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STRONG SOLVABILITY FOR A CLASS

OF NONLINEAR PARABOLIC EQUATIONS

LUBOMIRA SOFTOVA

Dedicated to the memory of Professor Filippo Chiarenza

Existence of strong solutions to Cauchy-Dirichlet problem for nonlin-
ear parabolic equation is established. The nonlinear operator is prescribed by
Carathéodory�s function which satis�es an ellipticity condition due to S. Cam-
panato. The main results are reached through Aleksandrov-Bakel�man-Pucci
type maximum principle and topological �xed point theorem.

1. Introduction.

The general goal of this paper is to study strong solvability properties of
the, Cauchy-Dirichlet problem for the nonlinear parabolic equation

(∗) a(x , t, u, ux, uxx ) − ut = f (x , t, u, ux)

in the rectangle Q = {(x , t)∈ (0, d)×(0, T )}. The functions a(x , t, z, p, ξ ) and
f (x , t, z, p) are supposed to be measurable in (x , t)∈ R × R

+ and continuous
in the other variables (z, p, ξ ) ∈ R × R × R, i.e., a and f are Carathéodory�s
functions. Our main results are derived assuming that a(x , t, z, p, ξ ) satis-
�es an ellipticity condition due to S. Campanato which ensures the operator
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a(x , t, u, ux, uxx ) − ut to be �near� to the heat operator uxx − ut both consid-
ered as mappings in suitable Sobolev spaces. As it concerns the right-hand side
f (x , t, z, p) we allow quadratic growth with respect to the variable p.

Strong solvability result for (∗) has been obtained by Campanato in [1] in
the case a = a(x , t, ξ ) and f = f (x , t) ∈ L2(Q). Strong solvability of the
quasilinear equation (∗) (i.e., a(x , t, z, p, ξ ) = a�(x , t, z, p)ξ +a��(x , t, z, p)p)
with linear growth of f (x , t, z, p) with respect to the gradient p has been proved
byMaugeri in [6]. We should note that results similar to the ones prescribed here
have been proved for nonlinear elliptic equations in [8] when the term f grows
sub-quadratically in p, and in [10] if f has a quadratic growth with respect to
p.

The existence of strong solution to the Cauchy-Dirichlet problem for the
equation (∗) is established through Leray-Schauder�s �xed point theorem by
applying a standard procedure. Essential part of this procedure consists of
deriving an L4(Q) a priori estimate for the gradient ux of all eventual solutions
to (∗). Making use of Aleksandrov-Bakel�man-Pucci type maximum principle,
which is due to Krilov [4] and Tso [11], we establish also an L∞(Q) a priori
estimate in order to derive the strong solvability result.

Acknowledgements. The results presented here were obtained during author�s
visit at the Department of Mathematics, University of Catania. The author
wishes to express her deep gratitude to all staff of the Department for the
hospitality and especially to Prof. A. Maugeri for the kindness and the very
useful discussions.

2. Setting of the problem and main results.

We shall study the Cauchy-Dirichlet problem

(1)

�
a(x , t, u, ux, uxx ) − ut = f (x , t, u, ux) a.e. in Q

u = 0 on ∂Q

in the rectangle Q = {(x , t) ∈ (0, d) × (0, T )} with parabolic boundary
∂Q = {(x , 0), x ∈ [0, d]} ∪ {(0, t), t ∈ [0, T ]} ∪ {(d, t), t ∈ [0, T ]}. Suppose
that a(x , t, z, p, ξ ) and f (x , t, z, p) are real-valued functions which ful�ll
Carathéodory�s condition.

We shall consider strong solutions to the problem (1), i.e. twice weakly
differentiable functions with respect to x and once in t which satisfy the
equation in (1) a.e. in Q and achieve their boundary values in the sense of
H 1(0, d), (Hk means the Sobolev space of all functions having L2-summable
derivatives up to order k).
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We shall denote by W 2,1;2
0 (Q) the real Sobolev space

W 2,1;2
0 (Q) =

�
u ∈ L2(0, T , H 2(0, d) ∩ H 1

0 (0, d)) :
∂u

∂ t
∈ L2(Q), u(x , 0) = 0

�

equipped with the norm

�u�2(β) = �u�2
W 2,1;2

0
(Q)

=

�

Q

(|uxx |
2 + β2|ut |

2) dxdt

where β > 0 is a constant (cf. [1]). Further, we impose the following
requirements on the functions a(x , t, z, p, ξ ) and f (x , t, z, p):

(A) (Campanato�s ellipticity condition)
There exist positive constants α and K , K < 1, such that

|ξ − α[a(x , t, z, p, ξ + τ ) − a(x , t, z, p, τ )]| ≤ K |ξ |

and a(x , t, z, p, 0) = 0;

(B) | f (x , t, z, p)| ≤ f1(|z|)
�
f2(x , t)+ |p|2

�
,

where the functions f1 and f2 are positive, f1 ∈ C0(R+) is monotone nonde-
creasing function and f2 ∈ L2(Q);

(C) 2z f (x , t, z, p) ≥ −µ1(x , t)2zp − µ2(x , t)z
2 − µ3(x , t),

where µ1(x , t) and µ3(x , t) belong to the class L
2(Q), and µ2(x , t)∈ L

∞.

Now we can formulate our main results.

Theorem 1 (Gradient estimate). Assume conditions (A) and (B) to be ful�lled.
Then there exists a constant C = C(α, K , f1, f2, d, T , �u�L∞(Q)) such that

(2) �ux�L4(Q)
≤ C

for every strong solution u ∈W 2,1;2
0 (Q) of the Cauchy-Dirichlet problem (1).

Theorem 2 (Existence). Let the conditions (A), (B) and (C) be satis�ed. Then
the Cauchy-Dirichlet problem (1) has a solution u ∈W 2,1;2

0 (Q).
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Remark. Let us note that the condition (A) means ellipticity of the equation
in (1). In fact, it follows from the Lemma in [8] that the function ξ →
a(x , t, z, p, ξ ) is differentiable almost everywhere with respect to ξ and 0 <

λ ≤
∂a

∂ξ
(x , t, z, p, ξ ) ≤ � with constants λ and � depending on α and

K . Vice versa, if the derivative
∂a

∂ξ
exists almost everywhere and 0 < λ ≤

∂a

∂ξ
(x , t, z, p, ξ ) ≤ �, then the condition (A) is ful�lled with suitable constants

α and K < 1.
Here the ellipticity condition in the form (A) is more convenient because

of the use of Campanato�s theory of near mappings (cf. [1]).

3. Proofs of the results.

Proof of Theorem 1. Let u ∈ W 2,1;2
0 (Q) be a bounded solution of the problem

(1). We shall rewrite the equation in (1) as follows:

a(x , t, u, ux, uxx ) −
f (x , t, u, ux)

�
f2(x , t) + u2x

�

f2(x , t)+ u2x
− ut = 0,

a(x , t, u, ux, uxx )−
f (x , t, u, ux)

f2(x , t) + u2x
u2x − f2(x , t)u − ut

= − f2(x , t)u +
f (x , t, u, ux)

f2(x , t)+ u2x
f2(x , t).

Now, de�ning the functions

b(x , t) = −
f (x , t, u, ux)

f2(x , t)+ u2x

and

F(x , t) =
f (x , t, u, ux)

f2(x , t)+ u2x
f2(x , t)− f2(x , t)u,

we get the problem

(3)

�
a(x , t, u, ux, uxx ) + b(x , t)u2x − f2(x , t)u − ut = F(x , t) a.e. in Q

u = 0 on ∂Q.
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According to the assumption (B) one has |b(x , t)| ≤ f1(�u�L∞ ) < ∞, i.e.
b(x , t)∈ L∞(Q), and F(x , t)∈ L2(Q).

Let ρ ∈ [0, 1] be a parameter and for the unknown v(x , t) ∈ W 2,1;2
0 (Q)

consider the problem

(4)

�
a(x , t, u, ux, vxx ) + b(x , t)v2

x − f2(x , t)v − vt = ρF(x , t) a.e. in Q

v = 0 on ∂Q.

If ρ = 0, the problem (4) has a solution v ≡ 0. In the case ρ = 1, v ≡ u is one
of the solutions to this problem. Thus, if we know in addition uniqueness result
for the problem (4), then the solution v(x , t) of (4) with ρ = 1 coincides with
the �xed solution u(x , t) of the problem (3).

Proposition 3. Let v�, v�� ∈ W 2,1;2
0 (Q) be two solutions of the problem (4)

corresponding to the parameters 0 ≤ ρ � < ρ �� ≤ 1. Then

(5) �v� − v���L∞(Q) ≤ (ρ �� − ρ �)[ f1(�u�L∞(Q)) + �u�L∞(Q)].

Proof. Subtracting the equations satis�ed by v� and v�� we get

(6)






a(x , t, u, ux, v�
xx ) + b(x , t)v�

x
2 − f2(x , t)v

� −

v�
t − a(x , t, u, ux, v��

xx ) − b(x , t)v��
x
2 +

+ f2(x , t)v
�� + v��

t = (ρ � − ρ ��)F(x , t) a.e. in Q

v� − v�� = 0 on ∂Q.

According to the Lemma in [8], the function ξ → a(x , t, z, p, ξ ) is differ-
entiable almost everywhere with respect to ξ , the derivative aξ (x , t, z, p, ξ ) is
strictly positive and belongs to L∞(Q×R×R×R). This allows us to linearize
the problem (6). Thus, imposing the new notations

w = v� − v��,

A(x , t) =

� 1

0

aξ (x , t, u, ux, swxx + v��
xx ) ds,

B(x , t) = 2b(x , t)

� 1

0

(swx + v��
x ) ds,

the problem (6) reads

(7)






A(x , t)wxx + B(x , t)wx − f2(x , t)w − wt =

= (ρ � − ρ ��)F(x , t) a.e. in Q

w = 0 on ∂Q.
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We can estimate the function F(x , t) in view of the condition (B), namely

F(x , t) ≤ |F(x , t)| ≤
| f (x , t, u, ux)| f2(x , t)

f2(x , t) + u2x
+ f2(x , t)|u|

≤ f2(x , t)
�
f1(|u|) + |u|

�
≤ f2(x , t)

�
f1(�u�L∞(Q)) + �u�L∞(Q)

�
.

If we denote by P the linear parabolic operator in (7) and apply it to the constant
M = (ρ �� − ρ �)[ f1(�u�L∞(Q)) + �u�L∞(Q)] we get PM = − f2(x , t)(ρ

�� −
ρ �)[ f1(�u�L∞(Q)) + �u�L∞(Q)]. Hence

�
P(w − M) ≥ 0 a.e. in Q

w − M ≤ 0 on ∂Q.

According to the Aleksandrov-Bakel�man-Pucci type maximum principle ([4],
[11]) one has

max
Q

(w − M) ≤ max
∂Q

(w − M)+ = 0,

i.e. w ≤ M . Considering the same problem but for −w, we get an estimate
from bellow w ≥ −M . Hence �w�L∞(Q) ≤ M , that is what we needed to
prove. �

Corollary 4. If the problem (4) has a solution for some ρ ∈ [0, 1) then it is a
unique solution.

Proof. It follows immediately from (5) putting ρ � = ρ ��. Then v� ≡ v��.
Moreover, if ρ � = 0 and v� ≡ 0, then we get L∞ estimate for the solution
v��. Since ρ � and ρ �� are arbitrary, that estimate is true for any solution v and
ρ ∈ [0, 1). �

For our further considerations we need Campanato�s de�nition of �near-
ness� between operators. Let A and B be two operators acting from a Hilbert
space H into H

�:

A, B : H −→ H
�.

De�nition 1. We shall say that A is �near� B if there exist two positive
constants α and K , K ∈ (0, 1), such that for each u, v ∈ H we have

�Bu − Bv − α[Au − Av]�H� ≤ K�Bu − Bv�H� .

Let us recall the following de�nition of monotonicity.
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De�nition 2. The operator A is said to be monotone with respect to the
operator B if for each u, v ∈ H we have

(Au − Av, Bu − Bv)H� ≥ 0.

Here (·, ·)H� is the inner product in the spaceH
� .

We are in a position now to derive the gradient estimate (2) for each
solution u(x , t) of (1). For this goal consider the solutions v� and v�� of (4)
which correspond to parameters ρ � < ρ ��. Taking the difference between the
corresponding equations we have

(8)

�
a(x , t, u, ux, v�

xx ) − a(x , t, u, ux, v��
xx ) − v�

t + v��
t = G(x , t) a.e. in Q

v� − v�� = 0 on ∂Q,

where

G(x , t) = F(x , t)(ρ � − ρ ��) − b(x , t)(v�
x
2
− v��

x
2
) + f2(x , t)(v

� − v��).

Having in mind condition (A) and Young�s inequality we obtain

|wxx − αwt |
2 ≤ K 2(1 + ε)|wxx |

2 + (α2 +
α2

ε
)|G(x , t)|2,

where w = v� − v��. On the other hand, Lemma 2.3 in [2] yields

�w�2(α) =

�

Q

[|wxx |
2 + α2|wt |

2] dxdt

≤

�

Q

|wxx − αwt |
2 dxdt ≤

�

Q

K 2(1 + ε)|wxx |
2 dxdt

+

�

Q

�
α2 +

α2

ε

�
|G(x , t)|2 dxdt .

Now, if ε > 0 is chosen so small that K 2(1 + ε) < 1, we get

�w�2(β) ≤ C1(α, K , ε)

�

Q

|G(x , t)|2 dxdt
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where β2 =
α2

1 − K 2(1 + ε)
, i.e.

�w�(β) ≤ C1�G(x , t)�L2(Q)

≤ C1

�
�F�L2(Q) + �b�L∞(Q)(�v�

x�
2
L4(Q) + �v��

x�
2
L4(Q)) +

+ � f2�L2(Q)�w�L∞(Q)

�

≤ C2

�
1 + �v�

x�
2
L4(Q) + �v��

x�
2
L4(Q)

�

≤ C3

�
1 + �v�

x�
2
L4(Q) + �wx�

2
L4(Q)

�
.

Hence, the Gagliardo-Nirenberg interpolation inequality (see [7])

�wx�
2
L4(Q) ≤ N�wxx �L2(Q)�w�L∞(Q)

implies

�w�(β) ≤ C3

�
1 + �v�

x�
2
L4(Q) +

+ N (ρ �� − ρ �)
�
f1(�u�L∞(Q) + �u�L∞(Q))

�
�wxx�L2(Q)

�

with N being a constant which depends only on Q . (Indeed, to derive that ver-
sion of Gagliardo-Nirenberg�s inequality, one should apply at �rst the classical
result with respect to x for a �xed t and then integrate with respect to t . We
refer the reader to the monograph [5] for details).

If ρ �� − ρ � = τ is so small that C3Nτ [ f1(�u�L∞(Q)) + �u�L∞(Q)] < 1 we
may move �wxx�L∞(Q) to the left-hand side of the last inequality. Moreover,
having in mind

�wxx�L2(Q)
≤ �w�(β)

we get
�wxx�L2(Q)

≤ C4(1 + �v�
x�

2
L4(Q)).

That is why

�v��
x�

2
L4(Q) ≤ �wx�

2
L4(Q) + �v�

x�
2
L4(Q)

≤ N�wxx �L2(Q)�w�L∞(Q) + �v�
x�

2
L4(Q)

≤ C5 + C6�v�
x�

2
L4(Q).
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We put ρ � = 0, v� = 0, ρ �� = τ, v�� = vτ above and get immediately an estimate
for the L4(Q) norm of the gradient of vτ

(9) �vτ
x�

2
L4(Q) ≤ C5(α, K , ε, � f1�L∞, � f2�L2, �u�L∞)

whenever there exists a solution vτ of the problem (4) with ρ = τ .
Now we shall prove strong solvability of the problem (4) with ρ = τ . For

this goal Leray-Schauder�s �xed point theorem will be used.
De�ne the space

S =
�
y : y ∈ L∞(Q), yx ∈ L4(Q)

�

equipped with the norm

�y�S = �y�∞ + �yx�L4(Q)
,

as it was done in [6]. Now, de�ne the operator M : [0, 1] × S → W 2,1;2
0 (Q) to

act as follows. For each σ ∈ [0, 1] and for each y ∈ S we consider the problem

(10)






a(x , t, u, ux, zxx ) − zt =

= σ [τF(x , t) − b(x , t)|yx|
2 + f2(x , t)y] a.e. in Q

z = 0 on ∂Q.

Let us note that the right-hand side above belongs to L2 since F(x , t)∈ L2(Q),
b(x , t)∈ L∞(Q), y ∈ L∞(Q), yx ∈ L4(Q) and

�

Q

f 22 (x , t)y
2 dxdt ≤ �y�2∞ � f2�

2
L2(Q) < ∞.

Since the condition (A) means �nearness� between a(x , t, u, ux, zxx ) and the
Laplace operator zxx , and the operator zt is monotone with respect to zxx ([2]),
it follows by Theorem 9 in [1] that the parabolic operator a(x , t, u, ux, zxx )− zt
is �near� to the heat operator zxx − αzt . On the other hand, the right-hand side
in the Cauchy-Dirichlet problem (10) belongs to L2. Since the problem

(11)

�
zxx − αzt = σ [τF(x , t) − b(x , t)|yx |

2 + f2(x , t)y] a.e. in Q

z = 0 on ∂Q.

has a unique solution z ∈W 2,1;2
0 (Q), according to [2] our problem (10) admits

a unique solution lying at the same space. In such a way, the operator M is
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well de�ned. Further on, it follows by Lemmas (2-1) and (2-2) in [6] that
W 2,1;2

0 (Q) ⊂ S and thus we may consider M to act from [0, 1]× S into S.
Now, the condition a(x , t, u, ux, 0) = 0, as required in (A), shows that

M(0, y) = 0 for each y ∈ S. Similar arguments as these used in [8] imply
continuity of M. Finally, it is proved in [6] (pp. 387�388) that M is a compact
operator considered as a mapping from [0, 1] × S into S. The a priori estimate
(9) provides a uniform with respect to σ and y bound for each solution to the
equation M(σ, y) = y which is equivalent to the problem

�
a(x , t, u, ux, yxx ) − yt = σ [τF(x , t) − b(x , t)|yx|

2 + f2(x , t)y] a.e. in Q

y = 0 on ∂Q.

Therefore, the Leray-Schauder theorem implies existence of a �xed point
of the mapping M(1, ·) which, in view of the de�nition of M, becomes solution
to the problem (4) with ρ = τ .

Finally, separating the interval [0, 1] of m subintervals of length less than
or equal to τ and repeating the above procedure m times, we get the desired
estimate for the gradient of the solution

(12) �ux�
2
L4(Q) ≤ C7 .

This completes the proof of Theorem 1. �

Returning to the problem (1), we need an L∞ a priori estimate for u in
order to derive its strong solvability. A variant of this estimate can be found in
[6], p. 393 but, having in mind the ellipticity condition (A), we prefer to propose
a direct proof.

Proposition 5. Let conditions (A) and (C) hold. Then each solution u ∈
W 2,1;2

0 (Q) of the problem (1) satis�es the estimate

�u�L∞(Q) ≤
�
c1

√
d exp{c2d

−1�µ1�
2
L2(Q)}�(−µ3e

−Mt)−�L2(Q)

�1/2

·(13)

· exp
�MT

2

�
.

where �µ2(x , t)�L∞(Q) ≤ M.

Proof. The problem (1) is equivalent to the next one

�
A(x , t)uxx − ut = f (x , t, u, ux) a.e. in Q

u = 0 on ∂Q,
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where

A(x , t) =

� 1

0

aξ (x , t, u, ux, suxx ) ds.

According to the ellipticity condition (A), A(x , t)∈ L∞(Q) and A(x , t) ≥ 0, as
it is proved in [8]. Multiplying the equation by 2u and using condition (C) we
get

A(x , t)(u2)xx + µ1(x , t)(u
2)x + µ2(x , t)u

2 − (u2)t ≥ −µ3(x , t).

Putting u2 = weMt we get

Awxx + µ1wx + (µ2 − M)w − wt ≥ −µ3e
−Mt .

Since µ2 − M is nonpositive we can apply the Aleksandrov-Bakel�man-Pucci
maximum principle [11] that yields the estimate

max
Q

w ≤ c1
√
d exp{c2d

−1�µ1�
2
L2(Q)}�(−µ3e

−Mt)−�
L2(Q)

where c1 and c2 are constants depending on Q . Since maxQ u
2 ≤ maxQ weMT

we get what we needed to prove. �

Proof of Theorem 2. It follows by the Leray-Schauder �xed point theorem and
the estimates (13) and (2) in a similar way as that already used in the proof of
Theorem 1 (cf. [8] also). We omit the details. �
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