0-DIMENSIONAL SUBSCHEMES OF CURVES LYING ON A SMOOTH QUADRIC SURFACE

GIUSEPPE ZAPPALÀ

Abstract

We characterize all the possible Hilbert functions for 0-dimensional subschemes of an irreducible curve C lying on a smooth quadric surface $Q \subset \mathbb{P}_{k}^{3}$.

Introduction.

The three-codimensional projective schemes and, in particular, the 0 -dimensional subschemes of \mathbb{P}^{3}, represent a subject of the algebraic geometry where very little is still known. Specifically we consider the following general problem: how do some properties of the irreducible curves of \mathbb{P}^{3} affect the Hilbert function of their 0-dimensional subschemes? So one can consider curves whose minimal surface has fixed degree, complete intersection curves, arithmetically Cohen-Macaulay curves, arithmetically Buchsbaum curves etc..

In this paper we answer one of these questions: we characterize all the possible Hilbert function of the 0-dimensional subschemes of an irreducible curve lying on a smooth quadric, just using the type (a, b) of the curve. The postulation of 0 -dimensional schemes on a smooth quadric have been extensively studied in [3] and in [5].

More precisely let Q be a smooth quadric. In [7] the author proves that if $X \subset Q$ is a 0 -dimensional scheme contained in a complete intersection

Entrato in Redazione il 19 dicembre 1996.
$(2, b, s), 2 \leq b \leq s$, for all $n \in \mathbb{N}$ such that $n \geq s$ and $\Delta H(X, n)>1$ then $\Delta^{2} H(X, n+1) \leq-2$.

Here we prove that if C is an irreducible curve of type (a, b) with $a \leq b$, lying on a smooth quadric surface and $\left\{v_{n}\right\}$ is a O-sequence, definitively zero, such that $v_{n} \leq \Delta H(C, n), s=\min \left\{n \in \mathbb{N} \mid v_{n}<\Delta H(C, n)\right\} \geq b$ and $\Delta v_{n+1} \leq-2$ for all $n \geq s$ such that $v_{n}>1$, then on C there is a 0-dimensional scheme X, such that $\Delta H(X, n)=v_{n}$.

In Section 1 we fix notation and preliminaries, in the second section we give the general form of the Hilbert function for a 0-dimensional subscheme of a curve of type (a, b). The third section forms the technical heart of this paper. In particular we explain how one can construct a 0 -dimensional scheme X, with assigned Hilbert function, on some lines of a smooth quadric surface Q, in a way such that it is possible to embed X in a suitable curve of Q. This result will be very useful to prove the theorem in Section 4.

1. Notation and preliminaries.

Throughout this paper Q will denote a smooth quadric surface in \mathbb{P}_{k}^{3}, k algebraically closed field. Let $C \subset Q$ be a curve of type $(a, b), a \leq b$. We set $c=b-a$ and $d=a+b=\operatorname{deg} C$. Let $R=k[x, y, z, w]$ be the polynomial ring over k in four indeterminates and I_{C} the saturated homogeneous ideal of C in R.

It is known that a minimal free resolution of R / I_{C} as R-module is:
if $c=0$

$$
0 \rightarrow R(-b-2) \rightarrow R(-b) \oplus R(-2) \rightarrow R \rightarrow R / I_{C} \rightarrow 0
$$

$$
\text { if } c=1
$$

$$
0 \rightarrow R(-b-1)^{2} \rightarrow R(-b)^{2} \oplus R(-2) \rightarrow R \rightarrow R / I_{C} \rightarrow 0
$$

if $c \geq 2$
$0 \rightarrow R(-b-2)^{c-1} \rightarrow R(-b-1)^{2 c} \rightarrow R(-b)^{c+1} \oplus R(-2) \rightarrow R \rightarrow R / I_{C} \rightarrow 0 ;$
(see [4]).
If $\phi: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ is a function, the first difference of ϕ is $\Delta \phi(0)=\phi(0)$, $\Delta \phi(n)=\phi(n)-\phi(n-1)$ if $n \geq 1$, and recursively the n-th difference is $\Delta^{n} \phi(0)=\Delta^{n-1} \phi(0), \Delta^{n} \phi(n)=\Delta^{n-1} \phi(n)-\Delta^{n-1} \phi(n-1)$ if $n \geq 1$.

The above resolutions allows us to compute the Hilbert function of C. In particular we get

$$
\begin{array}{ccccccccc}
n & 0 & 1 & 2 & \cdots & b-1 & b & 0 & \cdots \\
\Delta^{2} H(C, n) & 1 & 2 & 2 & \cdots & 2 & 1-c & 0 & \cdots
\end{array}
$$

If M is a graded R-module, we write M_{n} for the degree n piece of M and if M is a finite length graded R-module we define diameter of M (write diam M) the number of the nonzero graded pieces of M.

If \mathscr{I}_{C} is the ideal sheaf of C, we recall that the module

$$
M_{C}=\underset{n \in \mathbb{Z}}{\oplus} H^{1}\left(\mathscr{I}_{C}(n)\right)
$$

is called the Hartshorne-Rao module (or simply the Rao module) of C. M_{C} is a finite length R-module and $M_{C}=0$ if and only if C is an arithmetically CohenMacaulay curve if and only if $c \leq 1$. Moreover if $c \geq 2$ and $\rho(n)=\operatorname{dim}_{k} M_{C, n}$ we have that

$$
\rho(n)= \begin{cases}(b-n-1)(n-a+1) & \text { for } a \leq n \leq b-2 \\ 0 & \text { for } n \leq a-1 \text { or } n \geq b-1\end{cases}
$$

(see [2]), consequently diam $M_{C}=c-1$ and we can obtain the first and the second difference of $\rho(n)$:

$$
\begin{array}{ccccccccccc}
n & 0 & \cdots & a-1 & a & a+1 & \cdots & b-1 & b & b+1 & \cdots \\
\Delta \rho(n) & 0 & \cdots & 0 & c-1 & c-3 & \cdots & 1-c & 0 & 0 & \cdots \\
\Delta^{2} \rho(n) & 0 & \cdots & 0 & c-1 & -2 & \cdots & -2 & c-1 & 0 & \cdots
\end{array}
$$

2. Hilbert function of the subschemes of C.

In this section we found the general form of the first difference of the Hilbert function of a 0 -dimensional scheme of a curve of type (a, b) on a smooth quadric, such that

$$
s=\min \{n \in \mathbb{N} \mid \Delta H(X, n)<\Delta H(C, n)\} \geq b
$$

Let $C \subset \mathbb{P}_{k}^{3}$ be a curve, \mathscr{I}_{C} its ideal sheaf, $S \subset \mathbb{P}_{k}^{3}$ a surface such that no irreducible component of C is contained in S. Then $X=C \cap S$ is a 0 dimensional scheme.

Let $F=0, F \in R_{s}$, be the equation of S; we have for any n the following short exact sequence of sheaves:

$$
0 \rightarrow \mathscr{I}_{C}(n-s) \xrightarrow{F} \mathscr{I}_{C}(n) \rightarrow \mathscr{J}_{X}(n) \rightarrow 0
$$

where the first map is the multiplication by F and \mathscr{J}_{X} is its cokernel: of course it is the ideal sheaf of X as a subscheme of S. It induces a long exact sequence on the cohomological groups

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathscr{I}_{C}(n-s)\right) \rightarrow H^{0}\left(\mathscr{I}_{C}(n)\right) \rightarrow H^{0}\left(\mathscr{J}_{X}(n)\right) \rightarrow \\
& \rightarrow H^{1}\left(\mathscr{I}_{C}(n-s)\right) \rightarrow H^{1}\left(\mathscr{I}_{C}(n)\right) \rightarrow H^{1}\left(\mathscr{J}_{X}(n)\right) \rightarrow \cdots
\end{aligned}
$$

or, if $J_{X}=\underset{n}{\oplus} H^{0}\left(\mathscr{J}_{X}(n)\right)$, the exact sequence of graded R-modules:

$$
0 \rightarrow I_{C}(-s) \xrightarrow{F} I_{C} \rightarrow J_{X} \rightarrow M_{C}(-s) \xrightarrow{F} M_{C} \rightarrow \cdots
$$

and if K is the kernel of the map:

$$
M_{C}(-s) \xrightarrow{F} M_{C}
$$

we have the exact sequence of graded R-modules:

$$
\begin{equation*}
0 \rightarrow I_{C}(-s) \xrightarrow{F} I_{C} \rightarrow J_{X} \rightarrow K \rightarrow 0 \tag{*}
\end{equation*}
$$

From the following exact sequence:

$$
0 \rightarrow \mathscr{I}_{S}(n) \rightarrow \mathscr{I}_{X}(n) \rightarrow \mathscr{J}_{X}(n) \rightarrow 0
$$

since $H^{1}\left(\mathscr{I}_{S}(n)\right)=0$ for any n, we obtain the exact sequence of graded R modules:

$$
0 \rightarrow I_{S} \rightarrow I_{X} \rightarrow J_{X} \rightarrow 0
$$

hence

$$
\operatorname{dim}_{k} J_{X, n}=\operatorname{dim}_{k} I_{X, n}-\operatorname{dim}_{k} I_{S, n}=\operatorname{dim}_{k} I_{X, n}-\operatorname{dim}_{k} R_{n-s}
$$

and from $(*)$ we get the following relation between the Hilbert function of C and the Hilbert function of X :

$$
H(X, n)=H(C, n)-H(C, n-s)-\operatorname{dim}_{k} K_{n}
$$

Let us consider now a curve $C \subset Q$ of type $(a, b), a \leq b$ and a surface S, such that $s \geq b$. Since $s \geq b>c-1=\operatorname{diam} M_{C}$ we have

$$
H(X, n)=H(C, n)-H(C, n-s)-\rho(n-s)
$$

(we use the convention that $H(C, n)=0$ for $n \leq-1$), and consequently

$$
\Delta H(X, n)=\Delta H(C, n)-\Delta H(C, n-s)-\Delta \rho(n-s)
$$

so for $n \leq s+a-1$

$$
\Delta H(X, n)=\Delta H(C, n)-\Delta H(C, n-s)
$$

Moreover

$$
\begin{gathered}
\Delta H(X, s+a)=\Delta H(C, s+a)-\Delta H(C, a)-c+1 \\
=a+b-(2 a+1)-c+1=0
\end{gathered}
$$

and, since $\Delta H(X, n)$ is a O-sequence, $\Delta H(X, n)=0$ for $n \geq s+a$. Finally we obtain:

$$
\Delta H(X, n)= \begin{cases}\Delta H(C, n)-\Delta H(C, n-s) & \text { for } n \leq s+a-1 \\ 0 & \text { for } n \geq s+a\end{cases}
$$

Let $X \subset C$ be a 0 -dimensional scheme. We define

$$
s=\min \{n \in \mathbb{N} \mid \Delta H(X, n)<\Delta H(C, n)\}
$$

and we assume that $s \geq b$. Let S be a surface, $\operatorname{deg} S=s$, such that $X \subset S$ but no irreducible component of C is contained in S. Since $X \subset S \cap C$, $\Delta H(X, n) \leq \Delta H(S \cap C, n)$, i.e. the last part of the first difference of the Hilbert function of X is

$$
\begin{array}{cccccccccc}
n & b-1 & b & \cdots & s-1 & s & \cdots & s+e-1 & s+e & \cdots \\
\Delta H(X, n) & 2 b-1 & d & \cdots & d & h_{1} & \cdots & h_{e} & 0 & \cdots
\end{array}
$$

$d-1 \geq h_{1}, h_{e} \geq 1,0 \leq e \leq a$ and ([7] Theorem 2.2) $h_{n}-h_{n+1} \geq 2$ for $1 \leq n \leq e-1$.

3. Technical lemmas.

In this section we prove three lemmas, which will be useful in the proof of the main theorem.

Lemma 3.1. Let E be a scheme of t skew lines L_{1}, \ldots, L_{t} lying on Q. Let $X \subset E$ be a finite set of points such that $\left|X \cap L_{i}\right|=l_{i} \geq t$ for $i=1, \ldots, t$. Then the Hilbert function of X depends only on the number of the points arranged on each line.
Proof. Of course, we can assume that

$$
l_{1} \geq l_{2} \geq \ldots \geq l_{t} .
$$

We want to compute $H(X, n)$ for every integer n. We distinguish three cases: $1 \leq n \leq l_{t}-1$ or $l_{t} \leq n \leq l_{1}-1$ or $n \geq l_{1}$.

If $1 \leq n \leq l_{t}-1$ we have that $I_{X, n}=I_{E, n}$, so $H(X, n)=H(E, n)$.
If $l_{t} \leq n \leq l_{1}-1$ we set $\beta=\max \left\{i \mid 1 \leq i \leq t, l_{i} \geq n+1\right\}$. We want to prove that $H(X, n)=H\left(L_{1} \cup \ldots \cup L_{\beta}, n\right)+\sum_{i=\beta+1}^{t} l_{i}$. We call $P_{\beta+1,1}, \ldots, P_{\beta+1, l_{\beta+1}}, \ldots, P_{t, 1}, \ldots, P_{t, l_{t}}$ the points of X such that $P_{i, j} \in L_{i}$ for $\beta+1 \leq i \leq t$ and $1 \leq j \leq l_{i}$. We have to prove that these points impose independent conditions to the linear system of the surfaces of degree n containing the lines L_{1}, \ldots, L_{β}. To do this it is enough to prove that there is a surface S of degree $\leq n$ containing the lines L_{1}, \ldots, L_{β}, passing through the points $P_{\beta+1,1}, \ldots, P_{\beta+1, l_{\beta+1}}, \ldots, P_{\gamma, 1}, \ldots, P_{\gamma, k}, \beta+1 \leq \gamma \leq t$, $1 \leq k \leq l_{\gamma}$ but not through $P_{\gamma, k+1}$ (we use the convention that if $\gamma \leq t-1$ then $\left.P_{\gamma, l_{\nu}+1}=P_{\gamma+1,1}\right)$.

If $\gamma-1 \geq k$ we take the plane Π_{i} identified by the line L_{i} and by the point $P_{\gamma, i}$ for $1 \leq i \leq k$, and we take a plane Π_{i} passing through the line L_{i} but not through $P_{\gamma, k+1}$ for $k+1 \leq i \leq \gamma-1$. We set $S=\Pi_{1} \cup \ldots \cup \Pi_{\gamma-1}$.

If $\gamma-1<k$ we take the plane Π_{i} identified by the line L_{i} and by the point $P_{\gamma, i}$ for $1 \leq i \leq \gamma-1$ and a plane Π_{i} passing through $P_{\gamma, i}$ but not through $P_{\gamma, k+1}$ for $\gamma \leq i \leq k$. We set $S=\Pi_{1} \cup \ldots \cup \Pi_{k}$.

In both cases $\operatorname{deg} S=\max \{\gamma-1, k\} \leq n$.
If $n \geq l_{1}$ then similar arguments show that $H(X, n)=\sum_{i=1}^{t} l_{i}$.
We call Σ_{1} and Σ_{2} the two rulings of lines lying on Q.
Lemma 3.2. Let E be a scheme of t lines L_{1}, \ldots, L_{t} of Σ_{1} and $v \leq t$ lines M_{1}, \ldots, M_{v} of Σ_{2}. Let $X \subset E$ be a finite set of points such that $\left|X \cap L_{i} \cap M_{j}\right|=$ $\emptyset, \forall i, j$, and $l_{i} \geq t+m$, for $i=1, \ldots$, , where $l_{i}=\left|X \cap L_{i}\right|$, for $i=1, \ldots, t$, $m_{i}=\left|X \cap M_{i}\right|$ for $i=1, \ldots, v$ and $m=\max \left\{m_{i} \mid 1 \leq i \leq v\right\}, m_{i} \geq 1$. Then the Hilbert function of X depends only on the numbers of the points arranged on each line.

Proof. We can assume that

$$
l_{1} \geq \ldots \geq l_{t}
$$

and

$$
m_{1} \geq \ldots \geq m_{v}
$$

If $1 \leq n \leq t+m_{v}-1$ then $H(X, n)=H(E, n)$. In fact let f be $\in I_{X, n}$; since on L_{i} there are $l_{i} \geq t+m_{1} \geq t+m_{v} \geq n+1$ points, $f \in I_{L_{1} \cup \ldots \cup L_{t}, n}$ and since the points are different from the intersection points between the lines L_{i} and M_{j}, f is zero on $t+m_{j} \geq n+1$ points on M_{j}, so f is zero on all M_{j}, i.e. $f \in I_{E, n}$.

If $t+m_{v} \leq n \leq t+m_{1}-1,\left(m_{1}>m_{v}\right)$, denote $\gamma=\max \{j \mid 1 \leq$ $\left.j \leq v, m_{j}+t \geq n+1\right\}$, then $H(X, n)=H\left(L_{1} \cup \ldots \cup L_{t} \cup M_{1} \cup \ldots \cup\right.$ $\left.M_{\gamma}, n\right)+\sum_{i=\gamma+1}^{v} m_{i}$. In fact, as in the previous case, $I_{L_{1} \cup \ldots \cup L_{t} \cup M_{1} \cup \ldots \cup M_{\gamma}, n} \subset$ $I_{X, n}$, so it is enough to prove that the points lying on $M_{\gamma+1}, \ldots, M_{v}$ impose independent conditions to the linear system of the surfaces of degree n containing the lines $L_{1}, \ldots, L_{t}, M_{1}, \ldots, M_{\gamma}$. We denote these points $Q_{\gamma+1,1}, \ldots, Q_{\gamma+1, m_{\gamma+1}}, \ldots, Q_{v, 1}, \ldots, Q_{v, m_{v}}$. To do this we prove that there is a surface of degree $\leq n$, containing the lines $L_{1}, \ldots, L_{t}, M_{1}, \ldots, M_{\gamma}$, passing through

$$
Q_{\gamma+1,1}, \ldots, Q_{\gamma+1, m_{\gamma+1}}, \ldots, Q_{\sigma, 1}, \ldots, Q_{\sigma, k}
$$

but not through $Q_{\sigma, k+1}, \gamma+1 \leq \sigma \leq v, 1 \leq k \leq m_{\sigma}$ (we use again the convention that if $\sigma \leq v-1$ then $Q_{\sigma, m_{\sigma}+1}=Q_{\sigma+1,1}$). Let us consider the planes Π_{i} containing the lines L_{i} and $M_{i}, 1 \leq i \leq \sigma-1 ; \Pi_{i}$ passing through L_{i} but not containing $Q_{\sigma, k+1}, \sigma \leq i \leq t ; \Pi_{t+i}$ passing through $Q_{\sigma, i}$ but not through $Q_{\sigma, k+1}, 1 \leq i \leq k$. We have that $\operatorname{deg}\left(\Pi_{1} \cup \ldots \cup \Pi_{t+k}\right)=t+k \leq t+m_{\sigma} \leq n$.

If $t+m_{1} \leq n \leq l_{1}-1,\left(l_{1}>t+m_{1}\right)$, called $\beta=\max \left\{i \mid 1 \leq i \leq t, l_{i} \geq\right.$ $n+1$, then $H(X, n)=H\left(L_{1} \cup \ldots \cup L_{\beta}, n\right)+\sum_{i=\beta+1}^{t} l_{i}+\sum_{j=1}^{v} m_{j}$. In fact as in the previous cases we have only to prove that the points

$$
\begin{gathered}
P_{\beta+1,1}, \ldots, P_{\beta+1, l_{\beta+1}}, \ldots, P_{t, 1}, \ldots, P_{t, l_{t}} \\
Q_{1,1}, \ldots, Q_{1, m_{1}}, \ldots, Q_{v, 1}, \ldots, Q_{v, m_{v}}
\end{gathered}
$$

$P_{i, j} \in L_{i}$ and $Q_{i, j} \in M_{i}$, impose independent conditions to the linear system of the surfaces of degree n containing the lines L_{1}, \ldots, L_{β}. For the points $P_{i, j}$ it is the same proof of the Lemma 1. So it is enough to prove that there is a surface of degree $\leq n$ containing the lines L_{1}, \ldots, L_{β}, passing through the points

$$
\begin{gathered}
P_{\beta+1,1}, \ldots, P_{\beta+1, l_{\beta+1}}, \ldots, P_{t, 1}, \ldots, P_{t, l_{t}} \\
Q_{1,1}, \ldots, Q_{1, m_{1}}, \ldots, Q_{\sigma, 1}, \ldots, Q_{\sigma, k}
\end{gathered}
$$

$1 \leq \sigma \leq v, 1 \leq k \leq m_{\sigma}$ and not through $Q_{\sigma, k+1}$ (with the usual convention). Let us consider the planes Π_{i} passing through L_{i} and $M_{i}, 1 \leq i \leq \sigma-1$; Π_{i} passing through the lines L_{i} but not containing $Q_{\sigma, k+1}, \sigma \leq i \leq t ; \Pi_{t+i}$ passing through $Q_{\sigma, 1}, \ldots, Q_{\sigma, k}$, but not through $Q_{\sigma, k+1}, 1 \leq i \leq k$. We have that $\operatorname{deg}\left(\Pi_{1} \cup \ldots \cup \Pi_{t+k}\right)=t+k \leq t+m_{\sigma} \leq n$.

If $n \geq l_{1}$ then similar arguments show that $H(X, n)=\operatorname{deg} X$.
In [8] it is proved that for any O-sequence satisfying a "decreasing type" condition there is a 0 -dimensional subscheme of a smooth quadric with this O-sequence as its Hilbert function. Unfortunately the construction given in [8] cannot be used for our purpose, so we need a construction "ad hoc". The following technical lemma gives this construction.

Lemma 3.3. Let $\left\{v_{n}\right\}$ be a O-sequence of the type

$$
\begin{array}{ccccccccccc}
n & 0 & 1 & \cdots & t-1 & t & t+1 & \cdots & t+u-1 & t+u & \cdots \\
v_{n} & 1 & 3 & \cdots & 2 t-1 & k_{1} & k_{2} & \cdots & k_{u} & 0 & \cdots
\end{array}
$$

$2 t \geq k_{1} \geq k_{2} \geq \ldots \geq k_{u}>0, u \geq 1$.
If $\delta=\max \left\{t, k_{1}\right\}$, then there is a 0 -dimensional subscheme X, lying on δ lines of Q, such that $\Delta H(X, n)=v_{n}$, for all $n \in \mathbb{N}_{0}$ and $\Delta H(X, n)$ depends only on the number of the points arranged on each line.
Proof. We rename the integers k_{1}, \ldots, k_{u} and settle them in the following way:

$$
\begin{gathered}
k_{1}=h_{q, \alpha_{q}}=\ldots=h_{q, 1}>h_{q-1, \alpha_{q-1}}=\ldots=h_{q-1,1}>\ldots \\
\ldots>h_{1, \alpha_{1}}=\ldots=h_{1,1}=k_{u}
\end{gathered}
$$

We set $\beta_{i}=h_{i, 1} ; s=t+u ; r=\sum_{i=0}^{\infty} v_{i}=t^{2}+\sum_{i=1}^{q} \alpha_{i} \beta_{i}$.
We have that $\beta_{1}=k_{u}, \beta_{q}=k_{1}$ and $u=\sum_{i=1}^{q} \alpha_{i}$.
Let $Q \subset \mathbb{P}_{k}^{3}$ be a smooth quadric and Σ_{1} and Σ_{2} the two rulings of lines on Q. We have two cases.

First case: $0<k_{1} \leq t$. We arrange r points on any t lines of Σ_{1}, in the following way:

on	β_{1}	lines we take any	s	points on each
$"$	$\beta_{2}-\beta_{1}$	$"$	$s-\alpha_{1}$	$"$
\ldots	\ldots	\ldots	\ldots	\ldots
$"$	$\beta_{q}-\beta_{q-1}$	$"$	$s-\sum_{i=1}^{q-1} \alpha_{i}$	$"$
$"$	$t-\beta_{q}$	$"$	$s-\sum_{i=1}^{q} \alpha_{i}$	$"$

So the number of points is

$$
\begin{aligned}
\beta_{1} s & +\sum_{i=2}^{q}\left(\beta_{i}-\beta_{i-1}\right)\left(s-\sum_{j=1}^{i-1} \alpha_{j}\right)+t\left(t-\beta_{q}\right) \\
& =\beta_{1} s+\sum_{i=2}^{q} \beta_{i}\left(s-\sum_{j=1}^{i-1} \alpha_{j}\right)-\sum_{i=1}^{q-1} \beta_{i}\left(s-\sum_{j=1}^{i} \alpha_{j}\right)+t^{2}-t \beta_{q} \\
& =\beta_{1} s+\beta_{q} s-\beta_{1} s+\beta_{1} \alpha_{1}-\beta_{q} \sum_{j=1}^{q-1} \alpha_{j}+\sum_{i=2}^{q-1} \beta_{i} \alpha_{i}+t^{2}-t \beta_{q} \\
& =\beta_{q} u+t^{2}+\sum_{i=1}^{q-1} \beta_{i} \alpha_{i}-\beta_{q} \sum_{j=1}^{q-1} \alpha_{j} \\
& =\beta_{q} \alpha_{q}+t^{2}+\sum_{i=1}^{q-1} \beta_{i} \alpha_{i}=r
\end{aligned}
$$

We have to verify that the first difference of the Hilbert function of this set of points X is equal to v_{n} for all $n \in \mathbb{N}$. We write E_{i} for a scheme made up by i skew lines on Q. The hypotheses of the Lemma 3.1 are satisfied. So for computing $H(X, n)$ we have to calculate the number γ_{n} of the lines on which we put more than n points and the number ζ_{n} of the points that lie on the other $t-\gamma_{n}$ lines. If $1 \leq n \leq t-1, \gamma_{n}=t$, so $\Delta H(X, n)=\Delta H\left(E_{t}, n\right)=v_{n}$.

If $t \leq n \leq s-1$ then we can write $n=t+\sum_{i=m+1}^{q} \alpha_{i}+k, 1 \leq m \leq q$, $0 \leq k \leq \alpha_{m}-1$, so $\gamma_{n}=\beta_{m}$. If $k \geq 1$ then also $\gamma_{n-1}=\beta_{m}$, so, by the Lemma 3.1, $\Delta H(X, n)=H(X, n)-H(X, n-1)=H\left(E_{\beta_{m}}, n\right)+\zeta_{n}-$ $H\left(E_{\beta_{m}}, n-1\right)-\zeta_{n}=\Delta H\left(E_{\beta_{m}}, n\right)=\beta_{m}=v_{n}$; if $k=0, \gamma_{n-1}=\beta_{m+1}$, so $\Delta H(X, n)=H(X, n)-H(X, n-1)=H\left(E_{\beta_{m}}, n\right)+\zeta_{n}-H\left(E_{\beta_{m+1}}, n-1\right)-$ $\zeta_{n-1}=\beta_{m}^{2}+\left(n-\beta_{m}+1\right) \beta_{m}+\sum_{i=m}^{q}\left(\beta_{i+1}-\beta_{i}\right)\left(s-\sum_{j=1}^{i} \alpha_{j}\right)-\beta_{m+1}^{2}+(n-$ $\left.1-\beta_{m+1}+1\right) \beta_{m+1}-\sum_{i=m+1}^{q}\left(\beta_{i+1}-\beta_{i}\right)\left(s-\sum_{j=1}^{i} \alpha_{j}\right)=n \beta_{m}+\beta_{m}-n \beta_{m+1}+$ $\left(\beta_{m+1}-\beta_{m}\right)\left(t+\sum_{j=m+1}^{q} \alpha_{j}\right)=n\left(\beta_{m}-\beta_{m+1}\right)+\beta_{m}+\left(\beta_{m+1}-\beta_{m}\right) n=\beta_{m}=v_{n}$.

If $n \geq s$ then $\gamma_{n}=0$ and $\zeta_{n}=r$, so $\Delta H(X, n)=0=v_{n}$.

Second case: $t+1 \leq k_{1} \leq 2 t$. We set $p=\min \left\{1 \leq i \leq q \mid \beta_{i} \geq t\right\}$ and $\bar{b}=\beta_{p}-t$. We have that $0 \leq \bar{b}<\beta_{p}-\beta_{p-1}$. We choose our points X on t
lines L_{1}, \ldots, L_{t} of Σ_{1} in the following way:

on	β_{1}	lines we take any	s	points on each
$"$	$\beta_{2}-\beta_{1}$	$"$	$s-\alpha_{1}$	$"$
\ldots	\ldots	\ldots	\ldots	\ldots
$"$	$\beta_{p-1}-\beta_{p-2}$	$"$	$s-\sum_{i=1}^{p-2} \alpha_{i}$	$"$
$"$	$\beta_{p}-\beta_{p-1}-\bar{b}$	$"$	$s-\sum_{i=1}^{p-1} \alpha_{i}$	$"$

and on $k_{1}-t$ lines $M_{1}, \ldots, M_{k_{1}-t}$ of Σ_{2} with the only restriction $X \cap L_{i} \cap M_{j}=$ $\emptyset, \forall i, j$, in the following way:

on	\bar{b}	lines we take	$u-\sum_{i=1}^{p-1} \alpha_{i}$	points on each
"	$\beta_{p+1}-\beta_{p}$	$"$	$u-\sum_{i=1}^{p} \alpha_{i}$	$"$
\ldots	\ldots	\ldots	\ldots	\ldots
$"$	$\beta_{q}-\beta_{q-1}$	$"$	$u-\sum_{i=1}^{q-1} \alpha_{i}$	$"$

The number of these points is

$$
\begin{aligned}
\beta_{1} s & +\sum_{i=2}^{p-1}\left(\beta_{i}-\beta_{i-1}\right)\left(s-\sum_{j=1}^{i-1} \alpha_{j}\right)+\left(\beta_{p}-\beta_{p-1}-\bar{b}\right)\left(s-\sum_{j=1}^{p-1} \alpha_{j}\right)+ \\
& +\bar{b}\left(u-\sum_{j=1}^{p-1} \alpha_{j}\right)+\sum_{i=p+1}^{q}\left(\beta_{i}-\beta_{i-1}\right)\left(u-\sum_{j=1}^{i-1} \alpha_{j}\right)= \\
& =t^{2}+\sum_{i=1}^{q-1} \beta_{i} \alpha_{i}=r
\end{aligned}
$$

Again we have to prove that $\Delta H(X, n)=v_{n}$. We write $E_{i j}$ for a scheme made up by i lines of Σ_{1} and by j lines of Σ_{2} and we set $E=E_{t k_{1}-t}$. Because of our choice the hypotheses of the Lemma 3.2 are satisfied.

If $1 \leq n \leq t-1$ then $\Delta H(X, n)=\Delta H(E, n)=2 n+1=v_{n}$.
If $t \leq n \leq t+\alpha_{q}-1$ then $\Delta H(X, n)=\Delta H(E, n)=\beta_{q}=v_{n}$.
If $t+\alpha_{q} \leq n \leq t+\sum_{i=p}^{q} \alpha_{i}-1$ then every lines of E in Σ_{1} have more than n points of X. Let γ_{n} be the number of the lines of Σ_{2} on which we have more than n points and ζ_{n} the number of the points lying on the other $\beta_{q}-t-\gamma_{n}$ lines of Σ_{2}. Then $H(X, n)=H\left(E_{t \gamma_{n}}, n\right)+\zeta_{n}$. We write $n=t+\sum_{i=m+1}^{q} \alpha_{i}+k, p-1 \leq m \leq q, 0 \leq k \leq \alpha_{m}-1$. Then
$\gamma_{n}=\bar{b}+\beta_{m}-\beta_{p}=\beta_{m}-t$. If $k \geq 1$ then also $\gamma_{n-1}=\beta_{m}-t$ and $\zeta_{n-1}=\zeta_{n}$, so, by the Lemma 3.2, $\Delta H(X, n)=\Delta H\left(E_{t \gamma_{n}}, n\right)=t+\gamma_{n}=t+\beta_{m}-t=\beta_{m}=v_{n}$. If $k=0, \gamma_{n-1}=\beta_{m+1}-t$, so $\Delta H(X, n)=H\left(E_{t \gamma_{n}}, n\right)+\zeta_{n}-H\left(E_{t \gamma_{n-1}}, n\right)-$ $\zeta_{n-1}=t^{2}+\left(1+\sum_{i=m+1}^{q} \alpha_{i}\right)\left(t+\gamma_{n}\right)+\sum_{i=m}^{q}\left(\beta_{i+1}-\beta_{i}\right) \sum_{j=i+1}^{q} \alpha_{j}-t^{2}-$ $\sum_{i=m+1}^{q} \alpha_{i}\left(t+\gamma_{n-1}\right)-\sum_{i=m+1}^{q}\left(\beta_{i+1}-\beta_{i}\right) \sum_{j=i+1}^{q} \alpha_{j}=t+\gamma_{n}+\sum_{i=m+1}^{q} \alpha_{i} \gamma_{n}-$ $\sum_{i=m+1}^{q} \alpha_{i} \gamma_{n-1}+\left(\beta_{m+1}-\beta_{m}\right) \sum_{j=m+1}^{q} \alpha_{j}=\beta_{m}=v_{n}$.

Similar arguments work for $t+\sum_{i=p}^{q} \alpha_{i} \leq n \leq s-1$ and $n \geq s$.
Example 3.4. Let us consider the following O-sequence:

$$
\begin{array}{cccccccccccccccc}
n & 0 & \cdots & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & \cdots \\
1 & 1 & \ldots & 11 & 12 & 10 & 10 & 10 & 8 & 8 & 8 & 8 & 4 & 4 & 0 & \ldots
\end{array}
$$

We have that $\beta_{1}=4, \beta_{2}=8, \beta_{3}=10, \beta_{4}=12 ; \alpha_{1}=2, \alpha_{2}=4, \alpha_{3}=3$, $\alpha_{4}=1 ; t=6, u=10, s=16 ; p=2, \bar{b}=2$.

We put our points in the following way:

on	4	lines of Σ_{1} we take any	16	points on each
$"$	2	$"$	14	$"$

and, distinct from the intersection points:

on	2	lines of Σ_{2} we take	8	points on each
$"$	2	$"$	4	$"$
$"$	2	$"$	1	point on each.

4. The main result.

In this section we prove the main result of this paper.
Theorem 4.1. Let C be an irreducible curve, lying on a smooth quadric, of type $(a, b), 1 \leq a \leq b$. Let $\left\{v_{n}\right\}$ be a O-sequence of the kind

$$
\begin{array}{cccccccccccc}
n & 0 & \cdots & b-1 & b & \cdots & s-1 & s & \cdots & s+e-1 & s+e & \cdots \\
v_{n} & 1 & \cdots & 2 b-1 & d & \cdots & d & h_{1} & \cdots & h_{e} & 0 & \cdots
\end{array}
$$

$d=a+b, d-1 \geq h_{1}, h_{e} \geq 1,0 \leq e \leq a$ and $h_{n}-h_{n+1} \geq 2$ for $1 \leq n \leq e-1$.
Then there is a 0-dimensional scheme $X \subset C$, such that $\Delta H(X, n)=v_{n}$, for all $n \in \mathbb{N}_{0}$.

Proof. Let $Q \subset \mathbb{P}_{k}^{3}$ be a smooth quadric and let Σ_{1} and Σ_{2} be the rulings of lines on Q of type $(1,0)$ and $(0,1)$ respectively. We set $c=b-a$.

Let S be a surface such that $\operatorname{deg} S=s$ and $C \not \subset S$ and let $R_{1}, \ldots, R_{c} \in \Sigma_{1}$, $R_{i} \neq R_{j}, \forall i \neq j$, such that $R_{i} \not \subset S$ for $1 \leq i \leq c$. We call D the curve $C \cup R_{1} \cup \ldots \cup R_{c}$. Then D is a complete intersection curve on Q of type (b, b) and the scheme $Z=S \cap D$ is a 0 -dimensional complete intersection.

If $\vartheta=s+b-1$ then we consider the following O-sequence

$$
\bar{v}_{n}=\Delta H(Z, \vartheta-n)-v_{\vartheta-n}
$$

i.e.

$$
\begin{array}{cccccccccccc}
n & 0 & \cdots & -1 & t & \cdots & b-1 & b & \cdots & s-1 & s & \cdots \\
\bar{v}_{n} & 1 & \cdots & 2 t-1 & k_{1} & \cdots & k_{e} & c & \cdots & c & 0 & \cdots
\end{array}
$$

$t=b-e, 2 t \geq k_{1} \geq \ldots \geq k_{e} \geq c$.
Let Y be a 0 -dimensional scheme of $c s$ points, arranged s for any line R_{i}, such that they are distinct from the b points where R_{i} meets C. If we are able to build a zero dimensional scheme $\bar{X} \subset C$, such that $\Delta H(\bar{X} \cup Y, n)=\bar{v}_{n}$ and a surface $S, \operatorname{deg} S=s$, such that $C \not \subset S, R_{i} \not \subset S$ for $1 \leq i \leq c, \bar{X} \cup Y \subset S$, then for the liaison theory, (see [6] and [1]), the theorem is proved.

To build the scheme \bar{X} we want obviously to use the Lemma 3.3. Since each line of Σ_{1} meets C in b points and each line of Σ_{2} meets C in a points it is enough to show that the construction of the Lemma 3.3, in this situation, uses a number of points $\leq b$ for the lines of Σ_{1} (except the points that we put on the lines R_{1}, \ldots, R_{c}) and a number $\leq a$ for the lines of Σ_{2}.

With the same notation of the Lemma 3.3 if $s \geq b+1$ then $\beta_{1}=c$ and $\alpha_{1} \geq s-b$. Our construction uses first of all c lines of Σ_{1} where we put s points. We take as such lines just the R_{1}, \ldots, R_{c}. Instead, on the other lines of Σ_{1} we must take a number of points $\leq s-\alpha_{1} \leq s-s+b=b$. If $\beta_{q}>t$ then our construction uses lines of Σ_{2} too. We can have $p=1$ or $p \geq 2$. If $p=1$ then

$$
c=\beta_{1} \geq t \Rightarrow b-a \geq b-e \Rightarrow a \leq e \Rightarrow a=e
$$

hence $\bar{b}=0$ so we must put on these lines a number of points $\leq s-t-\alpha_{1} \leq$ $s-b+e-\alpha_{1} \leq s-b+e-s+b=e=a$. If $p \geq 2$ then the number of points is $\leq s-t-\alpha_{1}-\ldots-\alpha_{p-1} \leq s-b-e-\alpha_{1} \leq s-b+e-s+b=e \leq a$.

If $s=b$ then $\beta_{1}=k_{e}=2 b-1-h_{1} \geq 2 b-1-a-b+1=c$, so we can repeat the same arguments.

So far we have built the 0-dimensional scheme $\bar{X} \cup Y$. The existence of the surface S is trivial.

REFERENCES

[1] E.D. Davis - A.V. Geramita - F. Orecchia, Gorenstein algebras and the CayleyBacharach theorem, Proc. A.M.S., 93-4 (1985), pp. 593-597.
[2] S. Giuffrida - R. Maggioni, On the Rao module of a curve lying on a smooth cubic surface in \mathbb{P}^{3}, Communications in algebra, 18-7 (1990), pp. 2039-2061.
[3] S. Giuffrida - R. Maggioni - A. Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric, Pac. J. Math., 155 (1992), pp. 251-282.
[4] S. Giuffrida - R. Maggioni - A. Ragusa, Resolutions of 0-dimensional subschemes of a smooth quadric, Proc. International Conference, Ravello, 1992.
[5] G. Paxia - G. Raciti - A. Ragusa, Uniform position properties and Hilbert functions for points on a smooth quadric, J.Algebra, 149 (1992), pp. 102-121.
[6] C. Peskine - L. Szpiro, Liaison des variétés algébriques. I, Inventiones Math., 26 (1974), pp. 271-302.
[7] G. Raciti, Hilbert function and geometric properties for a closed zero-dimensional subscheme of a quadric $Q \subset \mathbb{P}^{3}$, Communications in algebra, 18-9 (1990), pp. 3041-3053.
[8] G. Raciti, Construction of a set of points on a smooth quadric $Q \subset \mathbb{P}^{3}$ with assigned Hilbert function, The curve seminar at Queen's vol. VI - Queen's papers in pure and applied mathematics, 83 (1989), J1-J13.

Dipartimento di Matematica, Università di Catania, Viale Andrea Doria 6, 95125 Catania (ITALY)

