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TOWARDS AN INDUCTIVE CONSTRUCTION OF

SELF-ASSOCIATED SETS OF POINTS

FLAMINIO FLAMINI

1. Introduction to the problem and historical background.

Castelnuovo [4] de�nes two sets, each of 2r+2 points in P
r , as associated

if there exist two (r + 1) − gons (which are the con�gurations determined by
r + 1 linearly general points in P

r ) such that the points of one set projectively
correspond to the 2r + 2 vertices of the two (r + 1)-gons and the points of the
other set projectively correspond to the 2r+2 faces of the two given (r+1)-gons.
This means that the two sets of points are the set of vertices and face-baricenters
of the two (r + 1)-gons, in a suitable order. In particular, when these two sets
coincide, i.e., each point is homologous to itself, the 2r + 2 points are called
self-associated.

In modern language, this is a particular case of the Gale-Coble transform
(see [7], [8], [9] for de�nitions, examples and related results).

In 1889, Castelnuovo [4] showed that if P1, . . . , P2r+2 are 2r + 2 self-
associated points in linearly general position in Pr , not lying on a rational
normal curve of degree r, then the (r − 2)-plane � in P

r , spanned by r − 1 of
them is an (r−1)-secant plane to the unique rational normal curve Cr of degree
r through the remaining r+3 points. Moreover, the points of intersection of the
(r−2)-plane � and Cr together with the (r−1) original points on � form a set
of 2r − 2 = 2(r − 2) + 2 self-associated points in � ∼= P

r−2 . In other words, if
� = {P1, . . . , P2r+2} ⊂ Pr is a set of self-associated points, then we may divide
it in two subsets �1 and �2 with | �1 |= r + 3 and | �2 |= r − 1, respectively,
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such that �1 is a set of points on a (well determined) rational normal curve Cr ,
while �2 spans a (r − 1)-secant space � ∼= Pr−2 to Cr , in such a way that
(� ∩ Cr ) ∪ �2 is a new self-associated set in �.

Reversing directions, Castelnuovo�s observation suggests to try to use
such a description, in establishing an inductive procedure for constructing self-
associated sets of points. We will discuss such an approach in small projective
spaces.

De�nition (Naive). Let k be a �eld and � ⊂ P
r
k = P(V ) be a set of

γ = r + s + 2 labelled points, such that every subset of γ − 1 points spans
P
r
k . Choosing homogeneous coordinates for these γ points, we get a matrix
G ∈ M(γ × (r + 1); k) of rank r + 1. If we transpose this matrix and take its
kernel, we obtain a new matrix G � ∈M(γ × (s + 1); k). Up to an identi�cation
of (kγ )∗ and kγ the rows of this matrix determine a new set, ��, of γ points in
P
s
k , which is called the Gale-Coble transform of �. If r = s , then both � and

�� are sets of 2r + 2 points in P
r
k . These sets are well de�ned up to the action

of PGL(r + 1; k).

We refer to [7], [8] and [9] for precise de�nition of the Gale-Coble
transform in modern terms. From now on, we consider the projective space
Pr over the complex �eld C. For all the notation used and not explained the
reader is referred to [12].

2. Basic de�nitions and properties.

A fundamental property of a set of self-associated points, already observed
by Coble [6], is the following:

Each (hyper) quadric of P
r , which passes through 2r + 1 points of a set of

2r + 2 self-associated points, passes also through the remaining one.
This is in fact a characterization of self-associated points which are in

linearly general position (see also [7], [9]).

De�nition. A linearly general set of 2r + 2 points � ⊂ Pr is called self-
associated if and only if its points fail by one to impose independent conditions
on the quadrics of the space.

We can rephrase the de�nition in cohomological language. Let � be a
0-dimensional closed subscheme of Pr , r > 1, and let I� be its ideal sheaf.
Twisting by OPr (2) and taking cohomology, the short exact sequence of sheaves

0 → I� → OPr → O� → 0
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yields the exact sequence

0→H 0(Pr , I�(2))→H 0(Pr , OPr (2))→ H 0(�, O�(2))→H 1(Pr , I�(2))→0.

The kernel of the map ϕ2 : H 0(Pr , OPr (2)) → H 0(�, O�(2)), consists of
all the quadrics which vanish on �. Let

Coker(ϕ2 ) ∼= H 0(�, O�(2))/Im(ϕ2 ) ∼= H 1(Pr , I�(2))

and put δ(�, 2) = dim(Coker(ϕ2 )) = h1(Pr , I� (2)). From the long exact
sequence, we get

h0(Pr , I�(2)) = h0(Pr , OPr (2)) + δ(�, 2) − h0(�, O�(2)).

If the subscheme � is reduced, then h0(�, O�(2)) = |supp(�)|. Each
point of � imposes one condition on the hypersurfaces of degree 2 in order to
be contained. Therefore, δ(�, 2) is the exactly the failure of � to impose linearly
independent conditions on hyperquadrics.

We can restate the de�nition of self-associated points by saying:
A set of 2r + 2 distinct points in linearly general position � ⊂ Pr , is

self-associated in P
r if and only if δ(�, 2) = 1.

In particular a set of 2r + 2 points that lie on a rational normal curve Cr

of P
r is self-associated, since it is contained in the

�
r
2

�
quadrics that contain Cr ;

indeed, �
r

2

�

=

�
r + 2

2

�

+ δ(�, 2) − (2r + 2) ⇒ δ(�, 2) = 1.

Another class of self associated points are the sets of 2r + 2 intersection
points of an elliptic normal curve C of degree r + 1, and a general quadric in
Pr . An elliptic normal curve C ⊂ Pr is projectively normal, so Riemann-Roch
gives

h0(IC (2)) =

�
r + 2

2

�

− 2(r + 1) =
(r + 1)(r − 2)

2
,

i.e. the elliptic (r+1)-curve of P
r lies on exactly (r+1)(r−2)

2
quadrics. Let

� be the intersection of C with a general hyperquadric. Then � lies on
(r+1)(r−2)

2
+ 1 =

�
r
2

�
quadrics of the space, and thus δ(�, 2) = 1. Therefore,

� is a self-associated set of points in Pr .
In low dimensions we have a complete characterization of sets of self-

associated points (see [9] and the references given there, and [2], [3]).
In P

1 any 4 points are self-associated, since two sets of 4 points are
associated, in the sense of Castelnuovo, if and only if they are projectively
equivalent, i.e. they have the same cross-ratio.



36 FLAMINIO FLAMINI

In P2 six points in linearly general position are self-associated if and only
if they lie on a conic, whereas in P3 8 general points are self-associated points
if and only if they are the base locus of a net of 3 quadrics.

In P4, apart from 10 points on a rational normal quartic, Bath [3] has
claimed that the general 10 self-associated points are a hyperquadric section of
a normal elliptic quintic curve. In this general case, the rational normal quartic
through any 7 of the 10 points meets the 2-plane, spanned by the remaining 3, in
further 3 points such that the 6 points on the plane lie on a conic; this is a special
case of Castelnuovo�s remark [4]. For a proof of Bath� assertion and for other
results on self-associated sets in small projective spaces we refer the reader to
[9].

3. Self-associated sets in P
2 and P

3.

We try now to investigate under which extra conditions, one may hope
for an inductive description of self-associated sets of points, as suggested by
Castelnuovo�s remark above.

The case of 6 self-associated points in P
2 is trivial. Namely start with a

point (which one may see as a self-associated set of P0) of the projective plane
P
2, and choose 4 general additional points, say {p1, . . . , p4}. Let C2 be the

unique conic through the 5 points {p, p1, . . . , p4}. Any further point on C2 ,
together with the previous 5 points, determines a set of 6 self-associated points
of the plane.

We will describe now a similar construction in P
3. Start with a set of 4 dis-

tinct points in P1, which form always a self-associated set. Consider this P1 em-
bedded as a line L in P

3 and denote the 4 points on L as {s1, s2, p7, p8}. Choose
4 further general points in P3, none belonging to the line L, say {p1, p2, p3, p4}.
The unique twisted cubic C3 , passing through {p1, p2, p3, p4, s1, s2} has the
line L as its chord through s1 and s2. Thes con�guration C

3 ∪ L is the complete
intersection of 2 quadrics of the space, say Q1 and Q2. This intersection is the
union of a divisor of type (1,2) and one of type (1,0) on a smooth quadric. Let
now Q3 be a general quadric through the 6 points��� = {p1, p2, p3, p4, p7, p8},
thus which does not contain the line L or the twisted cubic. This is possible
since h0(Iγ �� (2)) = 4. Therefore,

Q1 ∩ Q2 ∩ Q3 = (C3 ∪ L) ∩ Q3 = ��� ∪ ����

is a set of 8 points:
a) 4 points on C3 , {p1, p2, p3, p4};
b) 2 points on L, {p7, p8};
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c) 2 new points which must lie on the twisted cubic. Denote these points
by {p5, p6}.
The set �1 = {p1, . . . , p6} lies on C3, whereas �2 = {p7, p8} lies on L .
�2 ∪{s1, s2} is self-associated in L and L ∩C3 = {s1, s2}. Finally, � = �1 ∪�2

lies on a net of 3 quadrics, and in fact is the base locus of the net

{λ1Q1 + λ2Q2 + λ3Q3 | λi ∈ k}.

By our de�nition, for general choices, this means that � is a self-associated set
of 8 points in P

3.

4. Self-associated sets of points in P
4.

We discuss now an �inductive� construction of self-associated sets of 10
points in P4.

Recall from our discussion in section 2, that simple examples of such
con�gurations are given by the intersection of a normal elliptic quintic with
a general hyperquadric, or by any set of 10 points on a rational normal quartic
of P

4 (which lies on
�
4
2

�
= 6 quadrics).

Bath and Babbage claimed that the �rst of these examples is the general
case of P

4 (see [9] for a modern proof), and that always in the general case, the
unique rational normal quartic through any 7 points of that set meets the 2-plane
spanned by the remaining 3 in 3 further points (so the 2-plane is a 3-secant plane
to the rational quartic). Moreover, the set of 6 points on the 2-plane is in linearly
general position and lies on a conic, thus it is self-associated in P

2.
We also remark here that hyperquadric sections of elliptic normal curves

do not account for the general self-associated set in P
r , for r ≥ 5 (see [2] and

[9]). See also [9] for a conjecture concerning general self-associated sets in P5.
We will describe in the sequel a construction of sets of self-associated

points P
4, starting from self-associated sets in P

2 (which as we have seen are
well understood).

Start with a P
2 linearly embedded in P

4, and let E ∼= P
1 be a line in P

4

disjoint from the chosen plane. One may link the chosen plane in the complete
intersection of two hyperquadrics containing it and the line E . For general
choices, the residual surface is a smooth cubic rational scroll S = S1,2 ⊂ P4,
which contains E as directrix and meets the initial plane along a (smooth) conic
G . Counting parameters, it is easy to see that any smooth conic in the �xed P2

may be obtained as intersection, for appropriate choices of E and the linking
hypersurfaces. In terms of the representation of S as P2(x0), the blowing-up
of the projective plane at a point, S ⊂ P4 is embedded by the linear system
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|H | = |2l − E |, where l is the class of a line in P2 and E is the exceptional
divisor. Recall that l2 = 1, E2

0 = −1, E0 · l = 0. In terms of this basis G ∈ |l|.
We need to consider the following linear systems on S :
a) A general member F ∈ |3l − 2E | is embedded via |H | as a rational

normal quartic curve in P
4. Indeed, deg(�H (F)) = (3l − 2E) · (2l − E) = 4,

and F is not contained in any hyperplane, since | H − F |= ∅; therefore F is a
rational normal quartic. Notice also that dim | 3l − 2E0 |= 6.

b) A general divisor D in the linear system | 3l − E0 | is mapped via |H |

to an elliptic normal quintic in P
4. Notice that dim | 3l − E0 |= 8.

An easy calculation gives: F · D = (3l − 2E0) · (3l − E0) = 9 − 2 =

7, G · F = (3l − 2E0) · (l) = 3, G · D = (l) · (3l − E0).
Choose now 6 general points on the conic G , say {s1, s2, s3, p8, p9, p10}.

They form a self-associated set in the projective plane spanned by G .
From the above observations it follows that we may choose a (smooth)

rational normal quartic F ∈ |3l − 2E | on the scroll S , subject to pass through
the points {s1, s2, s3}. Similarly, we may choose an elliptic normal quintic
D ∈ |3l − E | on S containing the other 3 points on the conic, {p8, p9, p10}.
The 0-dimensional scheme �, de�ned as the intersection D · (F + G) is a set
of 10 points on the elliptic quintic D. The subscheme � ⊂ P

4 is self-associated
since � as a divisor on D is equivalent to the divisor cut by a hyperquadric of
the space. Namely

F + G ∼ 3l − 2E + l = 4l − 2E = 2H,

i.e. the divisor F + G belongs to the linear series | 2H | on the scroll, and
since both S and the elliptic quintic D are arithmetically Cohen-Macaulay the
claim follows (since each normal elliptic quintic is contained in 5 quadrics of the
space, the 10 points lie on 6 linearly independent quadrics, that is δ(�, 2) = 1).

Conversely, let � be a general hyperquadric section of a quintic elliptic
normal curve D ⊂ P

4, and let F be the (unique) rational normal quartic passing
through a subset �1 ⊂ � of 7 points. There are 5 hyperquadrics containing
D and F imposes only two extra conditions in order to be contained in one
of them. It follows that there are 3 hyperquadrics containing both the elliptic
normal curve D and the rational quartic F . Moreover, these 3 hyperquadrics
cut out a smooth rational cubic scroll in P4: Indeed, the secant variety to the
elliptic normal quintic D is a quintic hypersurface V inP4. There are already�
7
2

�
= 21 chords of D that meet the rational quartic F , so Bezout�s theorem

implies that F must be contained in the secant variety V . Let now S be the
union of all secant lines to D that meet the quartic curve F . No two secant lines
of D meet outside the elliptic curve, thus S is a ruled surface, rational since the
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rulings are parametrized by the rational quartic F . It is easily seen that S is
indeed a smooth rational cubic scroll in P4, such that F is a section of the scroll
and D is a bisection. In the basis l and E of S = P

2(x0), one sees immediately
that F ∈ |3l − 2E | and D ∈ |3l − E |, as above. In other words, the above given
description of 10 self-associated points in P

4 is the most general one.

5. A possible approach in higher dimensional projective spaces.

As mentioned above, in Pr for r > 4 self-associated sets are much more
complicated, because the intersection of a normal elliptic curve of degree r + 1
with a general quadric is not anymore the general case. We may start as above,
with the projective space P

r−2 , viewed as an (r − 2)-plane � in P
r , with a

set of 2r − 2 self-associated points. We may divide this set of points into two
subsets, say �1 and �2, each of cardinality r − 1, and then consider 4 further
general points in P

r and the unique rational normal curve Cr of degree r passing
through these 4 points and those of one of these sets, say �1.

The set �1 should play the role of the r − 1 point set �2 of § 1. We would
like to �nd r − 1 further points on the rational normal curve in such a way that
they form, together with the 4 general chosen points, the set �1 of § 1.

A useful observation is the fact that in Pr there are r − 1 linearly inde-
pendent hyperquadrics containing the rational normal curve Cr and the (r −2)-
plane. Suppose, in fact, that coordinates are chosen in the projective space such
that the (r − 2)-plane has equations

x0 = x1 = 0,

then the quadrics of the space containing this (r − 2)-plane are of the form

Fr := {x0l0 + x1l1 | lo, l1 ∈ (C[x0, . . . , xr ])1},

and they form a space of dimension 2r + 1. In order to contain the rational
normal curve, we have to impose further r − 2 conditions, since �2 already lies
on the r − 2-plane. Thus, we get 2r + 1− (r − 2) = r − 1 linearly independent
quadrics containing both the rational normal curve and the (r − 2)-plane.

We think that, by using the fact that the 2r−2 points in Pr−2 lie on exactly�
r−2
2

�
quadrics, the fundamental step would be to �nd a suitable rational normal

scroll of degree r − 1 in Pr passing through both the 4 points on Cr and the
points on the (r − 2)-plane of �2, and which meets on Cr further r − 1 points.
Moreover, since each scroll is the intersection of

�
r−1
2

�
quadrics, we have to �nd

a scroll for which the quadrics de�ning it are linearly independent from those
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containing Cr ∪ �. This would imply that these 2r + 2 points form a set �

which lies on (r − 1) +
�
r−1
2

�
=

�
r
2

�
quadrics. This means that δ(�, 2) = 1.

A result of Fano [10] concerning rational normal scrolls in P
r says that

there are ∞r−1 scrolls of degree r−1 containing a �xed rational normal curve of
degree r . This suggests to consider also the rational normal curve Dr containing
the set �1 and the chosen 4 general points. Thus the rational normal curves Dr

and Cr share 4 general points and are such that one passes through �1 and
the other one through �2. We know that in the ideal ICr we may �nd r − 1
hyperquadrics containing �, and Fano�s result says that there are ∞r−1 scrolls
of degree r − 1 containing Dr . We would like to be able to �nd a suitable such
scroll containing both Cr and Dr such that we may select on it the desired
numbers of points failing to impose independent conditions on quadrics, as
explained before.

Further investigations in dimension r > 4 might lead to a general construc-
tion of self-associated points in Pr .
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