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ON THE LIFTING PROBLEM IN CODIMENSION TWO

ALFONSO TORTORA

In this note we prove a special case of the following conjecture of
Mezzetti�s [5]:

Let X ⊆ P
n+2 be an integral, nondegenerate variety of dimension n.

Suppose that its general hyperplane section lies on a hypersurface of degree
s, while the variety itself does not. Then the degree of X is bounded by:

deg X ≤ s2 − (n − 1)s +

�
n

2

�

+ 1.

Introduction.

Let X ⊆ P
n+2 be a reduced irreducible projective variety of codimension

2, and let Y = X ∩ H be its general hyperplane section.
A nonliftable section of IY in degree s is a nonzero element

α ∈ coker(H 0(IX (s)) → (H 0(IY (s))) = ker(H 1(IX (s − 1)) → H 1(IX (s)));

following [2], we call α a sporadic zero of X of degree s .
The order of an element β ∈ H 1(IX (s)) is the maximum integer p such that β

is of form β = H p · γ, γ ∈ H 1(IX (s − p)). β is primitive if its order is zero.
Let C and � be the general P3- and P2-sections of X ; it will be proved that, if
X has a sporadic zero of degree s , then C has one of degree ≤ s .
We can now state the main result of this paper:
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Theorem 0.1. Let r = dim IX,s and suppose that the following hold:

(i) X has a sporadic zero in degree s;
(ii) I�,s−1 = 0;
(iii) a sporadic zero of C in degree s is primitive.

Then

(1) deg X ≤ s2 − (n + r − 1)s +

�
n + r

2

�

+ 1.

In this paper we freely use results and terminology of initial ideal theory,
as exposed in [2].
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1. Sporadic zeroes and differentiation.

Notation 1.1. X ⊆ P
n+2 is a reduced irreducible nondegenerate subvariety of

codimension 2;
mH is a general linear subspace of codimension m,m = 1, 2, . . . , n;
the mH �s form general �ag, i.e.

nH ⊆ n−1H ⊆ · · · ⊆ 1H.

As special notations, we use the following:

H = 1H, Y = H ∩ X, W = 2H ∩ X, C = n−1H ∩ X, � = nH ∩ X .

We also use C and � to denote a reduced irreducible nondegenerate curve
in P3 and its general plane section, and similarly we use � to denote a set of
points of P

2 in general position.

De�nition 1.2. A sporadic zero of degree s of X is an element of IY,s that is not
restriction of any element of IX,s , i.e. a nonzero element of the cokernel of the
restriction map IX,s → IY,s .
Equivalently, it is a nonzero element of ker(H 1(IX (s − 1)) → H 1(Ix (s))).
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Fix coordinates x1, . . . , xn+3 in Pn+2 and let t1, . . . , tn+3 be the dual
coordinates in Pn+2∗ , then H has equation

�
i ti xi (We sometimes write H (t)

when we want to emphasize its depending on t ∈ P
n+2∗ .) It induces a map

H · : H 1(IX (s − 1)) ⊗ OP∗(−1) → H 1(IX (s)) ⊗ OP∗ .

Let K be the kernel of H ·, then the existence of a sporadic zero in degree s
means that K has positive rank. So, for some m ≥ 0, K(m) has sections. An
element α ∈ H 0(K(m)) is a (varying) sporadic zero of X (in degree s). Since
K(m) is a subsheaf of H 1(IX (s−1))⊗OP∗ (−1), α can be viewed as an element
of

H 0(H 1(IX (s − 1)) ⊗ OP∗ (m − 1)) = H 1(IX (s − 1)) ⊗ C[t]m−1

i.e. α = α(t) is a homogeneous polynomial of degree m − 1 in the dual
coordinates t , with coef�cients in H 1(IX (s − 1)). By de�nition, a sporadic
zero α has the property that, for any H ∈ P∗ ,

(2) H · α(t) = 0.

Note that α(t) is de�ned only up to a constant factor, i.e. α(t) ∈ P(H 1(IX (s −

1))), but (2) holds for any choice of α(t), because H · : H 1(IX (s − 1)) →

H 1(IX (s)) is a linear map.
The set of (varying) elements H 1(IX (s−1))⊗C[t] can be extended to consider
the (homogeneous) elements of H 1(IX (s − 1)) ⊗ C(t). Then α(t) ∈ H 1(IX (s −

1)) ⊗ C(t) is a rational function on P∗ with values in P(H 1(IX (s − 1))); it is a
sporadic zero if satis�es (2). Two elements α, β ∈ H 1(IX (s−1))⊗C(t) represent
the same sporadic zero iff α = ρ(t)β , where ρ(t) ∈ C(t) is a homogeneous
rational function.

C(t) is a �eld with derivations: the operators
∂

∂ t1
, . . . ,

∂

∂ tn+3

are derivations, i.e.

linear maps of degree −1 satisfying Leibnitz rule. The differential operators
∂

∂ ti
extend to H 1(IX (s − 1)) ⊗ C(t) by acting on the second factor.

The de�nitions above can be extended verbatim to the case of Hi (OP(s))⊗
C(t) and Hi(OX (s)) ⊗ C(t) � indeed to any U ⊗ C(t), where U is a C-
space � so we can de�ne differential operators on all these cohomology spaces.

The operators
∂

∂ ti
satisfy the expected computation rules. In particular, most

important for our purpose will be the following rule: let α̃ ∈ H 0(OX (s)) ⊗ C(t)
be homogeneous and let α ∈ H 1(IX (s)) ⊗ C(t) be its image under the natural

cohomology map δ : H 0(OX (s)) → H 1(IX (s)), then
∂α

∂ ti
is the image of

∂α̃

∂ ti
,
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i.e. δ
∂

∂ ti
=

∂

∂ ti
δ; furthermore, if H =

�
i ti xi denotes the general hyperplane,

then
∂

∂ ti
(Hq · α̃) = qHq−1xi · α̃ + Hq ·

∂α̃

∂ ti
(H and xi are viewed as linear maps between the appropriate C(t)-vector
spaces).

De�nition 1.3. The order of a (�xed) element α ∈ H 1(IX (s))-with respect to a
hyperplane H -is the maximum integer p such that

α ∈ im(H 1(IX (s − p))
H P ·
−→ H 1(IX (s))).

α is primitive if its order is zero.

Remark. (i) Note that α is primitive iff α|H ∈ H 1(IY (s)) is not zero
(ii) For a varying element α ∈ H 1(IX (s))⊗C(t), its order is the order of the

generic α(t) with respect to the hyperplane H =
�

i ti xi , or, equivalently, the

maximum p such that α ∈ im (H 1(IX (s − p)) ⊗ C(t)
H P ·
−→ H 1(IX (s)) ⊗ C(t)).

Lemma 1.4. If X has a sporadic zero of degree s, then Y has a sporadic zero
in degree ≤ s.

Proof. As noted earlier, the general hyperplane H has equation
�

ti xi ; fur-
thermore, x1, . . . , xn+2 are, in a natural way, coordinates on H . We denote by l
a general hyperplane in H � i.e. l is a linear variety of dimension n.
Assume that X has a sporadic zero of degree s and order p− 1, i.e. there exists
β = β(t) ∈ H 1(IX (s − p)) such that H p−1 · β �= 0, H p · β = 0 and β is not

of form β = H · γ . Differentiating H p · β = 0 with respect to
∂ p

∂xi1 . . . ∂xip
we

get p!xi1 . . . xip · β + H · δ = 0, where δ ∈ H 1(IX (s − 1)). Restricting to H , it
becomes xi1 . . . xip · β(H )|H = 0 in H 1(IY (s)) � now xi , i = 1, . . . , n + 2 are
coordinates in H .
Now, β̂ := β(H )|H �= 0 because β is not of form β = H · γ , and, for
any monomial x I of degree p, x I · β̂ = 0, so l p · β̂ = 0. Thus there exists
0 ≤ r ≤ p − 1 such that lr · β̂ �= 0 and lr+1 · β̂ = 0, for general l-note that β̂ is
constant, i.e. does not depend on l . In other terms, lr · β̂ is a nonzero element
of ker (l· : H 1(IY (s − p + r)) → H 1(IY (s − p + r + 1)), i.e. it is a sporadic
zero for Y of degree s − p + r + 1 ≤ s . �

Lemma 1.5. Suppose that X has a sporadic zero in degree s;

(i) if IW,s−1 = 0 then Y has a sporadic zero in degree s;
(ii) if IX,s−1 = 0, then h0(IY (s)) > h0(IX (s)).
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Proof. (i) By Lemma 1.4, Y has a sporadic zero α of degree ≤ s . If deg α < s ,
then IW,s−1 �= 0, contradiction. Hence Y has a sporadic zero of degree s .

(ii) Since a sporadic zero β of X gives rise to an element of IY,s that
is not restriction of an element of IX,s , it is enough to prove that no nonzero
element of IX,s maps to 0 ∈ IY,s under the restriction map. But, for a general
hyperplane H ⊆ Pn+2 , the exact sequence 0 → IX (−1) → IX → IY → 0
gives in cohomology 0 → H 0(IX (s − 1)) → H 0(IX (s)) → H 0(IY (s)). Since
IX,s−1 = 0, then IX,s → IY,s is injective. �

Proposition 1.6. If X has a sporadic zero in degree s and ImH∩X,s−1 = 0, then
h0(ImH∩X

(s)) ≥ m + h0(IX (s)).

Proof. By induction, h0(Im−1H∩X (s)) ≥ m − 1 + h0(IX (s)); by Lemma 1.5 (i)
� with m−2H ∩ X playing the r�ole of X � we have that m−1H ∩ X has a sporadic
zero in degree s , so we can apply Lemma 1.5 (ii) to m−1H ∩ X and get

h0(ImH∩X
(s)) > h0(Im−1H∩X (s)),

i.e. h0(ImH∩X
(s)) ≥ m + h0(IX (s)). �

Corollary 1.7. If X ⊆ P
n+2 has a sporadic zero of degree s and I�,s−1 = 0,

then dim I�,s ≥ n + dim IX,s .

The ideas underlying the results in the remaining of this section are due to
Strano ([7]); the methods of proof, using differentiation of sporadic zeroes, are
due to Green ([2]).

Proposition 1.8 ([2]). Let α ∈ H 1(IX (s − p)) ⊗ C(t) be an element of ker H p,
then αY (= α(H )|H ) belongs to (0 :

p
H ), i.e. αY ∈ H 1(IY (s− p)) is annihilated

by all polynomials of degree p in H .

Proof. Since α ∈ ker H p·, then H p·α = 0 in H 1(IX (s))⊗C(t). Differentiating

this relation with respect to ∂ p

∂ ti1 ...∂ tip
we get p!xi1 . . . xip · α + H · β = 0, with

β ∈ H 1(IX (s − 1)) ⊗ C(t). Restricting to H , we have xi1 . . . xip · αY = 0 in
H 1(IY (s)). But xi1 . . . xip restricted to H , for all i1, . . . , ip , generate the set of
all polynomials of degree p, so the proposition is proved. �

Proposition 1.9 ([2]). Let

0 → ⊕i S(−an,i )
φ
→ ⊕i S(−an−1,i ) → · · · → ⊕i S(−a0,i) → IY → 0

be a minimal free resolution of IY . Then there exists a nonzero element of
H 1(IY (s − p)) ∩ (0 :

p
H ) � i.e. annihilated by all polynomials of degree p�iff

there is a nonzero element of ⊕an,i ≤s+n+1H
n+1(OPn+1 (s − p − an,i )) mapping to

zero under the natural map induced by the resolution.
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Proof. The shea��cation of the resolution of IY is

0 → ⊕iOPn+1 (−an,i )
φ
→ ⊕iOPn+1 (−an−1,i ) → · · ·

· · · → ⊕iOPn+1 (−a0,i) → IY → 0.

Twisting by s − p and taking hypercohomology, we see that

H 1(IY (s − p)) � ker(⊕i H
n+1(OPn+1 (s − p − an,i ))

φ
→

⊕i H
n+1(OPn+1 (s − p − an−1,i ))).

Now, by Serre duality, an element of Hn+1(OPn+1 (q)) is annihilated by all
polynomials of degree p iff q ≥ −p−n−1. Hence an element α ∈ H 1(IY (s−

p)) ∩ (0 :
p
H ) corresponds to an element α̂ ∈ ⊕an,i ≤s+n+1 Hn+1(OPn+1 (s − p −

an,i )) ∩ ker φ . �

Theorem 1.10 (Re [6]). If X has a sporadic zero of degree s, then Y has a
syzygy of order n and degree ≤ s + n + 1.

Proof. A sporadic zero of X in degree s in a nonzero homogeneous element α

of ker(H · : H 1(IX (s−1))⊗C(t) → H 1(IX (s))⊗C(t)). Arguing inductively on
whether α ∈ im (H · : H 1(IX (s − 2)) ⊗ C(t) → H 1(IX (s − 1)) ⊗ C(t)), we can
assume that, for some p ≥ 1, there exists a primitive β ∈ H 1(IX (s − p))⊗C(t)
such that H p · β = 0. By Proposition 1.8, βY is annihilated by all polynomials
of degree p and furthermore βY �= 0, because β is primitive. So, by Proposition
1.9, there exists a nonzero element in

(3) ⊕an,i ≤s+n+1H
n+1(OPn+1 (s − p − an,i )) ∩ kerφ.

In particular, an, j ≤ s + n + 1 for some j , i.e. there exists a n-th syzygy of
degree an, j ≤ s + n + 1. �

An immediate consequence of Theorem 1.10 is the following proposition.

Proposition 1.11. If X has a primitive sporadic zero of degree s, then Y has a
n-th syzygy of degree (exactly) s + n + 1.

Proof. The hypothesis of primitivity implies that p = 1 in (3). So, for some
an, j ≤ s + n + 1, we have Hn+1(OPn+1 (s − 1 − an, j )) �= 0, hence, by Serre
duality, s − 1 − an, j ≤ −n − 2, then an, j ≥ s + n + 1.
It follows that an, j = s + n + 1, for some j , i.e. Y has a n-th syzygy of degree
s + n + 1. �

Corollary 1.12. If C has a primitive sporadic zero of degree s, then � has a
syzygy of degree (exactly) s + 2.
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Remark. (i) Both Theorem 1.10 and Proposition 1.11 hold for any (integral,
nondegenerate, projective) X ⊆ Pn+2 , regardless of its codimension, as a
straightforward check of their proofs shows.

(ii) Corollary 1.12 is a particular case, of a more general Theorem of Strano
(see [7], Theorem 2).

2. A bound on the degree.

Let f (x ) ∈ C[x ] be a homogeneous polynomial, in multiindex notation
f (x ) =

�
K aK x

K , x K = xk1

1 . . . xknn . De�ne the initial monomial of f (x ) as

in( f (x )) := max{x K | aK �= 0},

where max is with respect to the reverse lexicographic order on the monomials
of C[x ].
Let I ⊆ C[x ] be a homogeneous ideal, de�ne in(I ) to be the ideal generated by
the monomials in( f (x )), for all f (x ) ∈ I , f (x ) homogeneous.
Let Z ⊆ P be a (nondegenerate, integral projective) variety; it is a fact that, for
general coordinates in P, in(IZ ) stays constant, i.e. it does not depend on the
(general) coordinates chosen. This is the generic initial ideal of Z , denoted by
gin(IZ ); it is of course a monomial ideal.
The relationship between the generators of I and the generators of in(I ) is
essentially the same as between a basis (i.e. a minimal system of generators)
and a Gröbner basis of I . It is well known that any Gröbner basis contains a
basis of the ideal, so we can assume that the generators of gin(IZ ) be the initial
monomials of such a Gröbner basis, containing a basis of IZ ; some (but not
necessarily all) generators of gin(IZ ) are initial monomials of generators of IZ .
Especially, for a system of points � in P2, gin(I� ) is generated by monomials
not involving x3, where x1, x2, x3 are the variables in P

2.
For more details, see [2].

De�nition 2.1. Let gin(I� ) be minimally generated by

xk1 , x
k−1
1 x

λk−1

2 , . . . , xλ0

2 ,

then λ0, . . . , λk−1 are called the invariants of �.
The difference sequence of �, (dk, dk+1, . . .), is de�ned by

dm := h(m) − h(m − 1),

where h is the Hilbert function of �.
We denote by gm and σm the number of generators and syzygies in degree

m for a minimal free resolution of I� .
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Theorem 2.2 (Gruson-Peskine [3]). If every generator of gin (I� ) in degree d
is the initial monomial of a generator of I� , for some d ≥ k + λk−1 , then the
points of � are not in uniform position.

Proof. [2], Theorem 4.4 and Remark afterward, Corollary 4.8. �

We need the following relations among the invariants of � de�ned above.

Proposition 2.3. If � are d points in uniform position, then:

(i) dm+1 ≥ dm + 2 for all λk−1 + k − 1 ≤ m < λ0;
(ii) if dm+1 = dm + 2 for some λk−1 + k − 1 ≤ m < λ0, then I� has no

generators in degree m + 1;
(iii) d =

�λ0

m=0(m + 1 − dm);
(iv) −dm−1 + 2dm − dm+1 = σm+1 − gm+1.

Proof. [2], Propositions 4.12 and 4.14. �

Proof of Theorem 0.1. Since X has a sporadic zero in degree s and I�,s−1 = 0,
by Corollary 1.7, I�,s has dimension ≥ n+r , so the element ds in the difference
sequence of � is at least n + r , say ds = δ .
By Lemma 1.5 (i), C has a sporadic zero in degree s ; if it is primitive � as stated
in (iii) � then � has a syzygy in degree s + 2, by Corollary 1.12. Now, by
Proposition 2.3, the ideal I� satis�es the relation

(4) −ds + 2ds+1 − ds+2 = −gs+2 + σs+2,

where g and σ are respectively the number of generators and syzygies in a given
degree.
By uniform position, ds+1 ≥ δ + 2, ds+2 ≥ δ + 4; furthermore, as noted earlier,
σs+2 ≥ 1.
If ds+1 = δ + 2, then, from (4), we get

gs+2 = ds+2 − ds+1 + σs+2 − 2 ≥ ds+2 − ds+1 − 1.

It follows that every generator of gin(I� ) in degree s + 2 is the initial monomial
of a generator of I� in the same degree. Indeed, ds+2 − ds+1 − 1 is the number
of generators of gin(I� ) in degree s + 2; on the other hand, it is a general fact
that, for any given degree, the number of generators of I is less or equal to the
number of generators of in(I ). (The last statement expresses the fact that any
Gröbner basis contains a basis of I ).
By Theorem 2.2, this is a contradiction to the uniform position of �, as soon as
n + r > 1. Thus ds+1 > δ + 2, and the difference sequence of � has form

ds ≥ n + r, ds+m ≥ n + r + 2m + 1, for 0 < m ≤ s − n − r.
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It follows:

deg X = deg � =
�∞

m=0
(m + 1 − dm)

≤ 1 + 2 + · · · + s+

(s − n − r + 1)+

(s − n − r − 1) + (s − n − r − 2) + · · · + 1

=

�
s + 1

2

�

+ (s − n − r + 1) +

�
s − n − r

2

�

= s2 − (n + r − 1)s +

�
n + r

2

�

+ 1. �

Remark. (i) The case n + r = 1, i.e. n = 1, r = 0, is Laudal�s Lemma [4]:

deg C ≤ s2 + 1.

(ii) Mezzetti�s bound is, of course, the case r = 0, so theorem 0.1 proves
her conjecture under the additional hypotheses that I�,s−1 = 0 and (one of) the
sporadic zero(es) of C be primitive.

As in the case of the original Mezzetti�s conjecture, the bound (1) is sharp.
To see this, we need the following construction of Chang [1].
Chang proves that all varieties X ⊆ P

n+2 having a (special type of) �-resolution
are arithmetically Buchsbaum of codimension two.
In particular, we are interested in the varieties having an �-resolution of form

(5)
(n + r)OPn+2 (−1) �1

Pn+2 (1)
0 → ⊕ → ⊕ → IX (s) → 0.

OPn+2 (n + r − s − 1) rOPn+2

The following argument shows that these varieties satisfy the bound (1) as an
equality if s ≥ n + r .
Since H 0(OPn+2 (n + r − s − 1)) = 0 for s ≥ n + r , taking H 0 in (5), we have

0 → rH 0(OPn+2 ) → H 0(IX (s)) → 0,

so dim IX,s = r .
Restricting (5) to H = P

n+1 , we obtain (recall that �1
Pn+2 (1)|H = �1

H (1) ⊕ OH )

(n + r)OPn+1 (−1) �1
Pn+1 (1)

0 → ⊕ → ⊕ → IY (s) → 0.
OPn+1 (n + r − s − 1) (r + 1)OPn+1
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so, taking H 0, we similarly have that h0(IY (s)) = r+1, hence X has a sporadic
zero of degree s .
Restricting (5) to the general P

2 and twisting by −1, it becomes

(n + r)OP2 (−2) �1
P2

0 → ⊕ → ⊕ → I� (s − 1) → 0.
OP2 (n + r − s − 2) (n + r)OP2 (−1)

which shows that I�,s−1 = 0.
Finally, the unique sporadic zero of C is primitive, because, twisting (5) by
−2 and restricting to the general P

3, we see that H 1(IC (s − 2)) = 0, so the
sporadic zero α ∈ H 1(IC (s − 1)) cannot be in the image of H 1(IC (s − 2)), i.e.
α is primitive.
Now, (5) also yields the exact sequence

(n + r)OP2 (−1) �1
P2 (1)

0 → ⊕ → ⊕ → OP2 (s) → O�(s) → 0.
OP2 (n + r − s − 1) (n + r)OP2

and a computation of Chern classes shows that

deg X = deg � = −c2(O�(s)) = s2 − (n + r − 1)s +

�
n + r

2

�

+ 1.

REFERENCES

[1] M.-C. Chang, Characterization of arithmetically Buchsbaum subschemes of codi-
mension 2 in P

n , J. Diff. Geom., 31 (1990), pp. 323�341.

[2] M. Green, Generic initial ideals, Summer School on Commutative Algebra, Pub-
lications of C.R.M. (Barcelona), 7 (1996), pp. 11�85.

[3] L. Gruson - Ch. Peskine, Section plane d�une courbe gauche: postulation, E-
numerative Geometry and Classical Algebraic Geometry, Progress in Math., 24
(1982), pp. 33�35.

[4] O. Laudal, A generalized trisecant lemma, Algebraic Geometry, Lecture Notes in
Math., 687 (1978), pp. 112�149.

[5] E. Mezzetti, Differential-geometric methods for the lifting problem and linear
systems of plane curves, J. Algebraic Geom., 3 (1994), pp. 375�398.



ON THE LIFTING PROBLEM IN CODIMENSION TWO 51

[6] R. Re, Sulle sezioni iperpiane di una varietà proiettiva, Le Matematiche, 42
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