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ON FRACTIONAL DEVIATION OPERATORS

CARLOS C. PE �NA

The so called fractional deviation operators are introduced. This class
of integral transforms appears naturally from the study of iteration of frac-
tional integrals of Riemann-Liouville type. Since B. Ross�formulation on
fractional iteration process, among other problems selected by T. Osler [5]
toward 1974, several authors have been working on this subject. In particular,
are worth mentioning contributions of B. Rubin [7] that allowed an intrin-
sic connection between fractional integrals with different limits of integration
(Love�s question, see [5] also) and the corresponding Ross� problem for Chen
fractional integrals, handled by A. Nahushev [4] and M. Salahitdinov, with
broad applications to non local boundary value problems. In this article we
consider deviation operators as integral transforms, their connection with op-
erators of Rubin type and mapping properties between classical and weighted
Lebesgue spaces.

1. Preliminaries.

De�nition 1. Let c, x ∈ R, c ≤ x , f ∈ L1
loc [c, +∞] , γ ∈ R+. By the Riemann

- Liouville transform of f of order γ and lower limit of integration c we mean
the function I

γ
c+ f given as

I
γ
c+ f (x ) =

� x

c

(x − t)γ−1

�(γ )
f (t) dt .
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Proposition 1. (1) With the above notation:

a) The R - L transform is well de�ned and

I
γ
c+ : L1

loc [c, +∞] → L1
loc [c, +∞] .

b) For γ1, γ2 ∈ R+ the following semigroup property holds

I
γ1

c+ o I
γ2

c+ = I
γ1+γ2

c+ .

De�nition 2. Let a, b, γ be real numbers, a < b, γ ∈ R+, f ∈ L1 [a, b]. We
also denote

a,b I
γ
+ f (y) =

� b

a

(y − t)γ−1

�(γ )
f (t) dt , y > b,

a,b I
γ
− f (x ) =

� b

a

(t − x )γ−1

�(γ )
f (t) dt , x < a.

De�nition 3. Let a < c < b, α, β ∈ R+. By the fractional deviation operator

a,bD
α,β
c+ of R - L class (a, b, α, β) and lower limit c we mean the map

a,bD
α,β
c+ : L1

loc [a, +∞] → L1
loc [b, +∞] ,

a,bD
α,β
c+

.
= I

β

b+ o I
α
a+ − I

α+β
c+ .

De�nition 4. Let α, β ∈ R+, x 1 < x 2 < x 3. We�ll write

Fα,β(x 1, x 2, x 3) = Fx2

α,β(x 1, x 3)

.
=

� x3

x2

(x − x 1)α−1(x 3 − x )β−1 dx .

(1) See [3].
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It is easy to see that Fα,β is well de�ned and in terms of the incomplete
beta function

Bα,β(x ) =

� +∞

x

sα−1(1 + s)−α−β ds,

where x > 0, the following formulae hold:

(1) Bα,β(0+) = Be(α, β),

(2) Bα,β(x ) + Bβ,α(x−1) = Be(α, β),

(3) Fα,β(x 1, x 2, x 3) =
�
x 3 − x 1

�α+β−1
Bα,β

�
x 2 − x 1

x 3 − x 2

�

,

(4) Fα,β(px 1, px 2, px 3) = pα+β−1Fα,β(x 1, x 2, x 3), p-positive,

(5) Fα,β(x 1, x 2, x 3) = F0
α,β

�
x 1 − x 2, x 3 − x 2

�
.

De�nition 5. Let a < b, α, β ∈ R+ . We introduce the operators

a,bE
α,β
+ : L1 [a, b] → L1

loc [b, +∞] ,

a,bE
α,β
+ f (y)

.
=

1

�(α)�(β)

� b

a

Fb
α,β(u, y) f (u) du, f ∈ L1 [a, b] , b < y,

and

a,bE
α,β
− : L1 [a, b] → L1

loc [−∞, a] ,

a,bE
α,β
− f (x )

.
=

1

�(α)�(β)

� b

a

Fa
α,β(x , v) f (v) dv, f ∈ L1 [a, b] , x < a.

De�nition 6. Let −∞ ≤ a < b < +∞, γ ∈ R+, f ∈ L1 [a, b]. By a Rubin
type transform R

γ

a,b f of f we mean the function given as

R
γ

a,b f (x ) =
sin(πγ )

π

� b

a

�
b − t

x − b

�γ f (t)

x − t
dt, x > b.

Finally, the author wishes to thank the referee for his helpful suggestions.
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2. On deviation operators.

Theorem 1. Let a < c < b, α, β , γ ∈ R+, f ∈ L1
loc [a, +∞]. Then

(6) a,bD
α,β
c+ f =a,b E

α,β
+ f −c,b I

α+β
+ f.

(7) a,bE
α,β
+ f +

�

−b,−aE
β,α
− f ∼

�∼

=a,b I
α+β
+ f,

where f ∼(x ) = f (−x ) and x ≤ a.

(8)
�
a,b I

γ
− f

�∼
=−b,−a I

γ
+ f ∼.

(9)
�

a,bD
α,β
c+ f

�∼

=−c,−a I
α+β
− f ∼ −−b,−a E

β,α
− f ∼.

In general, the above identities must be interpreted in the almost everywhere
sense.

Proof. With �xed d > b ≥ e ≥ a we obtain

(10) �I
γ
e+�L1[b,d] ≤

(d − e)γ

�(γ + 1)
� f �L1[e,d]

and therefore

�a,bD
α,β
c+ f �L1[b,d] ≤(11)

≤

�
(d − a)α

�(α + 1)
·

(d − b)β

�(β + 1)
+

(d − c)α+β

�(α + β + 1)

�

� f �L1[a,d].

On the other hand:

(12) �c,b I
γ
+ f �L1[b,d] ≤

(d − c)γ

�(γ + 1)
� f �L1[c,b],

(13) �a,bE
α,β
+ f �L1[b,d] ≤

(d − a)α+β

�(α + β + 1)
� f �L1[a,b].

From the above relations we deduce that a,bD
α,β
c+ and a,bE

α,β
+ −c,b I

α+β
+

maps L1[a, d] linearly and continuously into L1[b, d] for each d > b. It is
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now expedient to observe that Iαa+g ∈ C[a, d] whenever g ∈ C[a, d] ([3], Ch.
1, Corollary 2). By identifying Iαa+g with its restriction over [b, d] we obtain

I
β

b+(Iαa+g) ∈ C[b, d]. Analogously I
α+β
c+ g ∈ C[b, d] by identifying g with its

restriction to [c, d]. Now a,bD
α,β
c+ g ∈ C[b, d] and from a direct application of

Fubini�s Theorem we obtain (6).In the general case, given f ∈ L1[a, d] and a
positive number ζ we may write f = g + h, g ∈ C[a, d] and �h�L1[a,d] ≤ ζ .
Using (11) � (13) we have

�a,bD
α,β
c+ f −

�

a,bE
α,β
+ −c,b I

α+β
+

�
f �L1[b,d] =

= �a,bD
α,β
c+ h −

�

a,bE
α,β
+ −c,b I

α+β
+

�
h�L1[b,d]

≤ �a,bD
α,β
c+ h�L1[b,d] + �a,bE

α,β
+ h�L1[b,d] + �c,bI

α+β
+ h�L1[b,d]

≤
� (d − a)α

�(α + 1)
·

(d − b)β

�(β + 1)
+

(d − c)α+β

�(α + β + 1)

�
�h�L1[a,d] +

+
(d − a)α+β

�(α + β + 1)
�h�L1[a,b] +

(d − c)α+β

�(α + β + 1)
�h�L1[c,b]

≤
� (d − a)α

�(α + 1)
·

(d − b)β

�(β + 1)
+

(d − c)α+β

�(α + β + 1)
+

+
(d − a)α+β

�(α + β + 1)
+

(d − c)α+β

�(α + β + 1)

�
ζ.

Since ζ was arbitrary equality (6) became valid in the ��L1[b,d]-norm for
each d > b and hence it is also valid in the a.e. sense. The other identities may
be proved in a similar way. �

Theorem 2. Let a, b, γ ∈ R, a < b, 0 < γ < 1, f ∈ L1[a, b]. Then

(14) I
γ

b+ R
γ

a,b f (y) =a,b I
γ
+ f (y) a.e. y > b.

Proof. In general, Rubin type transforms satisfy the following translation rule

(15) τ−b R
γ

a−b,0τb = R
γ

a,b,

and so we shall consider R
γ

c,0 with −∞ ≤ c < 0. If we write

(16) κ(t, x ) =

�
t

x

�γ 1

x + t
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with both x and t positive, then κ is a measurable homogeneous function of
degree -1, and if 1 < p < ∞:

(17)

� +∞

0

|κ(t, 1)|t−1/p dt =

� +∞

0

|κ(1, x )|x−1/p�

dx = χ ,

where χ would be �nite if γ < 1/p. In this case, from the Hardy - Littlewood
- Pólya Theorem on boundedness of homogeneous operators [2], Theorem 319,
the Rubin transform

(18) R
γ

−∞,0 f (x ) =
sin(πγ )

π

� +∞

0

�
t

x

�γ f (−t)

x + t
dt, x -positive,

becomes continuous between L p[−∞, 0] and L p[0, +∞] with

(19)
�
�R

γ

−∞,0 f
�
�
L p[0,+∞]

≤
sin(πγ )

sin(π (γ + 1/p�))
� f �L p[−∞,0] .

It is now easy to see that if 1 ≤ p < 1/γ then R
γ

c,0, c-negative, maps linear
and continuously L p[c, 0] on L p[0, +∞] with

(20)
�
�R

γ

c,0 f
�
�
L p[0,+∞]

≤
sin(πγ )

sin(π (γ + 1/p�))
� f �L p[c,0].

Moreover, under this conditions R
γ

c,0 f (x ) will be de�ned and �nite for
every x -positive with the limit c �nite or in�nite.
Now for a given f ∈ L p[c, 0] we write

I
γ

0+R
γ

c,0 f (y) =

� y

0

(y − x )γ−1

�(γ )

�
sin(πγ )

π

� 0

c

�
|t |

x

�γ f (t)

x + |t |
dt

�

dx

=
sin(πγ )

π�(γ )

� 0

c

f (t)|t |γ
�� y

0

(y − x )γ−1x−γ

x + |t |
dx

�

dt .

The application of Fubini�s Theorem is justi�ed because the double integral is
still absolutely convergent if c = −∞ and fractional integrals of order γ on the
whole real axis are de�ned for L p-functions if 1 ≤ p < 1/γ . Finally the inner

integral may be evaluated after the change of variable z =
−t(y − x )

(x − t)y
, and so

we obtain (14). �
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Theorem 3. Let a < c < b, α, β ∈ R+. The following formulae hold

a,b I
α+β
+ = I

β

b+ ◦a,b I
α
+ + a,b I

β
+ ◦ Iαa+ ,(21)

a,bE
α,β
+ = I

β

b+ ◦ a,b I
α
+ ,(22)

a,bD
α,β
c+ = I

β

b+ ◦ a,c I
α
+ − c,b I

β
+ ◦ Iαc+ ,(23)

a,bD
α,β
a+ = −a,b I

β
+ ◦ Iαa+ ,(24)

a,bD
α,β

b+ = I
β

b+ ◦ a,b I
α
+ ,(25)

a,bD
α,β

b+ − a,bD
α,β
c+ =c,b I

α+β
+ .(26)

Corollary 1. If a < c < b, α, β ∈ R and 0 < α < α + β < 1, then

a,bD
α,β
c+ = I

α+β

b+

�
Rα
a,b − R

α+β

c,b

�
.

3. On some boundedness conditions.

Proposition 2. Let α, β ∈ R +. There exist positive constants c1, c2 such that
for every positive x we have the inequality

(27) c1(1 + x )−β ≤ Bα,β(x ) ≤ c2(1 + x )−β.

Moreover, we may take c1 = min
�
β−1, Be(α, β)

�
, c1 = max

�
β−1, Be(α, β)

�
.

Proof. Given a positive x and assuming α ≥ 1 we have

(28) Bα,β(x ) ≤
(1 + x )−β

β
.

In particular, if x → 0+ in (28) there result Be(α, β) ≤ 1/β and on one
hand (27) holds. If 0 < α < 1 we write

(29) Bα,β(x ) ≥
(1 + x )−β

β

and making x → 0+ in (29) we obtain Be(α, β) ≥ 1/β . We now introduce the
functions of the non negative real variable x

f (x ) = (1 + x )βBα,β(x )
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and

g(x ) = Bα,β(x ) −
xα−1(1 + x )1−α−β

β
.

In particular, f (x ) ≡ 1/β if α = 1 and our claim follows. On the other
hand we may write

f �(x ) = β(1 + x )β−1g(x ),

g�(x ) =
1 − α

β
xα−2(1 + x )−α−β,

i.e. g is monotone increasing or decreasing according as 0 < α ≤ 1 or α ≥ 1
respectively. But g(+∞) = 0, i.e. f becomes a monotone decreasing function
in the �rst case and a monotone increasing one in the second. Moreover,
f (0) = Be(α, β) and f (+∞) = 1/β and hence both estimates follow. �

Remark 1. We�ll consider formally the following expressions

[a] sup
κ>0

κ1−α

�� c

a

w1(x )
−p�/p dx

(c − x + κ)(1−α)p�

� 1
p� �� +∞

b

(y − b)βqw2(y) dy

(y − c + κ)(1−α)q

� 1
q

,

[b] sup
κ>0

κ1−β

�� b

c

(b − x )αp
�

w1(x )
−p�/p dx

(b − x + κ)(1−β)p�

� 1
p� �� +∞

b

w2(y)dy

(y − b + κ)(1−β)q

� 1
q

,

[c] sup
κ>0

�� b

c

�
b − x + κ

b − x

�(1−β)p�

(b − x )αp
�

w1(x )
−p�/p dx

� 1
p�

·

·

�� +∞

b

w2(y) dy

(y − b+ κ)(1−β)q

� 1
q

,

[d] sup
κ>0

�� c

a

�
c − x + κ

c − x

�(1−α)p�

w1(x )
−p�/p dx

�1/p�

·

·

�� +∞

b

(y − b)βqw2(y) dy

(y − c + κ)(1−α)q

�1/q

,

[e]

�� c

a

�� +∞

b

(y − b)βqw2(y) dy

(y − x )(1−α)q

�r/q

·

·

�� c

a

w1(z)
1−p�

dz
�
1 + c−z

c−x

�(1−α)p�

�r/q �

w1(x )
1−p�

dx

�1/r

,

[ f ]

�� b

c

�� +∞

b

w2(y) dy

(y − x )(1−β)q

�r/q
·
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·
�� b

c

(b − z)αp
�

w1(z)
1−p�

dz
�
1 + b−z

b−x

�(1−β)p�

�r/q �

(b − x )αp
�

w1(x )
1−p�

dx

�1/r

.

Remark 2. Here and throughout the paper, when any of p, q , or p� is ∞

integrals such as those [a] � [ f ] have the current interpretations and as usual
w1(x )

−p�/p = (w1(x )
−1)p

�/p . Thus for example

�� c

a

w1(x )
−p�/p dx

(c − x + κ)(1−α)p�

� 1
p�

= esssup
a≤x≤c

w1(x )
−1dx

(c − x + κ)1−α
, (p = 1)

and

w1(x )
−p�/p =

�
1 if 0 < w1(x ) < ∞

∞ if w1(x ) = 0
0 if w1(x ) = ∞

(p = ∞).

Moreover, products of the form 0 · ∞ are taken to be zero.

Theorem 4. Let −∞ < a < c < b < +∞, α, β ∈ R+, w1 , w2 two weights
de�ned on [a, b] and [b, +∞] respectively and 1 ≤ p, q ≤ +∞. Let:

(i) 0 < α, β ≤ 1, 1 ≤ p ≤ q ≤ +∞;
(ii) 0 < α ≤ 1 < β , 1 ≤ p ≤ q ≤ +∞, 1 < q;
(iii) 0 < β ≤ 1 < α, 1 ≤ p ≤ q ≤ +∞, 1 < q;
(iv) 1 < α, 1 < β , 1 ≤ p ≤ +∞, 1 < q;
(v) 0 < α, β < 1, 1 < q < p < +∞;
(vi) 0 < β < 1 ≤ α, 1 < q < p < +∞;
(vii) 0 < α < 1 ≤ β , 1 < q < p < +∞;

the general linear deviation operator a,bD
α,β
c+ will be bounded among the

weighted Lebesgue spaces L
p
w1 (x)dx

[a, b] and L
q
w2(y)dy

[b, +∞] (2) if and only
if, with the notation of the above remark, the following respective conditions
hold:

In (i), the expressions [a] and [b] are �nite.
In (ii), the expressions [a] and [c] are �nite.
In (iii), the expressions [b] and [d] are �nite.
In (iv), the expressions [c] and [d] are �nite.
In (v), with r = 1/q − 1/p, [e] and [ f ] are �nite.
In (vi), with r = 1/q − 1/p, [d] and [ f ] are �nite.
In (vii), with r = 1/q − 1/p, [c] and [e] are �nite.

(2) As usual, in this case we write a,bD
α,β
c+ ∈

�
L
p
w1(x)dx

[a, b], L
q
w2(y)dy

[b,+∞]
�
.
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Proof. Given f ∈ L1
loc [a, +∞], from (2) and (6) we have

a,bD
α,β
c+ f (y) =

1

�(α)�(β)

� � c

a

(y − x )α+β−1Bα,β

�
b − x

y − b

�

f (x ) dx −

−

� b

c

(y − x )α+β−1Bβ,α

�
y − b

b − x

�

f (x ) dx

�

and hence we write

(30) a,bD
α,β
c+ f =a,b D

α,β

1;c+ f +a,b D
α,β

2;c+ f,

with

a,bD
α,β

1;c+ f (y) =
1

�(α)�(β)

� c

a

(y − x )α+β−1Bα,β

�
b − x

y − b

�

f (x ) dx

and

a,bD
α,β

2;c+ f (y) = −
1

�(α)�(β)

� b

c

(y − x )α+β−1Bβ,α

�
y − b

b − x

�

f (x ) dx .

Since

(31) a,bD
α,β

1;c+ =a,b D
α,β
c+ χa,c] and a,bD

α,β

2;c+ = −a,bD
α,β
c+ χ[c,b]

it is immediate that a,bD
α,β
c+ ∈

�
L
p
w1 (x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�

iff

(32)
a,bD

α,β

1;c+ ∈

�
L
p
w1(x)dx

[a, c], L
q
w2(y)dy

[b, +∞]
�

and

a,bD
α,β

2;c+ ∈
�
L
p
w1(x)dx

[c, b], L
q
w2(y)dy

[b, +∞]
�
.

But by Prop. 1 we deduce that (32) will hold iff

(33)
a,c I

α
+ ∈

�
L
p
w1 (x)dx

[a, c], L
q
(y−b)βqw2(y)dy

[b, +∞]
�

and

c,b I
β
+ ∈

�
L
p
(b−x)−αpw1(x)dx

[c, b], L
q
w2(y)dy

[b, +∞]
�
.
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Moreover the following inequalities hold

(34) c1
(y − b)β

�(β) a,c

Iα+ f (y) ≤a,b D
α,β

1;c+ f (y) ≤ c2
(y − b)β

�(β) a,c

Iα+ f (y),

(35)
�
�
�a,bD

α,β

2;c+ f (y)
�
�
� ≤ c2 c,b I

β
+

�
(b − y)α

�(α)
| f (y)|

�

and

(36)

�
�
�
�c,b I

β
+

� (b − y)α

�(α)
f (y)

���
�
� ≤c,b I

β
+

� (b− y)α

�(α)
| f (y)|

�
≤

1

c1

�
�
�a,bD

α,β

2;c+ f (y)
�
�
�

where by c1 and c2 we denote the constants determined in Prop. 2.
In particular we may write

(37) a,c I
α
+ =

1

�(α)
τ−c S1−α(τc)

∼,

where S1−α denote the usual Stieltjes transform. From the corresponding
representations of a,c I

α
+ and c,b I

β
+ as composition of maps

(38)

L
p
w1(x)dx

[a, c]

↓ (τc)
∼

L
p
w1(c−x)dx

[0, c − a]

↓ S1−α

L
q
(y−b+c)βqw2(y+c)dy

[b − c, +∞]

↓ τ−c

L
q
(y−b)βqw2(y)dy

[b, +∞]

and

L
p
(b−x)−αpw1(x)dx

[c, b]

↓ (τb)
∼

L
p
x−αpw1(b−x)dx

[0, b − c]

↓ S1−β

L
q
w2(y+b)dy

[0, +∞]

↓ τ−b

L
q
w2 (y)dy

[b, +∞]

it is clear that (33) will hold iff

(39) S1−α ∈

�
L
p
w1(c−x)dx

[0, c − a], L
q
(y−b+c)βqw2(y+c)dy

[b − c, +∞]
�

and

(40) S1−β ∈
�
L
p
x−αpw1(b−x)dx

[0, b− c], L
q
w2 (y+b)dy

[0, +∞]
�
.

We�ve therefore reduced our matter to the study of boundedness conditions
of the general Stieltjes transform. Therefore known results of K. Andersen [1]
and G. Sinnamon [8] in this direction go on.
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Remark 3. V. D. Stepanov [9] obtained necessary and suf�cient conditions for
the boundedness from weighted Lebesgue real spaces of Volterra convolution
operators of the form

K f (x ) =

� x

0

k(x − y) f (y) dy,

where k(x ) is a non negative non decreasing kernel satisfying the inequality
k(x + y) ≤ D (k(x ) + k(y)) for all x , y ∈ R+ . In particular, Stepanov research
will allow us to relate a,bD

α,β
c+ with I

γ
c+ when γ ≥ 1, γ = α + β , i.e. precisely

when the corresponding Riemann - Liouville kernel kγ (x ) = x γ−1/�(γ )
satis�es Stepanov conditions. With our notation we have

a,b I
γ
c+ = τ−a o I

γ

0+ o τa o χ[a,b]

and it is of interest for us to consider

L
p
w1 (x)dx

[a, b]

↓ τa

L
p
τaw1(x)dx

[0, b − a]

a ,bI
γ

c+
→

I
γ

0+
→

L
q
w2 (y)dy

[b, +∞].

↑ τ−a

L
q
τaw2(y)dy

[b − a, +∞].

Following Stepanov research, for t > 0, we must consider the numbers

A0(t) =

� � min{t+a,b}

a

w1(x )
−p�/pdx

�1/p�

·(41)

·

�� ∞

max{t+a,b}

(y − a − t)q(γ−1) w2(y) dy

�1/q

,

A1(t) =

� � min{t+a,b}

a

(t + a − x )p
�(γ−1) w1(x )

−p�/pdx

�1/p�

·(42)

·

�� ∞

max{t+a,b}

w2(y) dy

�1/q

,

and

(43) A0 = sup
t>0

A0(t), A1 = sup
t>0

A1(t), A = max{A0, A1}.

Now, for the boundedness of the operator

L
p
w1(x)dx

[a, b]
a,b I

γ

c+
−→ L

q
w2 (y)dy

[b, +∞]

it is necessary and suf�cient that the number A be �nite (see [9],Th. 1).



ON FRACTIONAL DEVIATION OPERATORS 37

Remark 4. Following Remark 3, we may prove that, in general, our deviation
operators are small compared to the operators whose deviation they measure.
For instance, let us consider the case 0 ≤ α, β ≤ 1, 1 ≤ γ , 1 < p ≤ q < ∞.

We assume that a,b I
α,β
+ ∈

�
L
p
w1 (x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�
, and for a �xed

κ > 0 we write

A ≥ A0

≥ A0(b− a)

=

�� b

a

w1(x )
−p�/p dx

�1/p� �� ∞

b

(y − b)q(γ−1)w2(y)dy

�1/q

≥ κ1−α

�� c

a

w1(x )
−p�/p dx

(c − x + κ)(1−α)p�

�1/p� �� +∞

b

(y − b)βqw2(y) dy

(y − c + κ)(1−α)q

�1/q

and we deduce that

sup
κ>0

κ1−α

�� c

a

w1(x )
−p�/p dx

(c − x + κ)(1−α)p�

� 1
p� �� +∞

b

(y − b)βqw2(y) dy

(y − c + κ)(1−α)q

� 1
q

< ∞.

Analogously

A ≥ A1

≥ A1(b− a)

=

�� b

a

(b − x )p
�(γ−1)w1(x )

−p�/p dx

�1/p� �� ∞

b

w2(y) dy

�1/q

≥ κ1−β

�� +∞

b

w2(y) dy

(y − b + κ)(1−β)q

�1/q

·

·

�� b

c

(b − x )αp
�

(b − x + κ)
(1−β) p�

w1(x )
−p�/p dx

�1/p�

and now

sup
κ>0

κ1−β

�� b

c

(b− x )αp
�

w1(x )
−p�/p dx

(b − x + κ)(1−β)p�

� 1
p�

·

·

�� +∞

b

w2(y) dy

(y − b + κ)(1−β)q

� 1
q

< ∞.



38 CARLOS C. PE �NA

From Theorem 4 we deduce that a,bD
α,β
c+ ∈

�
L
p
w1(x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�

if

a,b I
α,β
+ ∈

�
L
p
w1(x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�
.

Nevertheless we may �nd weighted functions w1, w2 for which a,bD
α,β
c+ ∈�

L
p
w1(x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�

but a,b I
α,β
+ /∈

�
L
p
w1 (x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�
.

For instance, for a ≤ x ≤ b ≤ y we�ll write

w1(x ) = (b − x )σ , p/p� ≤ σ < (α + 1/p�)p,

w2(y) = (y − b)λe−y, λ > −1 + (1 − β)q.

We observe that the number A0(b− a) = +∞ in (41), because 1− σp�/p ≤ 0.
Hence A = +∞ in (43) and by the Stepanov condition a,b I

α,β
+ is not bounded.

On the other hand,

sup
κ>0

κ1−α

�� c

a

w1(x )
−p�/p dx

(c − x + κ)(1−α)p�

� 1
p� �� +∞

b

(y − b)βqw2(y) dy

(y − c + κ)(1−α)q

� 1
q

≤

≤ (b− c)α−1

�� c

a

(b − x )−σ p�/p dx

� 1
p�

�� +∞

b

(y − b)βq+λe−y dy

� 1
q

and

sup
κ>0

κ1−β

�� b

c

(b − x )αp
�

w1(x )
−p�/p dx

(b − x + κ)(1−β)p�

� 1
p� �� +∞

b

w2(y) dy

(y − b + κ)(1−β)q

� 1
q

≤

≤

�� b

c

(b− x )(α−σ/p)p�

dx

� 1
p�

�� +∞

b

(y − b)λ+(β−1)qe−y dy

� 1
q

.

On using Theorem 4 (i) we obtain a,bD
α,β
c+ ∈

�
L
p
w1 (x)dx

[a, b], L
q
w2(y)dy

[b, +∞]
�
.
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