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ON THE LIFTING PROBLEM IN CODIMENSION TWO
ALFONSO TORTORA

In this note we prove a special case of the following conjecture of
Mezzetti’s [5]:

Let X C P"2 be an integral, nondegenerate variety of dimension n.
Suppose that its general hyperplane section lies on a hypersurface of degree
s, while the variety itself does not. Then the degree of X is bounded by:

dengsz—(n—l)s—l—(Z)—l—l.

Introduction.

Let X C P"*2 be a reduced irreducible projective variety of codimension
2,and let Y = X N H be its general hyperplane section.
A nonliftable section of Iy in degree s is a nonzero element

a € coker(H(Ix(s)) = (H'(Iy(s))) = ker(H ' (Ix(s — 1)) = H'(Ix(5)));

following [2], we call « a sporadic zero of X of degree s.

The order of an element 8 € H'(Ix(s)) is the maximum integer p such that 8
isofform 8 = H” -y, y € H'(Ix(s — p)). B is primitive if its order is zero.
Let C and I" be the general P3- and P2-sections of X; it will be proved that, if
X has a sporadic zero of degree s, then C has one of degree < s.

We can now state the main result of this paper:
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Theorem 0.1. Let r = dim Ix ; and suppose that the following hold:

(i) X has a sporadic zero in degree s,

(ii) Irs—1 =0;
(iii) a sporadic zero of C in degree s is primitive.
Then
) n+r
(D) degX <s“—(n+r—1s+ 5 + 1.

In this paper we freely use results and terminology of initial ideal theory,
as exposed in [2].
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1. Sporadic zeroes and differentiation.

Notation 1.1. X C P"*? is a reduced irreducible nondegenerate subvariety of
codimension 2;

"H is a general linear subspace of codimensionm,m = 1,2, ..., n;

the "H’s form general flag, i.e.

"HC"'HcC...CH.
As special notations, we use the following:
H='H, Y=HNnX, W=?HnNX, C=""HnX, T'="HNX.

We also use C and I" to denote a reduced irreducible nondegenerate curve
in P3 and its general plane section, and similarly we use I'" to denote a set of
points of P? in general position.

Definition 1.2. A sporadic zero of degree s of X is an element of Iy s that is not
restriction of any element of Ix s, i.e. a nonzero element of the cokernel of the
restriction map Ix ; — Iy.

Equivalently, it is a nonzero element of ker(H'(Ix(s — 1)) — H'(I1.(s))).
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Fix coordinates xi, ..., X,43 in P"2 and let #,..., .3 be the dual
coordinates in P"*2*, then H has equation > tixi (We sometimes write H (1)
when we want to emphasize its depending on ¢ € P"+2*) It induces a map

H-: H'(Ix(s — 1)) ® Op-(—1) — H'(Ix(s)) ® Op-.

Let X be the kernel of H-, then the existence of a sporadic zero in degree s
means that J has positive rank. So, for some m > 0, J(m) has sections. An
element o € H(K(m)) is a (varying) sporadic zero of X (in degree s). Since
K(m) is a subsheaf of H'(Ix(s —1))®Op-(—1), o can be viewed as an element
of

H(H'(Ix(s = 1) ® Op:(m — 1) = H'(Ix(s = 1) ® Clt]-

ie. o = «(t) is a homogeneous polynomial of degree m — 1 in the dual
coordinates ¢, with coefficients in H'(Iy(s — 1)). By definition, a sporadic
zero « has the property that, for any H € P*,

) H-a@t) =0.

Note that «(¢) is defined only up to a constant factor, i.e. a(t) € P(H'(Ix(s —
1)), but (2) holds for any choice of a(t), because H- : H'(Ix(s — 1)) —
H'(Ix(s)) is a linear map.

The set of (varying) elements H'(Ix (s — 1)) ® C[¢] can be extended to consider
the (homogeneous) elements of H'(Ix(s — 1)) ® C(¢). Then a(t) € H'(Ix(s —
1)) ® C(¢) is a rational function on P* with values in P(H'(Ix(s — 1))); itis a
sporadic zero if satisfies (2). Two elements o, B € H'(Ix(s—1))®C(¢) represent
the same sporadic zero iff @ = p(¢)8, where p(t) € C(¢) is a homogeneous
rational function.

C(?) is a field with derivations: the operators FYREE are derivations,i.e.

R T
ad
linear maps of degree —1 satisfying Leibnitz rule. The differential operators TS
extend to H'(Ix(s — 1)) ® C(¢) by acting on the second factor.
The definitions above can be extended verbatim to the case of H'(Op(s))®
C(t) and H(Ox(s)) ® C(t) — indeed to any U ® C(t), where U is a C-
space — so we can define differential operators on all these cohomology spaces.
ad
The operators 3 satisfy the expected computation rules. In particular, most
important for our purpose will be the following rule: let & € H*(Ox(s)) ® C(t)
be homogeneous and let @ € H'(Ix(s)) ® C(¢) be its image under the natural
ad o
cohomology map 8 : H(Ox(s)) — H'(Ix(s)), then % is the image of %,

1 1
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a d
ie. Sa—t = 8—t<3; furthermore, if H = ), t;x; denotes the general hyperplane,
i i

ad oa
—(H?-@&)=gH? 'x, ¢+ H?. —
8t,~( a)=gq X o+ or

(H and x; are viewed as linear maps between the appropriate C(¢)-vector
spaces).

Definition 1.3. The order of a (fixed) element o € H'(Ix(s))-with respect to a
hyperplane H -is the maximum integer p such that

weim(H' (Iy(s — p) 5 H'(Iy(s)).

« is primitive if its order is zero.

Remark. (i) Note that « is primitive iff «|y € H'(Iy(s)) is not zero
(i) For a varying element a € H'(1x(s))®C(t), its order is the order of the
generic a(r) with respect to the hyperplane H = ). 1;x;, or, equivalently, the

maximum p such that « € im (H'(Ix(s — p)) ® C(¢) H—P> H'(Ix(s)) ® C(1)).

Lemma 1.4. If X has a sporadic zero of degree s, then Y has a sporadic zero
in degree < s.
Proof. As noted earlier, the general hyperplane H has equation ) _ #;x;; fur-
thermore, x1, ..., X,y are, in a natural way, coordinates on H. We denote by [
a general hyperplane in H —i.e. [ is a linear variety of dimension #.
Assume that X has a sporadic zero of degree s and order p — 1, i.e. there exists
B = B(t) e H'(Ix(s — p)) such that HP~!. B £ 0, H? - B =0 anc[l) B is not
of form 8 = H - y. Differentiating H? - § = 0 with respect to ﬁ we
i e 0
getplx; ...x;, - B+ H-3=0,whered € H'(Ix(s — 1)). Restricting to H,, it
becomes x;, ...x; - B(H)|y =0in H'(Iy(s)) —now x;,i = 1,...,n +2 are
coordinates in H.
Now, ,3 := B(H)|g # 0 because B is not of form § = H - y, and, for
any monomial x’ of degree p,x! - B = 0, s0[” - B = 0. Thus there exists
0<r < p—1suchthat!/ B #0and ["*! B = 0, for general /-note that B is
constant, i.e. does not depend on /. In other terms, I - B is a nonzero element
ofker(l- : H'(Iy(s — p+7r)) = H'(Iy(s — p +r + 1)), i.e. it is a sporadic
zero for ¥ of degree s — p +r + 1 <ss. U

Lemma 1.5. Suppose that X has a sporadic zero in degree s;

(i) if Iws—1 = 0 then Y has a sporadic zero in degree s;
(ii) if Ixs—1 =0, then h®(Iy(s)) > h°(Ix(s)).
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Proof. (i) By Lemma 1.4, Y has a sporadic zero o of degree < s. If dega < s,
then Iy ;_; # 0, contradiction. Hence Y has a sporadic zero of degree s.

(i1) Since a sporadic zero B of X gives rise to an element of Iy, that
is not restriction of an element of Ix ;, it is enough to prove that no nonzero
element of Iy ; maps to O € Iy under the restriction map. But, for a general
hyperplane H C P"*2, the exact sequence 0 — Ix(—1) — Ix — Iy — 0
gives in cohomology 0 — H%(Ix(s — 1)) = H(Ix(s)) — H°(Iy(s)). Since
Ix s—1 =0, then Ix ; — Iy is injective. O

Proposition 1.6. If X has a sporadic zero in degree s and Ingnx s—1 = 0, then
RO (L () = m + BO(Ix (5)).

Proof. By induction, h®(Tn-1yrx(s)) = m — 1 + h°(Ix(s)); by Lemma 1.5 (i)
— with "~2H N X playing the role of X — we have that "~'H N X has a sporadic
zero in degree s, so we can apply Lemma 1.5 (ii) to " ~'H N X and get

W0 (L () > B (Tt (),
ie. hO(Zp () > m+ hO(Ix(s). O

Corollary 1.7. If X C P""2 has a sporadic zero of degree s and Ir;_; = 0,
then dim It > n 4+ dim Iy ;.

The ideas underlying the results in the remaining of this section are due to
Strano ([7]); the methods of proof, using differentiation of sporadic zeroes, are
due to Green ([2]).

Proposition 1.8 ([2]). Leta € H'(Ix(s — p)) ® C(t) be an element of ker H?,
then ay(= a(H)|y) belongsto (0 : |1LZ), i.e. ay € H'(Iy(s — p)) is annihilated
by all polynomials of degree p in H .

Proof. Since o € ker HP-,then H”-a = 0 in H'(Ix(s))®C(¢). Differentiating
this relation with respect to % we get plx;, ... x;, -+ H - B =0, with

ip---Olip

B € H'(Ix(s — 1)) ® C(t). Restricting to H, we have x; ...x; -ay = 0 in
H'(Iy(s)). But Xiy oo Xi, restricted to H, for all iy, ..., i,, generate the set of
all polynomials of degree p, so the proposition is proved. U

Proposition 1.9 ([2]). Let

0= ®:S(=ni) > BiS(—ap_1.:) = - — B S(—do;) = Iy = 0

be a minimal free resolution of Iy. Then there exists a nonzero element of
H'(Iy(s — p)) N (0 : m%)) — i.e. annihilated by all polynomials of degree p—iff
there is a nonzero element of @, , <s+n+1 H " (Opuii (s — p — an.i)) mapping to
zero under the natural map induced by the resolution.
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Proof. The sheafification of the resolution of Iy is

00— @i(g[pmﬂ (—an,i)—¢> @i(g[pwrl (—a,,_l,i) —> e
e —> @i(gpnﬂ (—ao’l’) —> Iy — 0.

Twisting by s — p and taking hypercohomology, we see that

H'(Iy(s — p)) = ker(@; H™  (Opi (s — p — ani)) >
O H" ™ (Opi (s — p — an_1,))).

Now, by Serre duality, an element of H"t!(Opw1(g)) is annihilated by all
polynomials of degree p iff ¢ > —p —n — 1. Hence an element o € H'(Iy(s —
p)NQO: rnZ) corresponds to an element & € @y, , <s+nt+1 H " (Opri (s — p —
an.;)) Nker¢. O

Theorem 1.10 (Re [6]). If X has a sporadic zero of degree s, then Y has a
syzygy of order n and degree < s +n + 1.

Proof. A sporadic zero of X in degree s in a nonzero homogeneous element o
of ker(H- : H'(Ix(s—1)®C(t) — H'(Ix(s))®C(t)). Arguing inductively on
whether o e im(H- : H'(Ix(s —2)) ® C(t) - H'(Ix(s — 1)) ® C(¢)), we can
assume that, for some p > 1, there exists a primitive 8 € H'(Ix(s — p)) ® C(¢)
such that H? - § = 0. By Proposition 1.8, By is annihilated by all polynomials
of degree p and furthermore By # 0, because § is primitive. So, by Proposition
1.9, there exists a nonzero element in

3) @, <snt1 H' T (Opiii (s — p — a,)) Nker .

In particular, a, ; < s +n + 1 for some j, i.e. there exists a n-th syzygy of
degree a, j < s+n+1. O

An immediate consequence of Theorem 1.10 is the following proposition.

Proposition 1.11. If X has a primitive sporadic zero of degree s, then Y has a
n-th syzygy of degree (exactly) s +n + 1.

Proof. The hypothesis of primitivity implies that p = 1 in (3). So, for some
an; < s+n+1, wehave H™'(Opii(s — 1 — a, ;) # 0, hence, by Serre
duality,s — 1 —a, ; < —n—2,thena,; >s+n+1.

It follows that a,, ; = s +n + 1, for some j, i.e. Y has a n-th syzygy of degree
s+n+1. U

Corollary 1.12. If C has a primitive sporadic zero of degree s, then I" has a
syzygy of degree (exactly) s + 2.
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Remark. (i) Both Theorem 1.10 and Proposition 1.11 hold for any (integral,
nondegenerate, projective) X C P"2, regardless of its codimension, as a
straightforward check of their proofs shows.

(i1) Corollary 1.12 is a particular case, of a more general Theorem of Strano
(see [7], Theorem 2).

2. A bound on the degree.

Let f(x) € C[x] be a homogeneous polynomial, in multiindex notation
fx) =Yg agx®, xX = x' .. xk Define the initial monomial of f(x) as

in(f(x)) := max{x* | ax # 0},

where max is with respect to the reverse lexicographic order on the monomials
of C[x].

Let I € C[x] be a homogeneous ideal, define in(/) to be the ideal generated by
the monomials in( f(x)), for all f(x)e I, f(x) homogeneous.

Let Z C P be a (nondegenerate, integral projective) variety; it is a fact that, for
general coordinates in P, in(Iz) stays constant, i.e. it does not depend on the
(general) coordinates chosen. This is the generic initial ideal of Z, denoted by
gin(/z); it is of course a monomial ideal.

The relationship between the generators of / and the generators of in(/) is
essentially the same as between a basis (i.e. a minimal system of generators)
and a Grobner basis of 7. It is well known that any Grobner basis contains a
basis of the ideal, so we can assume that the generators of gin(/z) be the initial
monomials of such a Grobner basis, containing a basis of Iz; some (but not
necessarily all) generators of gin(/z) are initial monomials of generators of /7.
Especially, for a system of points I" in P2, gin(/) is generated by monomials
not involving x3, where x1, x,, x3 are the variables in P?.

For more details, see [2].

Definition 2.1. Let gin(Ir) be minimally generated by

k k=1 Ak—1 Ao
X5 X)X,
then A, ..., A—1 are called the invariants of I".

The difference sequence of ', (dy, di+1, . . .), is defined by
dy ;= h(m) —h(m — 1),

where h is the Hilbert function of I".
We denote by g, and o,, the number of generators and syzygies in degree
m for a minimal free resolution of I .
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Theorem 2.2 (Gruson-Peskine [3]). If every generator of gin (Iy) in degree d
is the initial monomial of a generator of I, for some d > k + Ay_1, then the
points of " are not in uniform position.

Proof. [2], Theorem 4.4 and Remark afterward, Corollary 4.8. O
We need the following relations among the invariants of I" defined above.

Proposition 2.3. If I" are d points in uniform position, then:
(i) dpys1=>dyp+2forall i1 +k—1<m< Xy,
(ii) if dys1 = dy + 2 for some A1 +k —1 < m < Ay, then Ir has no
generators in degree m + 1;
(iii) d = 32 o(m + 1 —d,);
(W) _dm—l + 2dm —Am+1 = Om+1 — Em+1-
Proof. [2], Propositions 4.12 and 4.14. U

Proof of Theorem 0.1. Since X has a sporadic zero in degree s and Ir;_; =0,
by Corollary 1.7, Ir s has dimension > n+r, so the element d; in the difference
sequence of I' is at least n + r, say d; = 8.

By Lemma 1.5 (i), C has a sporadic zero in degree s; if it is primitive — as stated
in (iii) — then I' has a syzygy in degree s + 2, by Corollary 1.12. Now, by
Proposition 2.3, the ideal I satisfies the relation

“4) —d + 2ds+1 - ds+2 = —g&s+2 + 0512,

where g and o are respectively the number of generators and syzygies in a given
degree.

By uniform position, dy+1 > 6 + 2, ds1o > & + 4; furthermore, as noted earlier,
o542 > 1.

If dgy1 = 6 + 2, then, from (4), we get

8s+2 = ds+2 - ds+l + 0540 — 2> ds+2 - ds+l — 1.

It follows that every generator of gin(/r) in degree s + 2 is the initial monomial
of a generator of I in the same degree. Indeed, d;1» — d;+1 — 1 is the number
of generators of gin(/r) in degree s + 2; on the other hand, it is a general fact
that, for any given degree, the number of generators of / is less or equal to the
number of generators of in(/). (The last statement expresses the fact that any
Grobner basis contains a basis of 7).

By Theorem 2.2, this is a contradiction to the uniform position of I', as soon as
n+r > 1. Thus dyy; > § + 2, and the difference sequence of I" has form

dy>n+r,doyy >n+r+2m+1, forO<m<s—n-—r.
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It follows:
deg X = deg T * 1 —d
egX=degl'= Y~ (m+1—dy)
< 1+2+---+s+

(s—n—r+ 1+
(s—n—r—-DH4+GE—n—-r—-2)+---+1

= <s—;1)+(s—n—r+1)+<s_;_r>

= sz—(n—i—r—l)s—i—(n—zi_r)—i—l. ([l

Remark. (i) Thecasen +r = 1,i.e. n = 1,r = 0, is Laudal’s Lemma [4]:
deg C < s>+ 1.

(ii) Mezzetti’s bound is, of course, the case r = 0, so theorem 0.1 proves
her conjecture under the additional hypotheses that /1 ;_; = 0 and (one of) the
sporadic zero(es) of C be primitive.

As in the case of the original Mezzetti’s conjecture, the bound (1) is sharp.
To see this, we need the following construction of Chang [1].
Chang proves that all varieties X € P"*2 having a (special type of) Q-resolution
are arithmetically Buchsbaum of codimension two.
In particular, we are interested in the varieties having an Q-resolution of form

(n + r)Op+(=1) Qpa (D)
©) 0 — o) — o) — Ix(s) = 0.
(9[@n+2(l’l +r—-s5— 1) I”(9[p>n+2

The following argument shows that these varieties satisfy the bound (1) as an
equality if s > n +4r.
Since H(Opr2(n +r —s — 1)) =0 for s > n + r, taking H? in (5), we have

0 — rH(Opw) - H(Ix(s)) — 0,

sodim/x =r.
Restricting (5) to H = P"!, we obtain (recall that Q[lp>n+2 (Dlg = Q}q(l) ®0Op)

(n + r)Opri(—1) Qi (1)
0 — ) — ) — Iy(s) — O.
(9[p>n+1(l’l +r—s5— 1) (I" + 1)(9[p>n+1
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so, taking H°, we similarly have that h°(Zy(s)) = r +1, hence X has a sporadic
zero of degree s.
Restricting (5) to the general P? and twisting by —1, it becomes

(n + rOp(-2) L,
0 — ® — &) — Irs—1) — 0.
Op(n+r—s—2) (n+r)Op(—1)

which shows that I ;_; = 0.

Finally, the unique sporadic zero of C is primitive, because, twisting (5) by
—2 and restricting to the general P, we see that H'(Ic(s — 2)) = 0, so the
sporadic zero o € H'(Z¢(s — 1)) cannot be in the image of H'(I¢c(s — 2)), i.e.
« is primitive.

Now, (5) also yields the exact sequence

(n + rOp(=1) Q. (1)
0 — @ — @ — Op(s) — Or(s) — 0.
Op(n+r—s—1) (n+r)Opm

and a computation of Chern classes shows that

deg X = degl' = —c(Or(s)) = 52— (n+r—1Ds+ <n —2|—r) + 1.
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