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SOME REMARKS ON LINEAR

SPACES OF NILPOTENT MATRICES

ANTONIO CAUSA - RICCARDO RE - TITUS TEODORESCU

Introduction.

In this paper we study linear spaces of nilpotent matrices and we are
mainly concerned with linear spaces of nilpotent matrices of generic maximal
rank. We attack this problem using a modern formalism of vector bundles and
cohomology, and show in (2.3) and (3.3) that a pencil of nilpotent matrices of
order n and constant rank n − 1 exists if and only if n is odd. We also show in
(2.3) that there is no linear space of dimension greater than two of nilpotent
matrices with constant maximal rank. In the case of a pencil of nilpotent
matrices with generic maximal rank, we give an upper bound for the number
of points where the rank drops. The paper contains also a number of relevant
examples and a list of related questions.

We have been introduced to the general problem of studying linear spaces
of nilpotent matrices by professors D. Eisenbud and S. Popescu who suggested
us the problem during the Pragmatic summer school 1997 [1]. They have let
us know the statement of the nonexistence of pencils of odd order mentioned
above, and they have also informed us that a proof of this result was already
known to them. We have been let free to develop our own independent proof
and publish it as a part of this paper. It is a pleasure to express our gratitude to D.
Eisenbud and S.Popescu. We also heartily thank the Geometry group of Catania
and EUROPROJ for the successful organization of the event of PRAGMATIC.
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1. Preliminary remarks.

A matrix over an algebraically closed �eld of characteristics zero, denoted
for convenience K , is nilpotent if and only if all its eigenvalues are zero. The set
of nilpotent matrices of order n over K is an irreducible complete intersection
in gl(n, K ) de�ned by the ideal generated by tr (∧i A), 1 ≤ i ≤ n. The most
immediate example of a nontrivial linear space of nilpotent matrices is the set
of strictly upper triangular matrices:









0 ∗ ∗ · · · ∗

0 0 ∗ · · · ∗

0 0 0
. . .

...
...

...
. . .

. . . ∗

0 0 · · · 0 0









The role of this set is manifest in the results of M. Gerstenhaber [2], [3] which
we summarize in the following two statements.

Theorem 1.1. ([2]). If V is a linear space of nilpotent matrices of order n, then
dimV ≤ n(n − 1)/2 and equality holds iff V is similar to the space of strictly
upper triangular matrices.

Theorem 1.2. ([3]). If V is a linear space of nilpotent matrices such that every
A∈ V has rank at most ρ , then

(1) dim V ≤
n(n − 1)

2
−

(n − ρ)(n − ρ − 1)

2
.

(2) Moreover if equality holds then the classi�cation of such V is known. As a
consequence of this classi�cation every such V is similar to a subspace of
the strictly upper triangular matrices.

In general it is not true that every linear space V of nilpotent matrices
is similar to some subspace of upper triangular ones. This is shown by the
following proposition and examples.

Proposition 1.3. No linear space V of dimension greater than two of nilpotent
matrices of order n ≥ 3 and constant rank equal to n−1 is similar to a subspace
of strictly upper triangular matrices.

Proof. Suppose the contrary. By counting the dimensions, V must have
nontrivial intersection with the codimension one subspace of the matrices of
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the form: 







0 0 ∗ · · · ∗

0 0 ∗ · · · ∗

0 0 0
. . .

...
...

...
. . .

. . . ∗

0 0 · · · 0 0









This will be a contradiction because all the matrices of the above form have rank
at most n − 2. �

The following are examples of pencils of nilpotent matrices with constant
maximal ranks of order 3, 5, 5 and 7 respectively, as an easy computation can
show: �

0 s 0
−t 0 s
0 t 0

�








0 s 0 0 0
2t 0 s 0 0
0 −t 0 s 0
0 0 t 0 s
0 0 0 −2t 0















0 0 −t 0 0
0 0 s 0 −t
0 0 0 0 s
s t 0 0 0
t 0 0 −s 0



















0 s 0 0 0 0 0
−4t 0 s 0 0 0 0
0 2t 0 s 0 0 0
0 0 −t 0 s 0 0
0 0 0 t 0 s 0
0 0 0 0 −2t 0 s
0 0 0 0 0 4t 0












One can easily show that if a pencil of nilpotent matrices of order n ≥ 2 has the
block form

N (s, t) =

�
A(s, t) C(s, t)

0 B(s, t)

�

then there exists always an (s0, t0) �= (0, 0) such that rk N (s0, t0) ≤ n − 2 , so
it cannot have constant rank equal to n − 1. In other words, the construction of
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pencils of nilpotent matrices of order n with maximal constant rank n − 1, for
arbitrarily large n, cannot be reduced to assembling blocks of nilpotent matrices
of lower orders.

2. Nonexistence results.

We begin by restating the problem using the terminology of vector bundles.
In the following any linear space of dimension r + 1 of matrices of order n

will be interpreted as a morphism of sheaves on P
r ,On

Pr

A
−→ O

n
Pr

(1). In this
formalism a linear space of dimension r + 1 of nilpotent matrices of order n of
constant maximal rank is just a morphism of vector bundles A : O

n
Pr

−→ O
n
Pr

(1)
of (constant) rank n − 1 such that An = 0, where An means successive
composition of the corresponding twists of A. We will use this abuse of notation
from now on.

Lemma 2.1. If A is a nilpotent endomorphism of K n of rank n − 1 then
(1) Ker(Ai ) is a subspace of dimension i , for every 1 ≤ i ≤ n;
(2) {0} ⊂ Ker(A) ⊂ · · · ⊂ Ker(An ) = Kn is a �ltration of K n;
(3) for every 1 ≤ i ≤ n − 1 we have the following exact sequences

0 −→ Ker(A) −→ Ker(Ai+1)
A

−→Ker(Ai ) −→ 0.

We have the following reformulation of the Lemma 2.1.

Lemma 2.2. If A : O
n
Pr

−→ O
n
Pr

(1) is a nilpotent morphism of vector bundles,
then
(1) Ker(Ai ) is a vector bundle of rank i , for every 1 ≤ i ≤ n;
(2) {0} ⊂ Ker(A) ⊂ · · · ⊂ Ker(An ) = O

n
Pr
is a �ltration of On

Pr
;

(3) for every 1 ≤ i ≤ n − 1 we have the following exact sequences of vector
bundles

0 −→ Ker(A) −→ Ker(Ai+1)
A

−→ Ker(Ai )(1) −→ 0.

Theorem 2.3.
(1) If A is a linear space of nilpotent matrices of order n with maximal

constant rank n − 1, then n must be odd.
(2) There are no linear spaces of dimension greater or equal than three of

nilpotent matrices with constant maximal rank n − 1.
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Proof. (1) Counting the degree in the exact sequence given in the Lemma 2.2.
we obtain deg(Ker(Ai+1 )) = deg(Ker(Ai )) + deg(Ker(A)) + i , for all 1 ≤ i ≤

n− 1. Summing from i = 1 to n− 1, we obtain that deg(Ker(A)) = (1 − n)/2,
which implies the claim.
(2) From the �rst part n is odd. Using the well-known fact that H 1(OPr (k)) = 0
we obtain that all the exact sequences of the Lemma 2.2. are split and so Ker(Ai )
is direct sum of line bundles. In particular Ker(A) = OPr (1/2 − n/2) is a direct
summand of Ker(An ) = O

n
Pr

, which is obviously a contradiction. �

The following proposition relates to the Kronecker-Weierstrass theory of
pencils of matrices (see for example [4]).

Proposition 2.4. Let � be a pencil of matrices with constant rank. Then

A(
�

B∈�

Ker B) =
�

B∈�

Im B

for every A∈ �.

First a lemma:

Lemma 2.5. For any pencil A of matrices of order n of constant rank ρ , there
is a diagram with exact rows and columns.

0

��

0

��

0 �� Ker(A) �� O
m
P1

��

��

O
m−n+ρ

P1 (1) ��

��

0

0 �� Ker(A) �� O
n
P1

A
��

��

Im(A) ��

��

0

O
n−m
P1

��

O
n−m
P1

��

0 0

where m = h0(Ker(A)∗), Im(A) ⊂ O
n
P1 (1) is the image of A.
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Proof. By a celebrated theorem, proved in various versions over the years by
Hilbert, Birkhoff, Grothendieck, any holomorphic vector bundle over P

1 is a
direct sum of line bundles. This implies that I = Im(A) and K = Ker(A) are
direct sums of bundles over P

1.
From the exact sequence 0 −→ K −→ O

n
P1 −→ I −→ 0 we get that any

direct summand of K has non-positive degree and that any direct summand of
I has degree zero or one. Taking cohomology in the dualized exact sequence
0 −→ I

∗ −→ O
n
P1 −→ K

∗ −→ 0 and observing that H 1(I∗) = 0 we get
a surjection H 0(On

P1 ) −→ H 0(K∗) −→ 0. The above observation about the
direct summands of K will imply the exactness of the evaluation sequence for
K

∗ .

0 −→ Ker(evK∗) −→ H 0(K∗) ⊗ OP1
K

∗

−→K
∗ −→ 0.

Putting the two exact sequences together we have

0 �� I
∗ ��

��

O
n
P1

��

��

K
∗ �� 0

0 �� Ker(evK∗) �� H 0(K∗) ⊗ OP1

evK∗
��

��

K
∗ �� 0

0

An easy diagram chase shows that the left vertical morphism is surjective. Since
H 0(Ker(evK∗)) = 0, Ker(evK∗ ) must be a direct sum of line bundles of degree
−1. Completing the diagram with kernels, dualizing and computing the ranks,
we get the claim of the proposition. �

Proof of Proposition 2.4. It is easy to see that the �rst row in the diagram of
Lemma 2.5 can be written as

0 −→ K −→ W ⊗ OP1
A

−→U ⊗ OP1 (1) −→ 0,

where W =
�

B∈� Ker B while U ∼= H 0
I(−1) ⊆ H 0(On

P1 ) is
�

B∈� Im B .
�

In case r = 1 and n = 2k + 1, it is interesting to �nd explicitly the �ltration of
O
n
P1 corresponding to a pencil of constant maximal rank.

Proposition 2.6.
(1) Ker(A) = OP1 (−k).
(2) Ker(A2k+1 ) = O

2k+1
P1 .

(3) Ker(A2) = OP1 (−k) ⊕ OP1 (1 − k).
(4) Ker(A2k ) = O

k
P1 (−1) ⊕ O

k
P1 .
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Proof. (1) and (2) are already proved. (3) follows, since for i = 1 the exact
sequence in Lemma 2.2 splits.
(4) This is a corollary of the Lemma 2.5, since the elements of the pencil are
nilpotent matrices of maximal rank, Im(A) = Ker(An−1 )(1) and ρ = n − 1,
m = h0(K∗) = (n + 1)/2. The simple observation that the right vertical exact
sequence is split completes the proof. �

An analysis of extensions over P
1 of vector bundles by lines bundles shows

the following results.

Proposition.
(1) n = 3, Ker(A) = OP1 (−1), Ker(A2) = OP1 ⊕ OP1 (−1), Ker(A3) = OP1

3.
(2) n = 5, Ker(A) = OP1 (−2), Ker(A2) = OP1 (−2) ⊕ OP1 (−1), Ker(A3) =

OP1 (−1)3 as in the second example of Section 1 or OP1 (−2) ⊕ OP1 (−1) ⊕

OP1 as in the third example of Section 1, Ker(A4) = OP1
2 ⊕ OP1 (−1)2 ,

Ker(A5) = OP1
5

To �nd an upper bound for the number of points where the rank drops, in
the case of a pencil of nilpotent matrices with generic maximal rank we will
follow more carefully the previous computation of deg(Ker(A)). Jordan block
decomposition gives the following lemma.

Lemma 2.7. If A is a pencil of nilpotent matrices with generic maximal rank,
then
(1) Ker(Ai ) is a torsion free sheaf of rank i , for every 1 ≤ i ≤ n;
(2) {0} ⊆ Ker(A) ⊆ · · · ⊆ Ker(An ) = O

n
P1 is a �ltration of O

n
P1 ;

(3) for every 1 ≤ i ≤ n−1 we have the exact sequences of locally free sheaves

0 −→ Ker(A) −→ Ker(Ai+1)
A

−→ Ker(Ai )(1) −→ Ti −→ 0

where Ti is a torsion sheaf on P
1, supported in z1, · · · , zp such that

dimK Ti,zj = Card{k|n
j
k = i+1}−Card{k | n

j
k ≥ 1}, and where n

j
1, · · · , n

j
m

is the partition of n corresponding to Azj .

Theorem 2.8. The number of points where the rank drops, in the case of a
pencil of nilpotent matrices with generic maximal rank is n(n − 1)/2.

Proof. Computing inductively, from the above sequences, the Chern classes of
Ker(Ai ) and summing from i = 1 to n − 1 we obtain that n · deg(Ker(A)) ≥

p − n(n − 1)/2. Since Ker(A) ⊆ O
n
P1 , it must have negative degree and this

completes the proof. �
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3. Existence results.

In this section we construct a pencil of nilpotent constant maximal
rank matrices in each odd dimension n. Let us denote with An (s, t) =

An (α1, · · · , αn−1)(s, t) a pencil of n × n, matrices of the following form:

An (s, t) =











0 s 0 · · · 0

α1t 0 s
. . .

...

0 α2t
. . .

. . . 0
...

. . .
. . . 0 s

0 · · · 0 αn−1t 0











Our aim is to �nd pencils of nilpotent matrices of constant rank n − 1 among
the pencils given above.

Lemma 3.1. The determinant of An is

�
(−st)

n
2

�i= n
2

i=1 α2i−1, for n even
0, for n odd.

The following lemma takes care of the constancy of the rank.

Lemma 3.2. For n odd An represents a pencil of constant rank n − 1 if and
only if α1, · · · , αn are all non zero.

In order to impose the nilpotency condition to the matrix An it is natural
to introduce the following projective variety. We set Xn to be the variety in
the projective space P

n−2 with homogeneous coordinates a = (α1, · · · , αn−1)
de�ned by the ideal

I = (tr ∧2 An (1, 1), · · · , tr ∧2i An (1, 1), · · ·, tr ∧n−1 An (1, 1)).

The points a ∈ Xn give all the pencils of nilpotentmatrices of the form An since,
by lemma, tr ∧i An = tr ∧i An (1, 1)(st)i for i even, and tr ∧i An = 0 for i odd.
We want to show the existence of points a ∈ Xn such that a = (α1, . . . , αn) has
every entry αi different from zero, and this will complete our existence result
about pencils of nilpotent matrices with constant rank. This fact is contained in
the following result.

Theorem 3.3.
(1) If Y is an irreducible component of Xn then Y is not contained in any

coordinate hyperplane (αi = 0).
(2) Xn is a complete intersection of dimension (n − 3)/2.
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Proof. By induction on the odd nonnegative integers n. For n = 3 the variety
X3 is de�ned by the single equation α1 + α2 = 0 and the claim follows in
this case. In general let Hi be the hyperplane αi = 0 and let us consider the
intersection Xn ∩ Hi . The matrix An , for a ∈ Xn ∩ Hi , takes the block form:

An =

�
Bi S
0 Cn−i

�

where Bi = Ai (α1, · · · , αi−1) , Cn−i = An−1(αi+1, · · · , αn−1) and S has s in
the position (i,1) and zero elsewhere. A simple induction shows that

Ak =

�
Bk

�k−1
j=0 A

k− j−1SB j

0 Ck

�

and so An is nilpotent if and only if the matrices Bi and Cn−i are nilpotent.
Because n is odd, either i or n − i is even, let�s say i . From Lemma 3.1 we
know that det Bi = ±α1α3 · · ·α2i−1 , so at least one αj must be zero for some
odd j . Then the matrix Bi itself takes a block form:

Bi =

�
Ej S
0 Di− j

�

where Ej and Di− j are nilpotent matrices of the usual form, this time both of
odd order. This shows that the original matrix An is of the block form:

An =

�
E S 0
0 D S
0 0 C

�

where E , D, C represent nilpotent pencils of matrices, of the same type as
above, of odd orders a, b, c respectively. (a, b, c counting the numbers of α�s
appearing in each block, and satisfying the relation a + b + c = n.) Let us call
X̃a , X̃b , X̃ c the af�ne cones respectively associated to the varieties Xa , Xb , Xc .
Then we have actually shown that Xn ∩ Hi is a union of the projectivizations
of some af�ne cones of the form X̃a × X̃b × X̃ c . By the inductive hypothesis,
every such piece has projective dimension (a − 1)/2 + (b − 1)/2 + (c − 1)/2,
that is, (n−3)/2. If Y is any irreducible component of Xn we already know that
dimY ≥ (n−3)/2, since Xn is de�ned by (n−1)/2 equations. This implies that
every component is properly intersected by each of the coordinate hyperplanes
(αi = 0), and furthermore it has dimension exactly (n − 1)/2, which proves
both statements of the theorem. �
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The pencils of type An do not exhaust all the possible similarity classes of
pencils of constant rank n − 1, for orders n ≥ 5. Indeed we know examples of
pencils of nilpotent matrices of constant rank n − 1 not similar to any pencil of
the form An . There are three questions which deserve further study:
(1) To �nd the similarity classes among the pencils of the form An .
(2) To �nd all the �ltration of O

n
P1 that corresponds to a pencil of nilpotent

matrices of constant maximal rank.
(3) To complete the classi�cation of pencils of constant rank.
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