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0-DIMENSIONAL SUBSCHEMES OF CURVES LYING
ON A SMOOTH QUADRIC SURFACE

GIUSEPPE ZAPPALA

We characterize all the possible Hilbert functions for 0-dimensional
subschemes of an irreducible curve C lying on a smooth quadric surface
0CP.

Introduction.

The three-codimensional projective schemes and, in particular, the 0-di-
mensional subschemes of P3, represent a subject of the algebraic geometry
where very little is still known. Specifically we consider the following general
problem: how do some properties of the irreducible curves of P3 affect the
Hilbert function of their O-dimensional subschemes? So one can consider
curves whose minimal surface has fixed degree, complete intersection curves,
arithmetically Cohen-Macaulay curves, arithmetically Buchsbaum curves etc..

In this paper we answer one of these questions: we characterize all the
possible Hilbert function of the O-dimensional subschemes of an irreducible
curve lying on a smooth quadric, just using the type (a, b) of the curve.
The postulation of 0-dimensional schemes on a smooth quadric have been
extensively studied in [3] and in [5].

More precisely let O be a smooth quadric. In [7] the author proves that
if X C Q is a 0-dimensional scheme contained in a complete intersection
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2,b,s5),2 <b < s,forall n e Nsuchthat n > s and AH(X,n) > 1 then
A’H(X,n+1) < 2.

Here we prove that if C is an irreducible curve of type (a, b) with a < b,
lying on a smooth quadric surface and {v,} is a O-sequence, definitively zero,
such that v, < AH(C,n), s = minfn e N | v, < AH(C,n)} > b and
Av,y; < =2 for all n > s such that v, > 1, then on C there is a 0-dimensional
scheme X, such that AH(X, n) = v,.

In Section 1 we fix notation and preliminaries, in the second section we
give the general form of the Hilbert function for a 0-dimensional subscheme
of a curve of type (a, b). The third section forms the technical heart of this
paper. In particular we explain how one can construct a 0-dimensional scheme
X, with assigned Hilbert function, on some lines of a smooth quadric surface
0, in a way such that it is possible to embed X in a suitable curve of Q. This
result will be very useful to prove the theorem in Section 4.

1. Notation and preliminaries.

Throughout this paper Q will denote a smooth quadric surface in P, k
algebraically closed field. Let C C Q be a curve of type (a, b), a < b. We set
c=b—-—aandd =a+ b =degC. Let R = k[x, y, z, w] be the polynomial
ring over k in four indeterminates and /¢ the saturated homogeneous ideal of C
in R.

It is known that a minimal free resolution of R/I- as R-module is:

ifc=0

0— R(—b—-2)—> R(—b)® R(—2) > R— R/l — 0;
ifec=1
0— R(—b—1)*) - R(—=b>® R(-2) - R — R/Ic — 0;
ifc>2
0 — R(=b—2)"'— R(—b—1)* - R(—=b)"'"®R(-2) - R — R/Ic — 0;
(see [4]).
If ¢ : Ny — Z is a function, the first difference of ¢ is A¢p(0) = ¢(0),

Ap(n) = ¢(n) — ¢(n — 1) if n > 1, and recursively the n-th difference is
A"p(0) = A" 1(0), A"p(n) = A" p(n) — A" 'p(n — 1) if n > 1.
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The above resolutions allows us to compute the Hilbert function of C. In
particular we get

n 0 1 2 o b—1 b 0
A’H(C,n) 1 2 2 .. 2 1—¢ O

If M is a graded R-module, we write M,, for the degree n piece of M and
if M is a finite length graded R-module we define diameter of M (write diam
M) the number of the nonzero graded pieces of M.

If 7¢ is the ideal sheaf of C, we recall that the module

Mc = @ZHl(fc(n»

is called the Hartshorne-Rao module (or simply the Rao module) of C. M¢ is a
finite length R-module and M = 0 if and only if C is an arithmetically Cohen-
Macaulay curve if and only if ¢ < 1. Moreover if ¢ > 2 and p(n) = dimy M¢ ,
we have that

b—n—1)n—-—-a+1) fora<n<b-2

0 forn<a—1lorn>b—-1

p(n) = {

(see [2]), consequently diam M = ¢ — 1 and we can obtain the first and the
second difference of p(n):

n 0o --- a—l1 a a+1 s b—1 b b+1
Apn) 0 --- 0 c¢c—1 ¢c-=3 --- 1-—c¢ 0 0
A’pn) 0 -~ 0 c¢c—1 -2 ... =2 ¢c—1 0

2. Hilbert function of the subschemes of C.

In this section we found the general form of the first difference of the
Hilbert function of a 0-dimensional scheme of a curve of type (a, b) on a smooth
quadric, such that

s=min{neN| AH(X,n) < AH(C,n)} > b.
Let C C IP’,% be a curve, .Z( its ideal sheaf, S C IE”,% a surface such that

no irreducible component of C is contained in S. Then X = C N S is a 0-
dimensional scheme.
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Let F =0, F € Ry, be the equation of S; we have for any » the following
short exact sequence of sheaves:

0= I —$)> Icn) > Fx(n) — 0,
where the first map is the multiplicationby F and _Zx is its cokernel: of course
it is the ideal sheaf of X as a subscheme of S. It induces a long exact sequence

on the cohomological groups

0 — H(Ic(n —s5)) - H(Ic(n)) - H( Fx(n)) —
— H'(Ic(n —5)) > H' (Ic(n) » H'( Fx(n) — -+

or,if Jy =@ H'( _Zx(n)), the exact sequence of graded R-modules:
n

0 = Ie(—8) > Ie — Jx — Mc(—s) > Mc — -+ .
and if K is the kernel of the map:
Mc(—$) > Mc

we have the exact sequence of graded R-modules:
(%) 0= Ic(=s) > Ic — Jx = K — 0.
From the following exact sequence:

0— Is(n) - Ix(n) - FIx(n) — 0,
since H'(.#s(n)) = 0 for any n, we obtain the exact sequence of graded R-

modules:
0—Ig— Iy — Jx — 0,

hence
dimk JX’,, = dll’Ilk IX’,, - dll’Ilk IS,n = dlmk IX’,, - dlmk Rn—s

and from (x) we get the following relation between the Hilbert function of C
and the Hilbert function of X:

H(X,n)=H(C,n)— H(C,n —s) —dimy K.
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Let us consider now a curve C C Q of type (a, b), a < b and a surface S, such
that s > b. Since s > b > ¢ — 1 = diam M we have

HX,n)=H(C,n)—H(C,n—s5)— p(n—=s)
(we use the convention that H (C, n) = 0 for n < —1), and consequently
AH(X,n)=AH(C,n)— AH(C,n —s)— Ap(n —s);
soforn <s+a—1
AH(X,n)=AH(C,n)— AH(C,n —s).

Moreover
AH(X,s4+a)=AH(C,s4+a)— AH(C,a)—c+1
=a+b—Ra+1)—c+1=0,

and, since AH (X, n) is a O-sequence, AH(X,n) = 0 for n > s + a. Finally
we obtain:

AH(C,n)— AH(C,n—s) forn<s+a—1
AH(X,n)=
0 for n > s +a.

Let X C C be a 0-dimensional scheme. We define
s=min{neN| AH(X,n) < AH(C, n)}

and we assume that s > b. Let S be a surface, degS = s, such that X C §
but no irreducible component of C is contained in §. Since X C SN C,
AH(X,n) < AH(S N C,n), i.e. the last part of the first difference of the
Hilbert function of X is

n b—1 b R | K e ste—1  s+e
AH(X,n) 2b—1 d --- d hy --- h, 0

d—1>hy,h, >1,0 < e < a and ([7] Theorem 2.2) h, — h,y; > 2 for
l<n<e-—1.
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3. Technical lemmas.

In this section we prove three lemmas, which will be useful in the proof of
the main theorem.

Lemma 3.1. Let E be a scheme of t skew lines Ly, ..., L; lying on Q. Let
X C E be a finite set of points such that | XNL;| =1; > tfori =1,...,t. Then
the Hilbert function of X depends only on the number of the points arranged on
each line.

Proof. Of course, we can assume that
Lh>h> th

We want to compute H (X, n) for every integer n. We distinguish three cases:
l<n<l—lorl;,<n<lij—1lorn>]I.

If1 <n <l —1wehavethat Iy, = Ig ,,s0 H(X,n)= H(E, n).

Ifl, <n<li —1weset =max{i |1 <i <¢tl;>n+1}. We
want to prove that H(X,n) = H(L; U ... U Lg,n) + Z;:ﬂ+l l;. We call
P5+1,1, R P}S+1,lﬁ+]’ R % T Pt,l, the points of X such that Pi,j e L;
for +1 <i <tand 1 < j < [;. We have to prove that these points
impose independent conditions to the linear system of the surfaces of degree

n containing the lines Ly, ..., Lg. To do this it is enough to prove that
there is a surface S of degree < n containing the lines Ly, ..., Lg, passing
through the points P5+1’1, R Pﬂ+1,lﬁ+]a ceey P},’l, e Py,k, B+1 =<y <t,

1 <k <, butnot through P, s, (we use the convention thatif y < ¢—1 then
Py 1= Pyi11)-

If y —1 > k we take the plane I1; identified by the line L; and by the point
P, ; for 1 <i <k, and we take a plane I1; passing through the line L; but not
through P, ;i fork+1<i <y —1.Weset S =11, U...UII,_.

If y —1 < k we take the plane I1; identified by the line L; and by the point
P,;for1 <i <y — 1 and a plane II; passing through P, ; but not through
P,ipifory <i <k WesetS=1II,U...UIl.

In both cases deg§ = max{y — 1, k} < n.

If n > [, then similar arguments show that H(X, n) = Zt [;. U

i=1
We call ¥; and X, the two rulings of lines lying on Q.

Lemma 3.2. Let E be a scheme of t lines Ly, ..., L, of X1 and v < t lines
My, ..., M, of . Let X C E be a finite set of points such that | XNL;\M;| =
B, Vi, j,andl; > t+m, fori =1,...,t,wherel; = |XNL;|,fori =1,...,t¢,
m;=|XNM|fori=1,...,vandm = max{m; | 1 <i <wv}, m; > 1. Then
the Hilbert function of X depends only on the numbers of the points arranged
on each line.



0-DIMENSIONAL SUBSCHEMES OF CURVES LYING. .. 119

Proof. We can assume that
l] Z “ e Z ll‘

and
mp = ... = nMy.

Ifl <n<t+m,—1then H(X,n) = H(E,n). In factlet f be € Ix,;
sinceon L; thereare [; >t +m; >t +m, > n+ 1 points, f € I} y._uL,.» and
since the points are different from the intersection points between the lines L;
and M;, f iszeroont +m; > n+ 1 pointson M;, so f is zero on all M;, i.e.
f € IE,n-

ft+m, <n<t+m —1,(m > my),denote y = max{j | 1 <
J<v,mj+t>n+1},then HX,n) = H(L,U...UL, UM, U... U
M,, n)+ Zf:yH m;. In fact, as in the previous case, Ip,u._ur,umu..um,.n C
Ix ,, so it is enough to prove that the points lying on M, y,..., M, im-
pose independent conditions to the linear system of the surfaces of degree
n containing the lines Ly,..., L;, M;y,..., M,. We denote these points
Qy+1.1s -5 Optimyys -5 Quits+ o, Qum,- To do this we prove that there is
a surface of degree < n, containing the lines Ly, ..., L,, My, ..., M, passing
through

Opitts s Opitimyrys oo Qots ooy Qo

but not through Qs 441, ¥y +1 < 0 < v, 1 < k < m, (we use again the
convention thatif o < v—1then Q, ,, +1 = Os+1,1)- Let us consider the planes
[1; containing the lines L; and M;, 1 <i < o — 1; I1; passing through L; but
not containing Qg r+1, 0 < i < t; I1;4; passing through O, ; but not through
Osit1, 1 <i < k. We have thatdeg(IT; U... UIl;4x) =t +k <t +m, <n.

Ift4+m <n<li—1,(4 >t+my),calledf=max{i |1 <i<t,[; >
n+1,then H(X,n)= H(L\U...ULg, n)+ Y i g, 1 + > j_ym;. Infact as
in the previous cases we have only to prove that the points

Ppiias ooy Ppgrggeysooos Pras ooy Pry,
Ql,lv LR Ql,m]a ceey Qv,lv AR Qv,mv

P;j € L; and Q; ; € M;, impose independent conditions to the linear system of
the surfaces of degree n containing the lines Ly, ..., Lg. For the points P; ; it
is the same proof of the Lemma 1. So it is enough to prove that there is a surface
of degree < n containing the lines L, ..., Lg, passing through the points

Ppiias ooy Ppgrggeysooos Pras ooy Pry,

Ql,lv AR Ql,mlv AR QU’,lv c ey QU’,k
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1 <o <v,1 <k < m, and not through Q, ;+; (with the usual convention).
Let us consider the planes I1; passing through L; and M;, 1 < i < o — 1;
I1; passing through the lines L; but not containing Qs j41, 0 < i < ¢t; I1,4;
passing through Q. 1, ..., Qsx, but not through Q, ;41,1 <i < k. We have
thatdeg(IT; U.. . UTl,;x) =t +k <t+m, <n.

If n > [ then similar arguments show that H (X, n) = deg X. [l

In [8] it is proved that for any O-sequence satisfying a “decreasing type”
condition there is a O-dimensional subscheme of a smooth quadric with this
O-sequence as its Hilbert function. Unfortunately the construction given in
[8] cannot be used for our purpose, so we need a construction “ad hoc”. The
following technical lemma gives this construction.

Lemma 3.3. Let {v,} be a O-sequence of the type

n o 1 .- t—1 t t+1 -0 tdu—1  t+4u

ve 13 o 2—1 ki ko - k2 O

2>k >ky>...>k, >0, u>1.

If § = max{t, k1}, then there is a 0-dimensional subscheme X, lying on §
lines of Q, such that AH(X, n) = v,, for all n € Ny and AH (X, n) depends
only on the number of the points arranged on each line.

Proof. We rename the integers &y, .. ., k, and settle them in the following way:
k1 = hq,aq =...= hq,l > hq—l,aq,] =...= ]’lq_1’1 > ...
>h1’a1 :---:hl.l :ku.

We set 8; = hl"l;s =t+u;r = Z?iovi = t2—|- Z?:l o; B

We have that 8 = k,, B, =k andu = ) 7_, o;.

Let Q C IP,% be a smooth quadric and X, and X, the two rulings of lines
on Q. We have two cases.

First case: 0 < k; < t. We arrange r points on any ¢ lines of X;, in the

following way:
on Bi lines we take any s points on each
2 ﬁz _ ﬁl 2 s _ al 2
’ ’» q—l ’”
Bg — Bg-1 S =D oy
I t — ﬁq 29 s — Z?:l Q; 29
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So the number of points is

q i—1
Bis+ Y (B — Bio)(s — Do)+ 1(t — By)

i=2 j=1
g i—1 q—1 i
= pis + Z,Bi(s - Z%’) - Z,Bi(s - Zaj) +12 — 1B,
i=2 j=1 i= j=1
g1 g—1
= Bis + ﬁqs — Bis + Brog — ,Bq ZO(/ + Z,B,'Oli + 2 — I,Bq
j=1 i=2

q—1 q—1
:ﬂqu+t2+z,3i0li —,Bq ZOlj
i=1 j=1

q—1

= B4y +t2+Z,31061 =r.

i=1

We have to verify that the first difference of the Hilbert function of this set of
points X is equal to v, for all n € N. We write E; for a scheme made up by
i skew lines on Q. The hypotheses of the Lemma 3.1 are satisfied. So for
computing H (X, n) we have to calculate the number y,, of the lines on which
we put more than n points and the number ¢, of the points that lie on the other
t—yylines. f l<n<t—1,y,=t,50 AH(X,n)= AH(E;,n) =v,.

If t < n <s — 1 then we can write n :t—i—ziq:mHai +k, 1 <m<gq,
0 <k <ao,—1,%0vy = B, If k> 1then also y,_; = Bu, so, by
the Lemma 3.1, AH(X,n) = H(X,n)— H(X,n—1) = H(Eg,,n) + &, —
H(Eg,,n—1)—¢ = AH(Eg,,n) = Bn = Va3 if k =0, Yuu1 = Buy1, 80
AHX,n)=HX,n)—HX,n—1)=H(Eg,,n)+ ¢ — H(Eg,,,,n—1)—
Cnt = B+ (= B+ D + 20, (Big1 — Bi)s — 25y @) = By +(n —
1= But1+ DBt — Ziq:mH(ﬁiH —Bi)s — Z}:l a;) =nfy + By —nPuy1+
Bt = Ba)(t + 371 ) = 0B = Bt 1)+ B+ Bt — Bt = B = vy

Ifn>stheny,=0and ¢, =r,s0o AH(X,n)=0=v,.

§econd case: t +1 < k; < 2t._We set p =min{l <i <gq | B > t}and
b =pB,—1t. Wehavethat0 < b < B, — B,_1. We choose our points X on ¢
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lines Ly, ..., L; of X in the following way:
on B lines we take any s points on each
2 ﬁz _ ﬁl 2 s _ a] 2
’ ”» [7—2 ’”
IBp—l - ,319—2 S = Zi:l «;
2 1 2 _1 2
By —Bp—1—b s = Zf:l i
and on k; —t lines My, ..., My, _, of X, with the only restriction XNL; "M; =

@, Vi, j, in the following way:

p—1

on b lines we take u — ) ;_, «; points on each
’ ’” P ’”
Bp+1 = Bp U—2 -1
’ ’” q—l ’”
By — By U=y o
The number of these points is
p—1 i—1 p—1

Bis+ > (Bi—Bim)s — D o)+ (By — Bpor —b)s — Y ) +
i=2 j=1

j=1

-1 q i—1
+b(u — Zozj) + Z Bi — Bi—1)(u — Z%’) =
j=1 Jj=1

i:p+1
q—1
_ 42 —
=1+ E Bia; =r.
i=1

Again we have to prove that AH (X, n) = v,. We write E;; for a scheme made
up by i lines of X, and by j lines of ¥, and we set E = E,_,. Because of our
choice the hypotheses of the Lemma 3.2 are satisfied.

fl<n<t—1then AH(X,n)=AH(E,n)=2n+1=v,.

Ift<n<t+a,—1then AH(X,n)=AH(E,n)=fB; = v,.

Ift+a, <n =<1+ Z?:p o; — 1 then every lines of E in X; have
more than n points of X. Let y, be the number of the lines of 3, on which
we have more than n points and ¢, the number of the points lying on the
other B, —t — y, lines of X,. Then H(X,n) = H(E,y,,n) + {,. We write
n = I+Z?:m+lai+k,p—1 <m<g¢q,0 <k < a, — 1. Then
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Vo = 15—|—,3m—,3p = Bn—t.Ifk > 1thenalsoy, 1 = B, —tand ¢,_; = ,, so,
by the Lemma 3.2, AH(X,n)= AH(E;,,n) =t+y, =t+Bn—t = B = v,.
Ifk =0, Y1 = Bny1 —t,50 AH(X,n) = H(E,,,,n) + ¢, — H(E,, ,,n)—
b = P2+ A+ 20,0+ v) + 2, B — ,Bi)Z;LH_] o — 1% —
Z?=m+1 O‘i(t+)’n—l )_Z?=m+l(,3i+l _,Bi) Z?=i+1 a; = t+yn+2?=m+1 QiYn—
?=m+1 @i Vn—1+ Bns1 — Bm) Z?=m+1 o = Bm = vy
Similar arguments work for 7 +- 3 o; <n <s—landn>s. O

Example 3.4. Let us consider the following O-sequence:

no 0 s+ 5 6 7 8 9 10 11 12 13 14 15 16
v, 1 .-~ 11 12 10 10 10 8 8 8 8 4 4 O

We have that 8, = 4, 5, = 8, 3 = 10_, Bs=1201 =2, 00, = 4, a3 = 3,
a,=1;t=6,u=10,s =16; p=2,b = 2.
We put our points in the following way:

on 4 linesof X; wetakeany 16 pointson each
2 2 2 14 2

and, distinct from the intersection points:

on 2 linesof X, wetake 8 points oneach
2 2 2 4 2

?2 ” 1 point on each.

4. The main result.
In this section we prove the main result of this paper.
Theorem 4.1. Let C be an irreducible curve, lying on a smooth quadric, of type
(a,b), 1 <a <b. Let {v,} be a O-sequence of the kind
noo0 cee bl b sl s e+ ste—l  ste

vy, 1 -+ 20—-1d --- d h --- h 0

d=a+b,d—1>h,h,>1,0<e<aandh,—h,.1 >2forl <n<e—1.
Then there is a O-dimensional scheme X C C, such that AH(X, n) = v,,
forall n e Ny.
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Proof. Let Q C IP’z be a smooth quadric and let ¥, and X, be the rulings of
lines on Q of type (1, 0) and (0, 1) respectively. We set c = b — a.

Let S be a surface such that degS = sand C ¢ Sandlet Ry, ..., R. € ¥y,
R; # R;, Vi # j,suchthat R, ¢ S for 1 < i < c. We call D the curve
CUR;U...UR.. Then D is a complete intersection curve on Q of type (b, b)
and the scheme Z = S N D is a 0-dimensional complete intersection.

If ¥ = s + b — 1 then we consider the following O-sequence

v, =AH(Z,0 —n)—vy_,

1.e.
noo0 .- -1 t e b=l b e+ s—1 s

v, 1 - 2t—-1 ky -+ k, ¢ --- ¢ O

t=b—e,2t>k >...>k, >c.

Let Y be a 0-dimensional scheme of cs points, arranged s for any line R;,
such that they are distinct from the b points where R; meets C. If we are able
to build a zero dimensional scheme X C C, such that AH(X UY, n) = ¥, and
a surface S, degS = s,suchthat C ¢ S, R, ¢ Sforl1 <i <c¢, XUY C S,
then for the liaison theory, (see [6] and [1]), the theorem is proved.

To build the scheme X we want obviously to use the Lemma 3.3. Since
each line of X meets C in b points and each line of ¥, meets C in a points it
is enough to show that the construction of the Lemma 3.3, in this situation, uses
a number of points < b for the lines of X; (except the points that we put on the
lines Ry, ..., R.) and a number < a for the lines of X,.

With the same notation of the Lemma 3.3 if s > b + 1 then 8; = ¢ and
a; > s — b. Our construction uses first of all ¢ lines of X; where we put s
points. We take as such lines just the Ry, ..., R.. Instead, on the other lines of
X we must take a number of points < s —a; < s —s+b =b. If B, >t then
our construction uses lines of ¥, too. Wecanhave p =1lorp >2. If p =1
then

c=pi>t=>b—a>b—e=>a<e=a=e,

hence b = 0 so we must put on these lines a number of points < s — t — a; <
s—b+e—a; <s—b+e—s+b=e=a.lf p>2thenthe number of points
isS<s—t—ay—...—a,_ | <s—b—-—e—a;<s—bt+e—s+b=e=<a.
Ifs=bthenfBy =k, =2b—1—h; >2b—1—a—b+1=c,sowe
can repeat the same arguments.
So far we have built the 0-dimensional scheme X U Y. The existence of
the surface S is trivial. O
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