − El , where the triplet {i, j, k} ⊂ {3, 4, 5, 6},
accounts three such trisecant lines.

Finally note that Plücker�s formula gives 6 trisecant lines passing through
a generic point of C , thus the curve C is in the singular locus of �C in both
studied cases. In particular, the singular locus of �C is not discrete and not
irreducible.

I would like to thank Professor Ch. Peskine for suggestingme to study this
last example.
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school that took place in Catania. I would like to thank Professors D. Eisenbud
and S. Popescu for guidance and for introducing me to the use of the computer
algebra softwares Macaulay/Macaulay2. I am also grateful to the organizators
of PRAGMATIC�97, and the faculty of the University of Catania for the warm
and pleasant atmosphere they provided during the summer school.
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