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INVESTIGATION ON STABILITY OF

ELECTROHYDRODYNAMIC SHOCK WAVES

A.M. BLOKHIN - I.Z. MERAZHOV - YU.L. TRAKHININ

Well-posedness of a linear mixed problem on stability of electrohydro-
dynamic shock waves is investigated in the paper. Stability of shock waves for
a hydrodynamic model of movement of a continuum with a volume electric
charge is proved.

1. Introduction.

The renewed interest to investigation of movements of a continuum with a
volume charge is caused, on one hand, by a great number of various possible
practical applications (see survey [3]). On the other hand the problem of
derivation and justi�cation of basic equations of electrohydrodynamics (EHD)
is not solved as yet with a satisfactory result in distinguish, for example, from
magnetohydrodynamics (MHD) (deducing and justi�cation of MHD equations
are discussed, for example, in [3], [10]).

In the present paper we discuss the variant of EHD equations suggested in
[3] from the viewpoint of theory of partial equations. We preferred this variant
to the one from [10] because in this case the considered system possesses certain
mathematical advantages from the viewpoint of theory of differential equations
(what is important, for example, for justi�cation of numerical methods applied
to solutionof EHD problems). From this point of view it is necessary to consider
the problem on stability of shock waves in EHD also. While investigating this
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problem we apply the method from [1]. It is known that this approach is based
on the technique of dissipative energy integrals for the mixed linear problem on
stability of shock electrohydrodynamical waves.

The paper consists of an introduction (the �rst section) and six sections. In
the second section we give EHD equations in the single-liquid approximation
(see [3]). In the third section we discuss problems on obtaining a linearized
EHD system. Relations on a strong discontinuity for EHD equations are given
in the fourth section. Here the main problem on stability of strong discontinuity
in EHD is formulated. In the �fth section we discuss conditions on a stationary
discontinuity. The main result of this paper is given in the sixth section. Exactly,
with the help of technique of dissipative energy integrals, we prove the well-
posedness of the main problem in the case when the stationary discontinuity is
a shock wave. Concluding remarks can be found in the seventh section.

2. EHD equations in a single-liquid approximation.

Movement equations of a continuum with a volume charge in a single-
liquid approximation can be written in the divergent form as it follows from [3],
[10]:

ρt + div(ρu) = 0,(2.1)

(ρu)t + div�̃ = 0,(2.2)

(ρe)t + divW = (J, E).(2.3)

Here ρ is the density of continuum, u = (u1, u2, u3)
∗ is the velocity of

continuum (asterisk stands for transposition), �̃ is the impulse �ux density
tensor with the components

�̃ik = ρuiuk + pδik − Pik (i, k = 1, 2, 3),

components Pik of the Maxwell stress tensor P are of the form [6]:

Pik =
1

4π
(Ei Ek −

|E |2

2
δik );

p is the pressure, E = (E1, E2, E3)
∗ is the electric �eld strength, |E |2 =

(E , E), e = e0 + 1
2
|u|2, |u|2 = (u, u), e0 is the internal energy, W =

(W1,W2,W3)
∗ = ρu(e + pV ), V (= 1

ρ
) is the speci�c volume, J is the electric
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current density. The thermodynamical variables are connected by the Gibbs
relation

(2.4) T ds = de0 + pdV

(s is the entropy, T is the temperature).
To system (2.1) � (2.3) it is necessary to add the charge conservation law

(q > 0)

(2.5) qt + divJ = 0,

and stationary laws of conservation (Maxwell equations for electric �eld in the
electrohydrodynamic approximation)

divE = 4πq,(2.6)

rot E = 0.(2.7)

Maxwell equations (2.6), (2.7) can be reduced to the single Poisson equation for
the scalar electric potential ϕ (E = −∇ϕ):

(2.8) �ϕ = −4πq.

The electric current density J is connected with the velocity u and the
electric �eld strength E by the Ohm law

(2.9) J = q(u + bE)

(b > 0 is the mobility constant [3], [10]). By virtue of (2.4), the following is
true

(2.10) p = −(e0)V = ρ2(e0)ρ, T = (e0)s .

Then, with account of the state equation

e0 = e0(ρ, s)

and (2.9), (2.10), we can treat system (2.1) � (2.3), (2.5) � (2.7) as a system to
determine components of the vectors U = (p, s, u∗)∗ , E and the charge q .

Since, by virtue of (2.6), (2.7),

divP = q E.
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the vector equation (2.2) can be rewritten as follows:

(2.2�) (ρu)t + div � = q E.

Here � is the impulse �ux density tensor with the components �ik = ρuiuk +
pδik . We note that system (2.1), (2.2�), (2.3) are the system of gas dynamics
equations with right parts.

System (2.1), (2.2�), (2.3) can be rewritten in the nondivergent form [3]:

(2.11)

1

ρc2

dp

dt
+ divu = b

(e0)ρsq

c2T
|E|2,

ds

dt
= b

q

ρT
|E|2,

ρ
du

dt
+ ∇ p = qE,

where
d

dt
=

∂

∂ t
+ (u, ∇); c2 = (ρ2(e0)ρ)ρ is the squared sound velocity in gas

[8]. It is seen that, in its turn, (2.11) can be written in the matrix form

(2.11�) B (0)U t +

3�

k=1

B (k)U xk = F.

Here B (0) = B (0)(U ) = diag (1/(ρc2), 1, ρ, ρ, ρ) is a diagonal matrix,
B (k) = B (k)(U ) are symmetric matrices, F = F(U , E , q) is the vector of right
parts. We note that B (0) > 0 under the natural assumption that thermodinamical
variables satisfy inequalities ρ > 0, (ρ2(e0)ρ)ρ > 0. Thus, with respect to
the vector U , system (2.11�) is symmetric t -hyperbolic (by Friedrichs) [1], [2].
The matrices B (k)(k = 1, 2, 3), the vector of right parts F can be easily written
down.

Remark 2.1. In the case of polytropic gas [1], [8]:

(2.12)

e0 =
pV

γ − 1
, T =

pV

cV (γ − 1)
,

(e0)ρs =
pV 2

cV
, c2 = γ pV

(γ > 1 is the isentropic exponent, cV > 0 is the speci�c heat).
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3. Linearization of EHD equations.

The EHD equation system from above has a constant solution

U = �U = ( p̂, ŝ, û)∗, û = (û1, û2, û3)
∗,

E = �E = (�E1, �E2, �E3)
∗, q = 0.

where
p̂ = ρ̂2(e0)ρ (ρ̂, ŝ), �T = (e0)s (ρ̂, ŝ);

ρ̂, ŝ, ûk , �Ek(k = 1, 2, 3) are certain constants.
After linearization [8] of EHD equations system with respect to the con-

stant solution (this means that we slightly perturb the constant solution), we
obtain a linear system of differential equations for small perturbations of the
constant solution:

(3.1)

Lp + div u =
γ − 1

γ
q,

Ls =
γ − 1

γ
q,

M2Lu + ∇ p = α̂q,

Lq + (ω̂, ∇)q = 0,

div E = 4πq,

rot E = 0.

Here small perturbations of the sought variables p, s, uk, Ek (k = 1, 2, 3), q
are denoted by the same symbols. Besides, the gas is supposed to be polytropic
(see Remark 2.1);

L = τ + (ŵ, ∇), τ =
∂

∂ t
, ∇ = (ξ1, ξ2, ξ3)

∗,

ξk =
∂

∂xk
(k = 1, 2, 3), ŵ = (ŵ1, ŵ2, ŵ3)

∗ =
û

û1
=

�
1,

û2

û1
,
û3

û1

�∗

,

û1 �= 0, M2 =
û2

1

ĉ2
, ĉ2 = γ p̂�V , �V =

1

ρ̂
,

α̂ =
ω̂

γ |ω̂|2
, ω̂ = (ω̂1, ω̂2, ω̂3)

∗ =
b

û1

�E .
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System (3.1) is written in the dimensionless form, where the coordinates xk(k =
1, 2, 3), time t , the components of the vectors U , E , the charge q are related to
the following characteristic parameters:

l̂,
l̂

û1

, γ p̂, γ cV , û1,
p̂b

û1|ω̂|2
,

p̂b

l̂û1|ω̂|2
;

l̂ is the characteristic length, |�E | �= 0.
We note that without two last equations system (3.1) can be written in the

matrix form

(3.2) Â(0)V t +

3�

k=1

Â(k)V xk + Â(4)V = 0,

where

Â(0) = diag (1, 1, M2, M2, M2, 1), V =

�
U

q

�

,

Â(1) =













1 0 1 0 0 0

0 1 0 0 0 0

1 0 M2 0 0 0

0 0 0 M2 0 0

0 0 0 0 M2 0

0 0 0 0 0 1 + ω̂1













,

Â(2) =













ŵ2 0 0 1 0 0

0 ŵ2 0 0 0 0

0 0 M2ŵ2 0 0 0

1 0 0 M2ŵ2 0 0

0 0 0 0 M2ŵ2 0

0 0 0 0 0 ŵ2 + ω̂2













,

Â(3) =













ŵ3 0 0 0 1 0

0 ŵ3 0 0 0 0

0 0 M2ŵ3 0 0 0

0 0 0 M2ŵ3 0 0

1 0 0 0 M2ŵ3 0

0 0 0 0 0 ŵ3 + ω̂3













,
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Â(4) =













0 0 0 0 0 −γ−1
γ

0 0 0 0 0 −γ−1
γ

0 0 0 0 0 α̂1

0 0 0 0 0 α̂2

0 0 0 0 0 α̂3

0 0 0 0 0 0













.

Eigen-values of the matrix Â(1) which will be used for formulation of
mixed problems for system (3.2) are of the form:

(3.3)

λ1 = 1, λ2,3 = M2, λ4 = 1 + ω̂1,

λ5,6 =
1 + M2 ±

�
(1 + M2)2 + 4(1 − M2)

2
.

4. Equations of strong discontinuity.

The problem on obtaining relations on surfaces of strong discontinuities
[8], [9] for EHD equations was detailed in [3]. We will consider piecewise
smooth solutions of system (2.1) � (2.3), (2.5) � (2.7) such that their smooth
pieces are separated by a surface of strong discontinuity with the equation

(4.1) f̃ (t, x) = f (t, x �) − x1 = 0

(x = (x1, x
�), x � = (x2, x3)).

Following [8], [9], we write down equations of electrohydrodynamical strong
discontinuity

ft [ρ] − [ρu1] + fx2
[ρu2] + fx3

[ρu3] = 0,(4.2)

ft [ρui ] − [��1i] + fx2
[��2i ] + fx3

[��3i ] = 0 (i = 1, 2, 3),(4.3)

ft [ρe] − [W1] + fx2
[W2] + fx3

[W3] = 0,(4.4)

[JN ] =
∂σ

∂ t
,(4.5)

[EN ] = −4πσ,(4.6)

[Ek] + fxk [E1] = 0 (k = 2, 3).(4.7)
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Here

JN = ( J , N ), EN = (E , N ), N =
1

|∇ f̃ |
(−1, fx2

, fx3
)∗,

|∇ f̃ | =
�

1 + f 2
x2

+ f 2
x3

;

N is the normal to surface (4.1). Besides, we used usual notation [F] = F−F∞

(F is a value of F on the right side (at f̃ → −0), F∞ is a value of F on the left
side (at f̃ → +0) of the discontinuity surface). Equations (4.2), (4.4) can also
be written in the form:

[ j ] = 0, [ej + puN ] = 0,

where j = ρ(uN − DN ) is the mass �ux through the discontinuity, uN =
(u, N ), DN = − ft/|∇ f̃ |. While obtaining relations (4.4) � (4.6) we assumed
the existence of the charge σ = σ (t, x �) on surface (4.1) and neglected the
surface electric current as it is recommended in [3], [9].

We linearize EHD equations and relations on strong discontinuity (4.2) �
(4.7) with respect to the piecewise constant solution. At x1 < 0:

U (t x) = �U∞ =










p̂∞

ŝ∞

û1∞

0

0










, E(t, x) = �E∞ =





�E1∞

0

0



 ,

q(t, x) = 0,

û1∞ �= 0, p̂∞ = ρ̂2
∞(e0)ρ (ρ̂∞, ŝ∞), �T∞ = (e0)s (ρ̂∞, ŝ∞),

at x1 > 0:

U (t, x) = �U =










p̂

ŝ

û1

0

0










, E(t, x) = �E =





Ê1

0

0



 ,

q(t, x) = 0,
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û1 �= 0, p̂ = ρ̂2(e0)ρ(ρ̂, ŝ), T̂ = (e0)s (ρ̂, ŝ),

at x1 = 0 relations (4.2)-(4.7) are ful�lled (under condition that the front of
discontinuity is immovable and is described by the equation x1 = 0):

(4.8)
[ ĵ ] = 0, [ρ̂û2

1 + p̂ −
Ê2

1

8π
] = 0,

[ρ̂û1(ê0 +
1

2
û2

1 + p̂V̂ )] = 0, [Ê1] = 4πσ̂,

where ê0 = e0(ρ̂, ŝ), ĵ = ρ̂û1(�= 0); σ̂ is the surface charge. After linearization
we obtain the main mixed problem on stability of strong discontinuity in EHD.

Main Problem. In the domain t > 0, x ∈ R3
+ we seek the solution to system

(3.1) (at ŵ = (1, 0, 0)∗, ω̂ = (ω̂1, 0, 0)∗, ω̂1 = bÊ1/û1 , L = τ + ξ1), and in
the domain t > 0, x ∈ R3

− the solution to the system

L∞ p + divu =
γ − 1

γ
q ,

L∞s =
γ − 1

γ
q,

(3.1�) M2
∞L∞u + ∇ p = α̂∞q,

L∞q + ω̂1∞ξ1q = 0,

divE = 4πq,

rotE = 0,

the solutions must satisfy the following boundary conditions at x1 = 0:

(4.9) [u1 + p − s] = (1 − k)Ft ,

2u1 −
2

k
u1∞ +

�
1

M2
+ 1

�

p −
1

k

�
1

M2
∞

+ 1

�

p∞ −(4.10)

− âE1 + â∞E1∞ − s +
1

k
s∞ = 0,



94 A.M. BLOKHIN - I.Z. MERAZHOV - YU.L. TRAKHININ

(4.11) uk −
1

k
uk∞ − âEk + â∞Ek∞ = µ̂Fxk (k = 2, 3),

�
γ

(γ − 1)M2
+

1

2

�

p −
1

k

�
γ

(γ − 1)M2
∞

+
1

2

�

p∞ +(4.12)

+

�
1

(γ − 1)M2
+

3

2

�

u1 −
1

k

�
1

(γ − 1)M2
∞

+
3

2

�

u1∞ −

−
1

2
(s −

1

k
s∞) = ν̂Ft ,

(1 + ω̂1)q −
d̂

k
(1 + ω̂1∞

)q∞ = �t ,(4.13)

E1 − d̂ E1∞ = 4π�,(4.14)

Ek − d̂ Ek∞ = −χ̂Fxk (k = 2, 3),(4.15)

at t = 0 the initial data:

U |t=0 = U 0(x), E|t=0 = E0(x),

(4.16) q|t=0 = q0(x), x ∈ R3
±,

F |t=0 = F0(x
�), �|t=0 = �0(x

�), x � ∈ R2.

Here
R3

± = {x |x 1 ≷ 0, x � ∈ R2}, L∞ = kτ + ξ1,

k =
û1

û1∞
, M2

∞ =
û2

1∞

ĉ2
∞

, ĉ2
∞ = γ p̂∞V̂∞, V̂∞ =

1

ρ̂∞
,

α̂∞ =
ω̂∞

γ ω̂2
1∞

, ω̂∞ = (ω̂1∞, 0, 0)∗, ω̂1∞ =
b∞ Ê1∞

û1∞

;

b∞ > 0 is the mobility constant at x1 < 0 (mobilities are assumed to be
different on different sides of the discontinuity). System (3.1�) is written in
the dimensionless form (the coordinates xk (k = 1, 2, 3), time t , components of
the vectors U , E , the charge q are related to the characteristic values:

l̂,
l̂

û1

, γ p̂∞, γ cV , û1∞,
b∞ p̂∞

û1∞ω̂2
1∞

,
b∞ p̂∞

l̂ û1∞ω̂2
1∞

).
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Boundary conditions (4.9) � (4.15) are derived after linearization of relations
(4.2) � (4.7) and written in the dimensionless form, and

â =
1

4πγ M2ω̂1
, â∞ =

1

4πγ kM2
∞ω̂1∞

, µ̂ =
1 − p̄

γ M2
+ ê,

p̄ =
p̂∞

p̂
, ê =

[Ê2
1 ]

8πρ̂û2
1

, ν̂ =
1 − p̄

γ (γ − 1)M2
+

1

2
(1 −

1

k
),

d̂ = p̄k
b∞ω̂2

1

b̂ω2
1∞

, χ̂ =
û1ω̂

2
1

p̂b
[Ê1], F =

δ f (t, x �)

l̂
, � =

û1ω̂
2
1

p̂b
δσ (t, x �);

δ f (t, x �) is a small perturbation of the discontinuity front, δσ (t, x �) is a small
perturbation of the surface charge. We also note that while solving mixed
problem (3.1), (3.1�), (4.9) � (4.16) the function F = F(t, x �), � = �(t, x �)
becomes known too. Two relations from conditions (4.9) � (4.16) are considered
as equations to determine the functions F, �.

We note that system (3.1�) without two last equations can be written in the
matrix form

(3.2�) Â(0)
∞ V t +

3�

k=1

Â(k)
∞ V xk + A(4)

∞ V = 0,

where the matrices Â(α)
∞ (α = 0, 4) can be easily determined, the eigen-values

of the matrix Â(1)
∞ are given below

(3.3�)

λ1 = 1, λ2,3 = M2
∞, λ4 = 1 + ω̂1∞,

λ5,6 =
1 + M2

∞ ±
�

(1 + M2
∞)2 + 4(1 − M2

∞)

2
.

Our aim of the further investigation is the well-posedness of main mixed
problem. There exist some variants of this problem in dependence on the
speci�cs of discontinuity (4.8).

Remark 4.1. By virtue of (2.8) the last two relations in systems (3.1), (3.1�) are
reduced to the single Poisson equation for a small perturbation of the potential
ϕ :

(4.17) �ϕ = −4πq, x ∈ R3
±, t > 0.
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Here ϕ is a dimensionless value related to b p̂l̂/(û1ω̂
2
1) at x1 > 0 and

b∞ p̂∞/(l̂ û1∞ω̂2
1∞) at x1 < 0. Boundary conditions (4.14), (4.15) are trans-

formed into

∂ϕ

∂x1
− d̂

∂ϕ∞

∂x1
= −4π�,(4.18)

ϕ − d̂ϕ∞ = χ̂F.(4.19)

5. Investigation of conditions (4.8) on stationary discontinuity.

Let the stationary discontinuity which meets conditions (4.8) be a shock
wave, i.e., û1, û1∞ �= 0, [ρ̂] �= 0 (detailed classi�cation of strong discontinuities
is given in [3]). The second and third relations from (4.8) will be written in the
form

(5.1)

p̄ = −γ M2v̄ + �̃,

1 − p̄v̄ +
γ − 1

2
M2(1 − v̄2) = 0,

where

v̄ =
V̂∞

V̂
=

1

k
, �̃ = 1 + γ M2(1 − ê),

ê =
[Ê2

1]

8πρ̂û2
1

=
σ̂ (Ê1 + Ê1∞)

2ρ̂û2
1

=
σ̂ (Ê1 − 2πσ̂ )

ρ̂û2
1

.

A quadratic equation on v̄

(5.2)
γ + 1

2
M2v̄2 − �̃v̄ + 1 +

γ − 1

2
M2 = 0

follows from (5.1). Further we will suppose that ê is a small parameter
(|ê| � 1). Besides, the following conditions are ful�lled

(5.3) ŝ > ŝ∞, p̂ > p̂∞ > 0, ρ̂ > ρ̂∞ > 0, û1∞ > û1 > 0.

At ê = 0 they are the condition of evolutionarity [6] of shock waves in usual gas
dynamics [8], [9] (the evolutionarity of EHD shock waves in the general case,
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i.e., at nonzero ê, is considered in [3]). Inequalities (5.3), with account of (2.12)
and �rst relation from (4.8), can be rewritten in the form:

(5.4) p̄v̄γ < 1, 0 < p̄ < 1, v̄ > 1.

Then from two roots of equation (5.2) we choose the root

(5.5) v̄ =
γ

γ + 1

�

� +

�

�2 − 2
γ + 1

γ

�

l +
γ − 1

2γ

��

�
� = l + 1 − ê, l =

1

γ M2

�
,

which at ê = 0 is less than unit (another root equals unit at ê = 0). Then from
condition v̄ > 0 we derive � > 0, i.e., ê < 1+ l . On the other hand, the natural
requirement

� >

�

2
γ + 1

γ

�

l +
γ − 1

2γ

�

leads us to the inequality

(5.6) ê < 1 + l −

�

2
γ + 1

γ

�

l +
γ − 1

2γ

�

,

which the parameter ê must satisfy. From (5.1), (5.5) it follows that

(5.7) p̄ =
γ M2

γ + 1

�

� − γ

�

�2 − 2
γ + 1

γ

�

l +
γ − 1

2γ

��

,

and p̄ > 0 if the parameter ê satis�es the inequality:

(5.8) ê > 1 + l −

�

2
γ

γ − 1

�

l +
γ − 1

2γ

�

.

We note that at small ê inequality (5.6) is ful�lled, and inequality (5.8) is
equivalent to condition

(5.8�) M2 >
γ − 1

2γ
.

It is easy to show that ful�lment of equalities (5.6), (5.8), in view of (5.5) and
(5.7), implies ful�lment of the second and third conditions from (5.4) at M < 1.
It is apparent that the �rst inequality from (5.4) holds true also because at ê = 0
it is justi�ed by mutual location of the Hugoniot and Poisson adiabats [9]. We
also note that (5.5), (5.7) imply M2

∞ = M2v̄/ p̄ > 1.
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6. Investigation of well-posedness of main problem.

Let conditions

(6.1) 1 + ω̂1∞ > 0, 1 + ω̂1 > 0, M < 1

hold. Then M∞ > 1 (see the �fth section) and all eigen-values (3.3�) of system
(4.2�) are positive, i.e., this system does not require boundary conditions at
x1 = 0 [1]. In this paper we restrict ourself to a partial case q(x ) ≡ 0 at
x1 < 0. Then

(6.2) q(t, x ) ≡ 0 at x1 < 0

and, without loss of generality, we also suppose that

(6.2�) U (t, x ) ≡ 0 at x1 < 0.

By virtue of (3.3), (6.1) system (3.2) requires �ve boundary conditions at
x1 = 0. From physical reasons we require � ≡ 0 (otherwise the main problem
is underdetermined with respect to the number of boundary conditions).

As a result, in account of (4.18), (4.19) (see remark 4.1), (6.2), (6.2�),
boundary conditions for the main problem is formulated as follows:

(6.3)

u1 + dp + d0E1∞ = 0,

uk = λ̂Fxk + d̂0Ek∞ (k = 2, 3),

Ft = µp − µ0E1∞,

s = νp + ν1E1∞,

q = 0;

(6.4)

∂ϕ

∂x1
− d̂

∂ϕ∞

∂x1
= 0,

ϕ − d̂ϕ∞ = χ̂F,

where

d =
(γ + 1)(1 − k) + 2ν̂(γ − 1)

(2 + M2(γ − 1))(1 − k) + 2ν̂(γ − 1)M2
,

d0 =
M2(γ − 1)(1 − k − 2ν̂)d̂0

(2 + (γ − 1)M2)(1 − k) + 2ν̂(γ − 1)M2
,

d̂0 = âd̂ − â∞ =
p̂∞

ρ̂û2
1ω̂1∞ Ê1∞

σ̂ , λ̂ = µ̂ − âχ̂ ,
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µ =
1 − ν − d

1 − k
, ν = 1 +

1

M2
− 2d, µ0 =

−2d0

1 − k
, ν1 = −3d0,

and, by virtue of (5.5), (5.7) and smallness of the parameter ê, the following
presentations take place:

d = d (0) + O(ê), d̂0 = O(ê), d0 = O(ê),

λ̂ = λ̂(0) + O(ê), µ = µ(0) + O(ê), µ0 = O(ê),

ν = ν(0) + O(ê), ν1 = O(ê), χ̂ = O(ê)

d (0) =
3 − γ + (3γ − 1)M2

2M2(2 + (γ − 1)M2)
, λ̂(0) =

2(1 − M2)

(γ + 1)M2
,

µ(0) = −
γ + 1

4M2
, ν(0) =

(γ − 1)(1 − M2)2

M2(2 + (γ − 1)M2)
.

Remark 6.1. It is meant that smallness of the parameter ê (|ê| � 1) is the
consequence of smallness of the jump of the normal component of electric �led
strength, i.e.,

�
�
�
�
�
�

σ̂

û1

�
ρ

2π

�
�
�
�
�
�
=

�
�
�
�
�

Ê1

û1

�
8πρ̂

−
Ê1∞

û1

�
8πρ̂

�
�
�
�
�
�

1
�
�
�
�

Ê1

û1

√
8πρ̂

+ Ê1∞

û1

√
8πρ̂

�
�
�
�

and besides sgn Ê1 = sgnÊ1∞ , the values
Ê1

û1

�
8πρ̂

,
Ê1∞

û1

�
8πρ̂

are not small. It

implies that d̂0 = O(ê) and so on.

We note that if the functions Ek∞ (k = 1, 3) in boundary conditions (6.3)
are considered to be known, then hyperbolic mixed problem (3.2), (6.3) with
corresponding initial data from (4.16) is well-posed with respect to the number
of boundary conditions (remind that one of boundary conditions is used for
determination of the function F ).

To determine the potential ϕ we obtain the problem of diffraction [4]: at
x1 < 0, x � ∈ R2, t > 0 the solution to the Laplace equation

(6.5) �ϕ = 0

is sought, at x1 > 0, x � ∈ R2, t > 0 the solution to the Poisson equation

(6.6) �ϕ = −4πq
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is sought, at x1 = 0, x � ∈ R2, t > 0 the solutions to equations (6.5), (6.6) satisfy
boundary conditions (6.4).

We describe the procedure of derivation of the apriori estimation without
loss of smoothness for the solution to problem (3.2), (6.3) � (6.6). For this
purpose we construct an extended system [1]. The procedure of constructing
will be divided into two steps.

The �rst step is construction of the following symmetric t -hyperbolic (by
Friedrichs) system:

(6.7) Â(0)
p (V p)t +

3�

k=1

Â(k)
p (V p)xk + â(4)

p V p = 0.

Here

V p = (V ∗, τ V ∗, ξ1V
∗, ξ2V

∗, ξ3V
∗, τ 2V ∗, τξ1V

∗, τξ2V
∗,

τξ3V
∗, ξ2

1 V
∗, ξ1ξ2V

∗, ξ1ξ3V
∗, ξ2

2 V
∗, ξ2ξ3V

∗, ξ2
3 V

∗)∗;

Â(α)
p = diag(I5 × Â(α) , ε(I10 × Â(α))) (α = 0, 4) are block diagonal matrices,

I5 × Â(α) is the Kronecker product of the matrices I5 and Â(α) , I5 is the unit
matrix of order 5 and so on, ε is a positive constant.

After integration the differential presentation of the energy integral for
symmetric system (6.7) over the domain R3

+, we come to

d

dt
I0(t) −

��

R2

(Â(1)
p V p, V p)

�
�
�
x1=0

dx � +(6.8)

+

���

R3
+

((Â(4)
p + Â(4)∗

p )V p, V p)dx = 0,

where

I0(t) =

���

R3
+

(Â(0)
p V p, V p)d x,

(Â(0)
p V p, V p) = (Â(0)V , V ) + (Â(0)V t , V t ) +

3�

i=1

(Â(0)V xi , V xi )+

+ε{(Â(0)V t t , V t t) + (Â(0)V t x1
, V t x1

) + · · · + (Â(0)V x3 x3
, V x3 x3

)}.

While deducing (6.8) we suppose that (V p, V p)
1/2 = |V p| → 0 at x1 → ∞ or

|x2,3| → ∞.
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Using boundary conditions (6.3) and system (3.1) for estimation of the
second and third terms in equality (6.8) we obtain the inequality:

d

dt
I0(t) − N1

��

R2

�
p2 + u2

2 + u2
3 + p2

t + p2
x1

+ p2
x2

+ p2
x3

+(6.9)

+ ε(P + R)
���
�
x1=0

dx � − Nê

��

R2

E

�
�
�
x1=0

dx� ≤ N2 I0(t),

where N1, N2 > 0, Nê = O(ê) are constants,

P = P2
t t + p2

t x1
+ p2

t x2
+ p2

t x3
+

3�

i=1

3�

j=i

p2
xi xj

,

R =

3�

i=2

3�

j=2

3�

k= j

(ui )
2
xj xk

,

E

�
�
�
x1=0

=
�
�
�E∞

�
�
�
2

+
�
�
�
∂ E∞

∂ t

�
�
�
2

+
�
�
�
∂ E∞

∂x2

�
�
�
2

+
�
�
�
∂ E∞

∂x3

�
�
�
2

+ ε

�
�
�
�
∂2E∞

∂ t2

�
�
�
2

+

+
�
�
�
∂2E∞

∂ t∂x2

�
�
�
2

+
�
�
�
∂2E∞

∂ t∂x3

�
�
�
2

+
�
�
�
∂2E∞

∂x 2
2

�
�
�
2

+
�
�
�
∂2E∞

∂x2∂x3

�
�
�
2

+
�
�
�
∂2E∞

∂x 2
3

�
�
�
2
�

.

To estimate the integral
��

R2 E

�
�
�
x1=0

d x � through the integral

��

R2

�
p2 + · · · + ε(P + R)

��
�
�
x1=0

d x �

we apply the Fourier transform to problem (6.4) � (6.6). As a result we come to
a mixed problem for ordinary differential equations:

(6.10)
d2

dx 2
1

ϕ̂ − ω2ϕ̂ = 0, x1 < 0,

(6.11)
d2

dx 2
1

ϕ̂ − ω2ϕ̂ = −4π q̂, x1 > 0,
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(6.12)

�
dϕ̂

dx1
− d̂

dϕ̂∞

dx1

� �
�
�
x1=0

= 0,

�
ϕ̂ − d̂ϕ̂∞

���
�
x1=0

= χ̂ F̂ .

Here

ϕ̂ = ϕ̂(t, x1, ξ �) =

��

R2

e−2π i(ξ �,x �)ϕ(t, x)dx�,

q̂ = q̂(t, x1, ξ �) =

��

R2

e−2π i(ξ �,x�)q(t, x)dx �,

F̂ = F̂ (t, ξ �) =

��

R2

e−2π i(ξ �,x �)F(t, x�)dx�,

are the Fourier transform on functions ϕ(t, x), q(t, x), F(t, x �),

ξ � = (ξ̃2, ξ̃3), ω2 = 4π2|ξ �|2 = 4π2(ξ̃2
2 + ξ̃2

3 ) < ∞.

From (6.10) it follows that

(6.13) ϕ̂ = c1∞eωx1 , ϕ̂� = c1∞ωeωx1 , x1 < 0

(primes stand for differentiation with respect to x1), c1∞ is a constant, ω =
2π |ξ �|. If the function ϕ̂ at x1 > 0 satis�es equation (6.11), the vector
y = (y1, y2)

∗ , where y1 = ϕ̂ , y2 = y �
1 − ωy1, satis�es the system

(6.14) y � =

�
ω 1

0 −ω

�

y + f ,

where

f =

�
0

−4π q̂

�

.

As �
ω 1

0 −ω

�

=

�
1 −m̃

0 1

��
ω 0

0 −ω

��
1 m̃

0 1

�

, m̃ =
1

2ω
,

then

(6.15) y =

�
−e−ωx1 m̃

e−ωx1

�

c2 + ỹ,

where

ỹ = (ỹ1, ỹ2)
∗ =

� ∞

0

G(x1 − τ ) f (t, τ, ξ �)dτ,
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c2 is a constant,

G(x1) =






−

�
eωx1 m̃eωx1

0 0

�

, x1 < 0,

�
0 −m̃e−ωx1

0 e−ωx1

�

, x1 > 0

is the Green matrix [1]. From (6.15) we derive

(6.16)

ϕ̂ = −m̃e−ωx1c2 + ỹ1,

ϕ̂� =
1

2
c2e

−ωx1 + ω ỹ1 + ỹ2, x1 > 0.

With account of (6.13), (6.16), the constants c1∞ , c2 are found from
boundary conditions (6.12):

(6.17) c1∞ =
2π

d̂ω

� ∞

0

e−ωτ q̂(t, τ, ξ �)dτ −
χ̂

2d̂
F̂, c2 = −χ̂ω F̂ .

Then from (6.13), (6.17) it follows that

(6.18) ϕ̂�
∞(t, ξ �) =

2π

d̂

� ∞

0

e−ωτ q̂(t, τ, ξ �)dτ −
ωχ̂

2d̂
F̂ .

In view of (6.18) and the Parseval equality, we estimate the integral of the �rst

term from E

�
�
�
x1=0

:

��

R2

E2
1∞dx � =

��

R2

|ϕ̂�
∞|2dξ � ≤

χ̂ 2

2d̂2

��

R2

ω2|F̂ |2dξ � +(6.19)

+
8π2

d̂2

��

R2

�
�
�

� ∞

0

e−ωτ q̂dτ

�
�
�
2

dξ �.

Using the Parseval equality, the second and third boundary conditions from
(6.3), relations (6.13), we estimate the �rst addendum from the right part of
(6.19):

��

R2

ω2|F̂ |2dξ � =

��

R2

(F2
x2

+ F2
x3
)dx � ≤(6.20)

≤
2

λ̂2

��

R2

(u2
2 + u2

3)
�
�
�
x1=0

dx � +
2d̂2

0

λ̂2

��

R2

(E2
2∞ + E2

3∞)dx� =

=
2

λ̂2

��

R2

(u2
2 + u2

3)
�
�
�
x1=0

dx� +
2d̂2

0

λ̂2

��

R2

�
�
�ϕ̂�

∞

�
�
�
2
dξ �.
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Then from (6.19), (6.20) we have

��

R2

E2
1∞dx � ≤ K1

��

R2

(u2
2 + u2

3)
�
�
�
x1=0

dx� +(6.21)

+ K2

��

R2

�
�
�

�

e−ωτ q̂dτ

�
�
�
2

dξ �,

where

K1 =
χ̂ 2

λ̂2d̂2 − χ̂ 2d̂2
0

, K2 =
8π2λ̂2

λ̂2d̂2 − χ̂ 2d̂2
0

(K1, K2 > 0 by smallness of ê).

From the last equation of system (3.2)

qt + (1 + ω̂1)qx1
= 0

it follows that the function

� = �(t, ξ �) =

� ∞

0

e−ωτ q̂(t, τ, ξ �)dτ

satis�es the equation

(6.22) �t + (1 + ω̂1)ω� = 0

(q → 0 under assumption that x1 → ∞). From (6.22) we obtain

(6.23) � = e−(1+ω1)ωt

� ∞

0

e−ωτ q̂0(τ, ξ �)dτ.

We suppose that the function q0(x ) is �nite with respect to x1, with the
carrier suppq0 = (x0, x1) × R2 where 0 ≤ x0 < x1 < ∞. Then, by the Hölder
inequality and (6.23), we have

|�|2 ≤
�
�
�

� ∞

0

e−ωτ q̂0dτ

�
�
�
2

≤

�� ∞

0

|q̂0|dτ

�2

=(6.24)

=

�� x1

x0

|q̂0|dτ

�2

≤ C0

� ∞

0

|q̂0|
2dτ.
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where C0 = x1 − x0. Thus, from (6.21), (6.24), we �nally derive the estimation:

��

R2

E2
1∞dx� ≤ K1

��

R2

(u2
2 + u2

3)
�
�
�
x1=0

dx � + C0K2

���

R3

q2
0 (x)dx ≤

≤ K1

��

R2

(u2
2 + u2

3)
�
�
�
x1=0

dx� + K3 I0(t),

where K3 > 0 is a constant. By analogy with account of boundary conditions
(6.3) and system (3.1) at x1 = 0, one can estimate integrals of other terms from

E

�
�
�
x1=0

. Finally

��

R2

E

�
�
�
x1=0

d x � ≤ N3

��

R2

�
p2 + · · · + ε(P + R)

���
�
x1=0

dx � + N4 I0(t)

(N3, N4 > 0 are constants). Using properties of the trace of a function from W 1
2

on the plane x1 = 0 [7], from the last inequality we conclude that

(6.25)

��

R2

E

�
�
�
x1=0

d x � ≤ εN3

��

R2

(P + R)
�
�
�
x1=0

d x � + Ñ4 I0(t)

(Ñ4 > 0 is constant).
From boundary conditions (6.3) and system (3.1) at x1 = 0 we deduce

(ξ2
2 + ξ2

3 )uk = (β1τ + β2ξ1)ξk p − d0τξk E1∞ (k = 2, 3), x1 = 0,

where

β1 = −1 − d, β2 = β2/M2, β =
�

1 − M2 (M < 1).

Then, using the known inequality from [5]

��

R2

R
�
�
�
x1=0

d x � ≤ const

��

R2

3�

k=2

(ξ2
2 uk + ξ2

3 uk )
2
�
�
�
x1=0

d x � ≤

≤ C1

��

R2

3�

k=2

((β1τ + β2ξ1)ξk p)
�
�
�
x1=0

d x � + C2

��

R2

E

�
�
�
x1=0

d x �

(C1,2 > 0 are constants) and properties of the trace of a function from W 1
2 (R3

+)
on the plane x1 = 0, in a view of (6.25), we reduce inequality (6.9) to the form

(6.26)
d

dt
I0(t) − εÑ1

��

R2

P
�
�
�
x1=0

d x � ≤ Ñ2 I0(t),
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where Ñ1, Ñ2 > 0 are constant. We note that while deducing inequality (6.26)
we assume ε < 1

N3 (1+C2)
. Therewith inequality (6.25) can be rewritten as

follows:

(6.25�)

��

R2

E

�
�
�
x1=0

d x � ≤ εÑ3

��

R2

P
�
�
�
x1=0

d x � + Ñ4 I0(t),

where

Ñ3 =
N3C1

(1 − εN3(1 + C2))
> 0, N̂4 =

Ñ4

(1 − εN3(1 + C2))
> 0.

We now come to the second, more complicated, step in construction of the
extended system. First we note that the function p satis�es the wave equation

M2L2 p − �p = F1

(F1 =
M2(γ − 1)

γ
Lq −

1

γ ω̂1
ξ1q),

which is a consequence of system (3.1). This equation can be rewritten in the
form

(6.27) {(τ �)2 − (ξ �
1)

2 − ξ2
2 − ξ2

3 }p = F1.

where new differential operators are given by formulae

τ =
β

M
τ �, ξ1 =

1

β
ξ �
1 +

M

β
τ �.

If the function p satis�es equation (6.27), then the vector

Y = (τ � p, ξ �
1 p, ξ2 p, ξ3 p)

∗

satis�es a symmetric system [1]

(6.28) (Bτ � + Qξ �
1 + R2ξ2 + R3ξ3)Y = F .

Here

B = B(m1, l2, l3) =








1 −m1 −l2 −l3

−m1 1 0 0

−l2 0 1 0

−l3 0 0 1








,
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Q = Q(m1, l2, l3) =








m1 −1 0 0

−1 m1 l2 l3

0 l2 −m1 0

0 l3 0 −m1








,

R2 = R2(m1, l2, l3) =








l2 0 −l 0

0 −l2 m1 0

−1 m1 l2 l3

0 0 l3 −l2








,

R3 = R3(m1, l2, l3) =








l3 0 0 −l

0 −l3 0 m1

0 0 −l3 l2

−1 m1 l2 l3








,

F = F (m1, l2, l3) = (F1, −m1F1, −l2F1, −l3F1)
∗,

where m1, l2, l3 are constant and B > 0 if m2
1 + l22 + l23 < 1.

We obtain a boundary condition at x1 = 0 for system (6.28). As in gas
dynamics [1], in a view of conditions (6.3), system (3.1) and equation (6.27) at
x1 = 0, the function p satis�es the conditions at x1 = 0:

(6.29) m(τ �)2 p + n(ξ �
1)

2 p −
1

M
τ �ξ �

1 p + F0 = 0,

where

m =
M2

β2
µλ̂ + d, n = −

M2

β2
µλ̂,

F0 = −
M2

β2

�
d0τ

2 − τd0τξ1 − µ0λ̂(ξ2
2 + ξ2

2 )
�
E1∞.

Boundary condition (6.29) can be rewritten in the form:

(τ � − aξ �
1)L̂ p + F0 = 0, x1 = 0,

where

L̂ = a1τ
� + a2ξ

�
1.
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Constants a, a1, a2 are found from the system

a1 = m, aa2 = −n, am − a2 =
1

M
.

We solve the system and take a, for example, in the form

a =
1/M +

�
1/M2 − 4mn

2m
.

We note that

1

M2
− 4mn =

β4(γ − 1)

M4(2 + (γ − 1)M2)
+ O(ê) > 0,

i.e., a is real. The vector

Y p = (τ �Y ∗, ξ �
1Y

∗, ξ2Y
∗, ξ3Y

∗, L̂Y ∗)∗

satis�es an extended system

(6.30)
�
Bpτ

� + Qpξ
�
2, +R2pξ2 + R3pξ3

�
Y p = Fp

constructed from (6.28). Here Bp , Qp , R2p , R3p are block diagonal matrices of
order 20

Bp = diag (σ1B1, σ2B2, σ3B3, σ4B4, σ5B5), Bi = B(m1i , l2i , l3i )

and so on, σi > 0, m1i , l2i , l3i are constants, m2
li + l22i + l23i < 1. We take

l2i = l3i = 0, i = 1, 5, m11 = 0, m12 = −
1

2
,

m13 = m14 = b, b =
1

2
min

�ma

n
,

n

ma

�
,

m15 =
2a

1 + a2
, σ1 =

m

n
σ2,

σ3 = σ4 =
mn

1 + a2
σ5, σ2 =

� n

ma
− b

�
σ4,

σ5 is an arbitrary positive number. We note that

m =
2γ M2 + 1 − γ

2 + (γ − 1)M2
+ O(ê), n =

1

2M2
+ O(ê),
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i.e. by virtue of (5.8�) m, n > 0. Thus, a, b, σ1,2,3,4 > 0, i.e., system (6.30) is
symmetric t -hyperbolic (by Friedrichs). With account of choice of the constants
σi , the estimation for the quadratic form is as follows:

−(QpY PY p)
�
�
�
x1=0

≥
� 3�

i=2

�
k1i (L̂ξ1 p)

2 + k2i (τ
�ξi p)

2 +(6.31)

+ k3i (ξ
�
1ξi p)

2 + k4i (ξ2ξi p)
2
�

+ k5(ξ
2
3 p)

2 +

�
2

nM
−

1

2

�

(τ �ξ �
1 p)

2 +

+
1

2
σ2((ξ

�
1)

2 p)2 − Kê(L̂τ � p)2 − K4F
2
0

��
�
�
x1=0

≥

≥ N3P
�
�
�
x1=0

− ÑêE

�
�
�
x1=0

,

where ki j (i = 1, 4, j = 2, 3), k5 , Kê , K4, N3 , Ñê are positive constants, Ñê ,

K̃ê = O(ê). The differential form for the integral of energy for system (6.30) is
given below:

(DpY p,Y p)t + β(QpY p,Y p)x1
+ (R2pY p,Y p)x2

+(6.32)

+ (R3pY p,Y p)x3
+ 2(Y p, Fp) = 0.

Here Dp =
M

β
Bp −

M2

β
Qp > 0. Integrating (6.32) over the domain R3

+ under

assumption that |Y p| → 0 at x1 → ∞ or |x2,3| → ∞ and accounting (6.31),
(6.25�), we obtain the inequality

(6.33)
d

dt
I1(t) + N4

��

R2

P
�
�
�
x1=0

d x � ≤ N5(I1(t) + I0(t)),

where N5 > 0 is a constant; N4 > 0 because N3 > 0 and Ñẽ = O(ê);

I1(t) =

���

R3

(DpY p, Y p)d x.

Summing up inequalities (6.26) and (6.23) and choosing the constant ε

(ε < min
�
1/(N3(1 + C2)), N4/Ñ1

�
) such that the quadratic form

(N4 − εÑ1)P
�
�
�
x1=0
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is positive de�nite, we come to the inequality

d

dt
I (t) ≤ N6 I (t), t > 0,

where I (t) = I0(t)+ I1(t), N6 > 0 is a constant. The desired a priori estimation

(6.34) I (t) ≤ eN6t I (0), t > 0

follows from the last inequality. Then from (6.34) we derive the estimation

(6.35) �V (t)�W 2
2
(R3

+) ≤ N7, 0 < t ≤ T̃ < ∞,

where N7 < ∞ is a positive constant depending on T̃ . In its turn from (6.13),
(6.16), (6.35) and the Parseval equality it follows that

�Z(t)�W 2
2
(R3

+) ≤ N8, 0 < t ≤ T̃ < ∞,(6.36)

�E(t)�W 2
2
(R3

−) ≤ N9, 0 < t ≤ T̃ < ∞,(6.37)

where Z = (V ∗, E∗)∗; N8, N9 < ∞ are positive constants depending on T̃ .
We note that, by analogy with [1], we can obtain the estimation for the

function F(t, x �):

(6.38) �F�W 3
2
((0,T̃ )×R2) ≤ N10

(N10 < ∞ is a positive constant depending on T̃ ).
A priori estimations (6.36) � (6.38) justify that under the assumptions on

smallness of the jump of the normal component of the electric �eld strength
on the discontinuity (see remark 6.1) and �niteness with respect to x1 of the
function q0(x) behind the discontinuity (at x1 > 0), the main problem on
stability of electrohydrodynamical shock waves from above is well-posed.

7. Concluding remarks.

Remark 7.1. The problem on stability of shock waves under assumptions (6.1)
in the case when q0(x ) �≡ 0 generally does not differ from the considered
regarding methods to obtain a priori estimations, and it will be the object of
investigations of forthcoming publications.
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Remark 7.2. Hold conditions

(7.1) 1 + ω̂1∞ < 0, 1 + ω̂1 < 0, M < 1,

the main problem is well-posed regarding the number of boundary conditions
(under assumptions � ≡ 0). In this case the described technique to obtain a
priori estimations can also be applied.

Remark 7.3. If

(7.2) 1 + ω̂1∞ > 0, 1 + ω̂1 < 0, M < 1,

then the equations for q(t, x), x ∈ R3
± (the last two equations from (3.2)

and (3.2�)) do not require boundary conditions at x1 = 0 (their solutions are
completely determined by the initial data q0(x), x ∈ R3

±). Then at � �≡ 0 the
main problem is also well-posed regarding the number of boundary conditions.
From the second inequality (7.2) it follows that Ê1 < 0, and if −1 < ω̂1∞ < 0
(i.e., Ê1∞ < 0), then condition of smallness of the coef�cients d̂0, d0, µ0, ν1

can be ful�lled (see Remark 6.1). Therewith the function �(t, x �) is determined
from boundary condition (4.13) via the initial data q0(x ) at x1 = 0, and further
reasoning will be similar to the ones from cases (6.1) and (7.1).

Remark 7.4. Physically condition (6.1) means that at q0(x) ≡ 0, x1 < 0, by the
Ohm law (2.9), electric current �ows from the left to the right. Hold conditions
(7.2), electric current is directed towards the discontinuity and generates a
surface charge on the shock wave.
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