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AN EXPLICIT DESCRIPTION OF SOME

SURFACES OF DEGREE 8 IN P
5

LAURA COSTA

1. Introduction.

Many mathematicians have studied the classi�cation by the degree d of
embedded smooth projective varieties (see for instance [1], [3], [5], [6], [8],
[9]). For d ≤ 6 Inonescu gave a complete list ([5],[6]). Later on the same
author ([7]) broadened the classi�cation of smooth projective varieties up to
degree 8. In particular, he constructed ([7]; 4.2) a smooth projective surface of
degree 8 in P

5 using Reider�s Theorem in the following way:

Let X be a geometrically ruled surface over a curve of genus 2 with
invariant e = −2 and let H ≡ C0 +3F where C0 and F are the generators
of the Picard group of X . Then, by Reider�s Theorem H is very ample and
therefore embeds X as a smooth projective surface in P

5.

It is well known that if X is a geometrically ruled surface over a curve C ,
then there exists a locally free sheaf E of rank two on C such that X = P(E).

This gives rise the following question:

Which are the vector bundles E over a curve C of genus 2 such that
X = P(E) is the surface described by Ionescu and when does OP(E)(1)
embed X in P

5 as a smooth surface of degree 8?

The aim of this note is to explain a method for the study of this question.
This allows us to describe this vector bundles. Moreover, it may be able to give
us an explicit description of these surfaces.
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Interest in classical questions of this sort continues to the present day, but
in our days we can use new methods. Lately, computer programs asMacaulay2
have emerged as important tools in the study of geometrical problems.

Our idea is to construct a family of vector bundles, rewrite the construction
in terms of graded modules and �nally, useMacaulay2 to analyze the properties
of the modules and rings so constructed. If these verify some �good� properties,
we are able to claim that we have constructed a right family of vector bundles
and to give the ideal de�ning the surface corresponding to each vector bundle
of the family.

Next we outline the structure of this note. In Section 2 we construct a
�good� family of rank two vector bundles on a curve of genus two in the sense
that they are the candidates for to be the solution of the question. In the �rst part
of the Section 3 we translate the construction in terms of modules. Mainly we
will associated to each vector bundle E of the family constructed in the section
2, a module E . We will describe a routine in Macaulay2 that determines this
module and the ideal I in the coordinate ring S of P

5 of the image of X = P(E)
by the line bundle OP(E)(1). In the second part of Section 3 we will study the
very ampleness of OP(E)(1) in terms of the ring S/I . Finally, in section 4 we will
explain how to realize all the process and how to check the very ampleness with
the support of Macaulay2. We hope that in a short period of time we will be
able to publish these routines and explicit examples of Ionescu�s construction.

Acknowledgement: I would like to take this opportunity to express my grati-
tude to the PRAGMATIC organizers for givingme the opportunity to participate
in this meeting and special thanks are due to Professor David Eisenbud and Pro-
fessor Sorin Popescu for all their helps and advices.

2. Construction of vector bundles on a curve.

Notations. Basically we employ the same de�nitions one can �nd in the book of
D. Eisenbud and the book of R. Hartshorne in the references. For convenience
we recall some of the notations that we will use in the sequel:

1. C will be a smooth, irreducible projective curve of genus g = g(C) = 2,
KC denotes the canonical divisor on C and OC (D) denotes the line bundle
associated to the divisor D on C .

2. Hi(F ) := Hi(C, F ) denotes the i-th cohomology group of the sheaf F

on C and hi (F ) = hi (C, F ) denotes its dimension.
3. Hi

I (M) denotes the i-th local cohomology group of a graded module M
with support in I .

We begin this section recalling the construction given by Ionescu in [7]:
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Let X be a geometrically ruled surface over a curve of genus 2 with
invariant e = −2 and let H ≡ C0 + 3F where C0 and F are generators
of Pic(X ). Then by Reider�s Theorem H is very ample and therefore it
embeds X in P

5 as a smooth projective surface of degree H 2 = 8.

We will say that a smooth projective surface X is of Ionescu�s type if it
is a ruled surface over a curve of genus 2 with invariant e = −2. We will
say that a rank two vector bundle E on a curve C veri�es Ionescu�s conditions
if X := P(E) is of Ionescu�s type and OP(E)(1) embeds X in P

5 as a smooth
projective surface of degree 8.

The aim of this section is to construct rank two vector bundles E verifying
Ionescu�s condition. Before starting the construction of such vector bundles, we
quote three well known results as we need ([4]; V, 2).

Lemma 2.1. If π : X −→ C is a ruled surface, it is possible to write X = P(E�)
where E

� is a locally free sheaf on C with the property that H 0(E�) �= 0 but for
all invertible sheaves OC (D) on C with deg(D) < 0, we have H 0(E�(D)) = 0.
Moreover in this case the invariant e of X is given by e = − deg(E�). In this
case we say E

� is normalized.

Lemma 2.2. If E and E
� are two locally free sheaves of rank two on C, then

P(E�) and P(E) are isomorphic as ruled surfaces over C if and only if there is
an invertible sheaf OC (D) on C such that

E ∼= E
� ⊗ OC (D).

Lemma 2.3. Let E be a coherent sheaf of rank two on C and let D be a divisor
on C. Then

c1(E(D)) = c1(E) + 2 deg(D).

Assume that E is a rank two vector bundle on a curve C verifying Ionescu�s
condition. From the de�nition of Ionescu�s condition h0(E) = 6.

On the other hand, consider the natural map

π : P(E) −→ C

and H such that OP(E)(1) = OX (H ). By de�nition of the Chern classes we
have:

π∗c0(E)H
2 − π∗c1(E)H + π∗c2(E) = 0.

Since E is a vector bundle on a curve, c2(E) = 0 and therefore,

8 = H 2 = π∗c1(E)H = c1(E) = deg(E)
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where the �rst equality follows from the fact that E veri�es Ionescu�s condition.
So, by Lemma 2.1 and Lemma 2.2, E is a rank two vector bundle on C

such that

h0(E) = 6; deg(E) = 8

and there exists a normalized rank two vector bundle E
� on C such that

E ∼= E
� ⊗ OC (D)

where D ∈ Pic(C) has degree 3. In fact, X := P(E) has invariant e = −2 =

− deg(E�) and by Lemma 2.3:

8 = deg(E) = c1(E) = c1(E
� ⊗ OC (D)) = deg(E�) + 2 deg(D) = 2 + 2 deg(D).

By Riemann-Roch Theorem,

h0(E) − h1(E) = χ (E) = deg(E) + rk(E)(1 − g) = 6.

Therefore, E is a rank two vector bundle on C such that

h0(E) = 6 and h1(E) = 0.

We will construct a family F of rank two vector bundles E on a curve C
of genus 2 such that

(1) h0(E) = 6 and h1(E) = 0.

Notice that every E ∈ F such that the line bundle OP(E)(1) is very ample,
veri�es Ionescu�s condition. So, �rst of all we will construct the family F and
later on we will explain how to check the very ampleness condition.

Any locally free sheaf of rank two on a curve C is an extension of invertible
sheaves ([4]; V, Corollary 2.7). We consider G the irreducible family of rank two
vector bundles E on C given by a non trivial extension:

e : 0 −→ OC (D1) −→ E −→ OC (D2) −→ 0

where D1 and D2 vary in Pic(C).
The next step is to study the necessary conditions that D1 and D2 have to

verify in order to obtain a subfamilyF ⊂ G of rank 2 vector bundles E verifying
(1).
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Assume that E ∈ G veri�es (1) and consider the exact cohomology se-
quence:

0 −→ H 0(OC (D1)) −→ H 0(E) −→ H 0(OC (D2)) −→

−→ H 1(OC (D1)) −→ H 1(E) −→ H 1(OC (D2)) −→ 0

associated to the exact sequence:

e : 0 −→ OC (D1) −→ E −→ OC (D2) −→ 0.

Since h1(E) = 0 we have h1(OC (D2)) = 0. On the other hand, by the
additivity of the Euler Characteristic,

(2) 6 = χ (E) = χ (OC(D1)) + χ (OC(D2)) = deg(D1) + deg(D2) − 2

where the last equality follows from Riemann-Roch Theorem.
Twisting by OC (−D1) the exact sequence e and taking cohomology we

obtain the long exact sequence:

0 −→ H 0(OC ) −→ H 0(E(−D1)) −→ H 0(OC (D2 − D1)) −→ · · ·

and from this we get h0(E(−D1)) > 0.
We have seen that E ∼= E

� ⊗ OC (D) where D ∈ Pic(C) has degree 3 and E
�

is normalized.
Since E

� is normalized and 0 < h0(E(−D1)) = h0(E�(D − D1)) it follows
that deg(D − D1) ≥ 0 and we obtain:

(3) deg(D1) ≤ 3; deg(D2) ≥ 5

where the second inequality follows from (2).
Notice that since deg(KC ) = 2g(C) − 2 = 2, the above inequalities on the

degrees of D1 and D2 give us:

dimExt1(OC (D2), OC (D1)) = h1(OC (D1 − D2)) =

= h0(OC (D2 − D1 + KC ))
∗ > 0

and therefore, we have non trivial extensions.
Let F ⊂ G be the subfamily of rank two vector bundles E on C given by a

non trivial extension:

e : 0 −→ OC (D1) −→ E −→ OC (D2) −→ 0

with D1, D2 ∈ Pic(C) verifying:

deg(D1) ≤ 3 and deg(D2) ≥ 5;

6 = deg(D1) + deg(D2) − 2;

h1(OC (D1)) = 0.

Claim. F is a non-empty family and each E ∈ F veri�es (1).
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Proof of the Claim. If D1 has degree 3, by Riemman-Roch Theorem

h1(OC (D1)) = 0

and in this case deg(D2) = 5, which implies h1(OC (D2)) = 0 . The exact
cohomology sequence:

0 −→ H 0(OC (D1)) −→ H 0(E) −→ H 0(OC (D2)) −→

−→ H 1(OC (D1)) −→ H 1(E) −→ H 1(OC (D2)) −→ 0

associated to the exact sequence:

e : 0 −→ OC (D1) −→ E −→ OC (D2) −→ 0

with D1 of degree 3 and D2 of degree 5, gives us:

h1(E) = 0.

On the other hand, using the exact sequence which de�nes E we get:

deg(E) = c1(E) = deg(D1) + deg(D2) = 8.

Therefore by Riemann-Roch Theorem:

h0(E) = χ (E) = deg(E) + rank(E)(1 − g(C)) = 6

which proves our claim.

Remark. It is well known that there is a one-to-one correspondence between
sections σ : C −→ X = P(E) and surjections E −→ L −→ 0, where L is
an invertible sheaf of C given by L = σ ∗OP(E)(1) ([4]; V, Proposition 2.6). On
the other hand since deg(D2) ≥ 2g(C) + 1, OC (D2) is very ample and by this
correspondence there is a section such that OC (D2) = σ ∗OP(E)(1). Therefore,
one guess that OP(E)(1) given by the above construction is not so far to be very
ample.

For each E in F we consider the morphism corresponding to the sheaf
OP(E)(1) on X = P(E) de�ned by the sections s0, · · · , s5 ∈ H 0(OP(E)(1)):

φ : X −→ X̃ ⊂ P(H 0(OP(E)(1))
∗) = P

5.

We want to �nd vector bundles E ∈ F such that OP(E)(1)) is very ample (i.e. E

veri�es Ionescu�s condition) or, equivalently, vector bundles such that φ embeds
X as a smooth surface X̃ of degree eight in P

5. To this end, we will translate
the above construction in terms of extensions of modules and we will associated
to the vector bundle E a module E . Then, using some functions that we have
de�ned in Macaulay2, we will compute the coordinate ring of X̃ and we will
explain how to check the very ampleness of OP(E)(1) in terms of this ring.
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3. Development of the problem.

3.1. Algebraic Construction.

The goal of this subsection is to translate in terms of modules the construction
that we have seen in Section 2. Mainly, we will associate to each extension of
sheaves an extension of modules. In particular we will associated to each vector
bundle given by such extension a module. To this end, �rst of all we recall some
well known constructions which give a relation between sheaves and modules.

Almost all the facts that we explain here hold in a more general situation
but we prefer restrict ourselves in the context of the problem that we are
studying.

Let C be a smooth, irreducible, projective curve of genus two and OC (D)
be a line bundle on C associated to the divisor D. Consider R the coordinate
ring of C and denote by I (D) ⊂ R the ideal associated to the divisor D.

It is well known that there exists a canonical graded module representing
OC (D), given by:

MD := H 0
∗ (OC (D)) := ⊕n≥0H

0(OC (D)(n)).

On the other hand given M a graded R-module we can consider M̃ the
sheaf of modules associated to M ([4]; II.5 for more details). In particular if
I (D) is the ideal associated to D then,

OC (D) = �I (D)∗

where ∗ denotes the dual of a module.

Next we will recall the de�nition of local cohomology and we will see how
this last two constructions can be related.

De�nition 3.1.1. Let R be a ring, I an ideal of R, and M a R-module. We
de�ne the zeroeth local cohomologymodule of M with support in I to be the set
of all elements of M which are annihilated by some power of I :

H 0
I (M) = ∪n(0 :M In )

where (0 :M In ) denotes the set of elements of M annihilated by In . We de�ne
the higher local cohomology groups as the right derived functors of H 0

I .

The following theorem will be very useful for us in the sequel.
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Theorem 3.1.2. Let R be a polynomial ring and Q a maximal ideal. Take M
a graded R-module and consider M̃ the corresponding sheaf associated to M.
Then there is the exact sequence:

0 −→ H 0
Q(M) −→ M −→ H 0

∗ (M̃) −→ H 1
Q(M) −→ 0.

Moreover, if depth(M) > 1 then H 0
Q(M) = H 1

Q(M) = 0 and therefore

M = H 0
∗ (M̃).

If C is a smooth curve, as we are assuming, for every divisor D on C we
have:

depth(I (D)∗) > 1.

Hence, by the above theorem we obtain the following relation between the two
constructions that we have introduced:

(4) MD := H 0
∗ (OC (D)) = H 0

∗ ( �I (D)∗) = I (D)∗.

Putting all together we see that the module associated to the line bundle
OC (D) on C is nothing more than I (D)∗ = Hom(I (D), R). Moreover, we can
describe the ideal I (D) as follows.

Since D is a divisor on a curve C we have:

D =

n�

i=1

mi pi

where p1, · · · , pn are points on C . If Pi denotes the ideal of the point pi in the
coordinate ring of the curve, we get:

I (D) = Pm1

1 ∩ · · · ∩ Pmn
n .

Let us see how to associate to each extension of sheaves:

e : 0 −→ OC (D1) −→ E −→ OC (D2) −→ 0

with E ∈ F , an extension of modules. This extension of modules will allows us
to compute explicitly the module E := ⊕n≥0H

0(E(n)) associated to the vector
bundle E given by e.
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By our assumption on the degree of D2 and the fact that h
1(OC (D1)) = 0,

for all n ≥ 0, we have:

h1(OC (D1)(n)) = h1(OC (D2)(n)) = 0.

So, if we consider the cohomology sequence associated to e we obtain for
all n ≥ 0 the exact sequence:

0 −→ H 0(OC (D1)(n)) −→ H 0(E(n)) −→ H 0(OC (D2)(n)) −→ 0

and therefore, we have the exact sequence of graded modules:

0 −→ ⊕n≥0H
0(OC (D1)(n)) −→ ⊕n≥0H

0(E(n)) −→

−→ ⊕n≥0H
0(OC (D2)(n)) −→ 0,

or equivalently,

0 −→ MD1
−→ ⊕n≥0H

0(E(n)) −→ MD2
−→ 0

and this is an exact sequence of graded R-modules associated to the exact
sequence e of sheaves.

Now we will see a more explicit description of the module E :=
⊕n≥0H

0(E(n)) associated to the vector bundle E. This is equivalent to take
an element of the extension group Ext1(MD2

, MD1
).

For simplicity we denote by A the module MD2
and by B the module MD1

.
Let us see how to obtain an element of Ext1(A, B), i.e. the module E .

Take a free resolution of A:

· · · −→ HA −→ GA −→ FA −→ A −→ 0

and K the kernel of the map:

FA −→ A −→ 0.

By de�nition of the Ext-group we have the exact sequence:

· · · −→ Hom(FA, B) −→ Hom(K , B) −→ Ext1(A, B) −→ 0.

Then, we only need to take an element of Hom(K , B), not in Hom(FA, B).
Now, if we consider a free resolution of B :

· · · −→ HB −→ GB −→ FB −→ B −→ 0
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since there are epimorphisms:

GA −→ K −→ 0;

FB −→ B −→ 0;

it is enough to take an element φ ∈ Hom(GA, FB ). Moreover, if we consider
the matrix,

m : GA ⊕ GB −→ FA ⊕ FB

given by

m =

�
φA 0
φ φB .

�

where
φA : GA −→ FA;

φB : GB −→ FB;

are given by the corresponding resolutions, we obtain:

E := ⊕n≥0H
0(E(n)) = Coker(m).

Therefore, we have seen that if E is a vector bundle given by the extension:

0 −→ OC (D1) −→ E −→ OC (D2) −→ 0

we can associated to E a graded R-module E . Moreover, we know explicitly
how to construct this module.

Following this description we have de�ned a function inMacaulay2 called
extensionModules which given two modules A and B construct a module E
such that the following sequence

0 −→ B −→ E −→ A −→ 0

is exact. We will apply this routine in the case where A = MD2
and B = MD1

.
Let us remark that in order to obtain A and B we only need to compute the
ideal associated to the corresponding divisor that we have already described in
the last section.

In the next subsection we will see how, with the help of Macaulay2, use
this module E in order to check the very ampleness of the line bundle OP(E)(1)
where E ∈ F is the vector bundle associated to E .

3.2. How to check the very ampleness property.

First of all, let us review the Jacobian criterion for regularity that later on we
will use in order to check the smoothness of the variety image.
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Theorem 3.2.1. Let S = K [x1, · · · , xr ] be a polynomial ring over a �eld K ,
let I = ( f1, · · · , fs ) be an ideal, and set R = S/I . Let P be a prime ideal of
S containing I and write K (P) for the residue class �eld at P . Let c be the
codimension of IP in SP .
a) The Jacobian matrix J whose entries are the partial derivatives of the

generators of I , taken modulo P has rank ≤ c.
b) If char(K ) = p > 0, assume also that K (P) is separable over K . RP is

a regular local ring if only if J taken modulo P has rank equal to c.

Now, we will state how to check if the vector bundle E ∈F so constructed
is such that the linear series OP(E)(1) is very ample. But before we want recall
the following de�nition.

De�nition 3.2.2. If Y ⊂ P
n is an algebraic set of dimension r , we de�ne the

Hilbert Polynomial of Y to be the Hilbert Polynomial PY of its homogeneous
coordinate ring S(Y ). (It is a polynomial of degree r). We de�ne the degree of
Y to be:

deg(Y ) := r! (leadingcoef�cient of PY ).

Lemma 3.2.3. Let C be a smooth irreducible projective curve of genus 2 and
E a rank two vector bundle on C with six sections and degree eight. Consider
the map

φ : X = P(E) −→ X̃ ⊂ P
5

de�ned by six sections of OP(E)(1). Let S be the coordinate ring of P
5 and I ⊂ S

the ideal of X̃ . Assume that X̃ is smooth, dim(S/I ) = 3 and that deg(X̃ ) = 8.
Then φ de�nes an embedding or equivalently, X̃ is a smooth surface of degree
eight in P

5 .

Proof. Since X̃ is smooth and dim(S/I ) = 3, φ de�nes a map between two
smooth surfaces. Moreover we have the following relation:

deg(E) = deg(φ) deg(X̃ ).

By the assumption in the degree and this relation we have deg(φ) = 1.
Therefore at least φ de�nes a regular map and it is an embedding if in X there
are no (−1)-curves. If there are such curves in X , each of them has to be
isomorphic to P

1. Then we have a curve of genus 0 in X . On the other hand,
there is a map π : X −→ C , where C is a curve of genus two. Therefore
the curves of genus 0 cannot be in the �bers of π and we get a contradiction.
Therefore, φ is an embedding. �
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At the end of Subsection 3.1 we have seen how to compute the module E
associated to the vector bundle E given by the extension:

e : 0 −→ OC (D1) −→ E −→ OC (D2) −→ 0.

Using theMacaulay2 function vectorBundleImage one can compute the ideal I
of X̃ in the coordinate ring S of P

5.
Using the Jacobian criterion we can check whenever X̃ is smooth. Since

we know the ring S/I , we can compute its dimension and the Hilbert polyno-
mial of X̃ . Assume that this effective computations gives us the desired val-
ues. Then, by the lemma, I de�nes a smooth surface of degree eight in P

5.
This means that the vector bundle E given by e veri�es Ionescu�s condition and
therefore we have an explicit example of a surface of Ionescu�s type. We want
remark that all of this computations are effective inMacaulay2.

4. Examples.

Next we outline the process that we will follow in order to obtain a
vector bundle E verifying Ionescu�s condition and the ideal of the corresponding
surface of Ionescu�s type.

First we �x a curve C of genus 2 and we consider the coordinate ring R of
C . Then, we take the ideals I (D1) and I (D2) of D1 and D2 respectively, where
D1, D2 ∈ Pic(C) are such that:

deg(D1) ≤ 3 and deg(D2) ≥ 5;

6 = deg(D1) + deg(D2) − 2;

h1(OC (D1)) = 0.

The following process programmed inMacaulay2, will allow us to check if the
rank 2 vector bundle E given by and extension:

0 −→ OC (D1) −→ E −→ OC (D2) −→ 0

veri�es Ionescu�s condition. Moreover, if it is the case, then we will obtain an
ideal which de�nes a surface of Ionescu�s type.

Following the above notations consider:

B : = Hom(I (D1), R),

A : = Hom(I (D2), R).
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Then
E := ex tensionModules(B, A)

is the module associated to the vector bundle E given by an extension class:

e : 0 −→ OC (D2 + KC ) −→ E −→ OC (D2) −→ 0.

Let I := imageV ariet y(E) be the ideal of the image X̃ . Finally consider

L := test Sur f ace(I ).

If the output of L is {3, 8, 6} it means that dim(S/I ) = 3, deg(X̃ ) = 8
and that X̃ is smooth. Therefore, it means that I de�nes a smooth surface of
Ionescu�s type and that E given by e veri�es Ionescu�s condition.

If we are not successful and we obtain an other output of L , we can choose
an other pair {D1, D2} and repeat the process with the new ones. Moreover,
we can change the curve C . In this way one can obtain different examples of
surfaces of Ionescu�s type.
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