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0-DIMENSIONAL SUBSCHEMES OF CURVES LYING

ON A SMOOTH QUADRIC SURFACE

GIUSEPPE ZAPPALÀ

We characterize all the possible Hilbert functions for 0-dimensional
subschemes of an irreducible curve C lying on a smooth quadric surface
Q ⊂ P

3
k .

Introduction.

The three-codimensional projective schemes and, in particular, the 0-di-
mensional subschemes of P

3, represent a subject of the algebraic geometry
where very little is still known. Speci�cally we consider the following general
problem: how do some properties of the irreducible curves of P

3 affect the
Hilbert function of their 0-dimensional subschemes? So one can consider
curves whose minimal surface has �xed degree, complete intersection curves,
arithmetically Cohen-Macaulay curves, arithmetically Buchsbaum curves etc..

In this paper we answer one of these questions: we characterize all the
possible Hilbert function of the 0-dimensional subschemes of an irreducible
curve lying on a smooth quadric, just using the type (a, b) of the curve.
The postulation of 0-dimensional schemes on a smooth quadric have been
extensively studied in [3] and in [5].

More precisely let Q be a smooth quadric. In [7] the author proves that
if X ⊂ Q is a 0-dimensional scheme contained in a complete intersection
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(2, b, s), 2 ≤ b ≤ s , for all n ∈ N such that n ≥ s and �H (X, n) > 1 then
�2H (X, n + 1) ≤ −2.

Here we prove that if C is an irreducible curve of type (a, b) with a ≤ b,
lying on a smooth quadric surface and {vn} is a O-sequence, de�nitively zero,
such that vn ≤ �H (C, n), s = min{n ∈ N | vn < �H (C, n)} ≥ b and
�vn+1 ≤ −2 for all n ≥ s such that vn > 1, then on C there is a 0-dimensional
scheme X , such that �H (X, n)= vn .

In Section 1 we �x notation and preliminaries, in the second section we
give the general form of the Hilbert function for a 0-dimensional subscheme
of a curve of type (a, b). The third section forms the technical heart of this
paper. In particular we explain how one can construct a 0-dimensional scheme
X , with assigned Hilbert function, on some lines of a smooth quadric surface
Q , in a way such that it is possible to embed X in a suitable curve of Q . This
result will be very useful to prove the theorem in Section 4.

1. Notation and preliminaries.

Throughout this paper Q will denote a smooth quadric surface in P
3
k , k

algebraically closed �eld. Let C ⊂ Q be a curve of type (a, b), a ≤ b. We set
c = b − a and d = a + b = degC . Let R = k[x , y, z, w] be the polynomial
ring over k in four indeterminates and IC the saturated homogeneous ideal of C
in R.

It is known that a minimal free resolution of R/IC as R-module is:
if c = 0

0 → R(−b − 2) → R(−b)⊕ R(−2) → R → R/IC → 0;

if c = 1

0 → R(−b − 1)2 → R(−b)2 ⊕ R(−2) → R → R/IC → 0;

if c ≥ 2

0 → R(−b−2)c−1 → R(−b−1)2c → R(−b)c+1⊕R(−2) → R → R/IC → 0;

(see [4]).
If φ : N0 → Z is a function, the �rst difference of φ is �φ(0) = φ(0),

�φ(n) = φ(n) − φ(n − 1) if n ≥ 1, and recursively the n-th difference is
�nφ(0) = �n−1φ(0), �nφ(n) = �n−1φ(n)− �n−1φ(n − 1) if n ≥ 1.
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The above resolutions allows us to compute the Hilbert function of C . In
particular we get

n 0 1 2 · · · b−1 b 0 · · ·

�2H (C, n) 1 2 2 · · · 2 1− c 0 · · ·

If M is a graded R-module, we write Mn for the degree n piece of M and
if M is a �nite length graded R-module we de�ne diameter of M (write diam
M ) the number of the nonzero graded pieces of M .

If IC is the ideal sheaf of C , we recall that the module

MC = ⊕
n∈Z

H 1(IC (n))

is called the Hartshorne-Rao module (or simply the Rao module) of C . MC is a
�nite length R-module and MC = 0 if and only if C is an arithmetically Cohen-
Macaulay curve if and only if c ≤ 1. Moreover if c ≥ 2 and ρ(n) = dimk MC,n

we have that

ρ(n) =

�
(b − n − 1)(n − a + 1) for a ≤ n ≤ b − 2

0 for n ≤ a − 1 or n ≥ b − 1

(see [2]), consequently diam MC = c − 1 and we can obtain the �rst and the
second difference of ρ(n):

n 0 · · · a−1 a a+1 · · · b−1 b b+1 · · ·

�ρ(n) 0 · · · 0 c − 1 c − 3 · · · 1− c 0 0 · · ·

�2ρ(n) 0 · · · 0 c − 1 −2 · · · −2 c − 1 0 · · ·

2. Hilbert function of the subschemes of C .

In this section we found the general form of the �rst difference of the
Hilbert function of a 0-dimensional scheme of a curve of type (a, b) on a smooth
quadric, such that

s = min
�
n ∈ N | �H (X, n)< �H (C, n)

�
≥ b.

Let C ⊂ P
3
k be a curve, IC its ideal sheaf, S ⊂ P

3
k a surface such that

no irreducible component of C is contained in S . Then X = C ∩ S is a 0-
dimensional scheme.
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Let F = 0, F ∈ Rs , be the equation of S ; we have for any n the following
short exact sequence of sheaves:

0 → IC (n − s)
F
→IC (n) →JX (n) → 0,

where the �rst map is the multiplication by F andJX is its cokernel: of course
it is the ideal sheaf of X as a subscheme of S . It induces a long exact sequence
on the cohomological groups

0 → H 0(IC (n − s)) → H 0(IC (n)) → H 0(JX (n)) →

→ H 1(IC (n − s)) → H 1(IC (n)) → H 1(JX (n)) → · · ·

or, if JX = ⊕
n
H 0(JX (n)), the exact sequence of graded R-modules:

0 → IC (−s)
F
→ IC → JX → MC (−s)

F
→ MC → · · · .

and if K is the kernel of the map:

MC (−s)
F
→ MC

we have the exact sequence of graded R-modules:

(∗) 0 → IC (−s)
F
→ IC → JX → K → 0.

From the following exact sequence:

0 → IS(n) → IX (n) →JX (n) → 0,

since H 1(IS(n)) = 0 for any n, we obtain the exact sequence of graded R-
modules:

0 → IS → IX → JX → 0,

hence

dimk JX,n = dimk IX,n − dimk IS,n = dimk IX,n − dimk Rn−s

and from (∗) we get the following relation between the Hilbert function of C
and the Hilbert function of X :

H (X, n) = H (C, n) − H (C, n − s)− dimk Kn .
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Let us consider now a curve C ⊂ Q of type (a, b), a ≤ b and a surface S , such
that s ≥ b. Since s ≥ b > c − 1 = diamMC we have

H (X, n) = H (C, n) − H (C, n − s)− ρ(n − s)

(we use the convention that H (C, n) = 0 for n ≤ −1), and consequently

�H (X, n)= �H (C, n) − �H (C, n − s)− �ρ(n − s);

so for n ≤ s + a − 1

�H (X, n)= �H (C, n) − �H (C, n − s).

Moreover

�H (X, s + a) = �H (C, s + a)− �H (C, a)− c + 1

= a + b − (2a + 1)− c + 1 = 0,

and, since �H (X, n) is a O-sequence, �H (X, n) = 0 for n ≥ s + a. Finally
we obtain:

�H (X, n) =

�
�H (C, n) − �H (C, n − s) for n ≤ s + a − 1

0 for n ≥ s + a.

Let X ⊂ C be a 0-dimensional scheme. We de�ne

s = min
�
n ∈ N | �H (X, n)< �H (C, n)

�

and we assume that s ≥ b. Let S be a surface, degS = s , such that X ⊂ S
but no irreducible component of C is contained in S . Since X ⊂ S ∩ C ,
�H (X, n) ≤ �H (S ∩ C, n), i.e. the last part of the �rst difference of the
Hilbert function of X is

n b−1 b · · · s−1 s · · · s+e−1 s+e · · ·

�H (X, n) 2b − 1 d · · · d h1 · · · he 0 · · ·

d − 1 ≥ h1, he ≥ 1, 0 ≤ e ≤ a and ([7] Theorem 2.2) hn − hn+1 ≥ 2 for
1 ≤ n ≤ e − 1.
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3. Technical lemmas.

In this section we prove three lemmas, which will be useful in the proof of
the main theorem.

Lemma 3.1. Let E be a scheme of t skew lines L1, . . . , Lt lying on Q. Let
X ⊂ E be a �nite set of points such that |X∩Li | = li ≥ t for i = 1, . . . , t . Then
the Hilbert function of X depends only on the number of the points arranged on
each line.

Proof. Of course, we can assume that

l1 ≥ l2 ≥ . . . ≥ lt .

We want to compute H (X, n) for every integer n. We distinguish three cases:
1 ≤ n ≤ lt − 1 or lt ≤ n ≤ l1 − 1 or n ≥ l1.

If 1 ≤ n ≤ lt − 1 we have that IX,n = IE ,n , so H (X, n)= H (E, n).
If lt ≤ n ≤ l1 − 1 we set β = max{i | 1 ≤ i ≤ t, li ≥ n + 1}. We

want to prove that H (X, n) = H (L1 ∪ . . . ∪ Lβ , n) +
�t

i=β+1 li . We call
Pβ+1,1, . . . , Pβ+1,lβ+1

, . . . , Pt ,1, . . . , Pt ,lt the points of X such that Pi, j ∈ Li

for β + 1 ≤ i ≤ t and 1 ≤ j ≤ li . We have to prove that these points
impose independent conditions to the linear system of the surfaces of degree
n containing the lines L1, . . . , Lβ . To do this it is enough to prove that
there is a surface S of degree ≤ n containing the lines L1, . . . , Lβ , passing
through the points Pβ+1,1, . . . , Pβ+1,lβ+1

, . . . , Pγ,1, . . . , Pγ,k , β + 1 ≤ γ ≤ t ,
1 ≤ k ≤ lγ but not through Pγ,k+1 (we use the convention that if γ ≤ t −1 then
Pγ,lγ +1 = Pγ+1,1).

If γ −1 ≥ k we take the plane �i identi�ed by the line Li and by the point
Pγ,i for 1 ≤ i ≤ k, and we take a plane �i passing through the line Li but not
through Pγ,k+1 for k + 1 ≤ i ≤ γ − 1. We set S = �1 ∪ . . . ∪ �γ−1.

If γ −1 < k we take the plane �i identi�ed by the line Li and by the point
Pγ,i for 1 ≤ i ≤ γ − 1 and a plane �i passing through Pγ,i but not through
Pγ,k+1 for γ ≤ i ≤ k. We set S = �1 ∪ . . . ∪ �k .

In both cases degS = max{γ − 1, k} ≤ n.
If n ≥ l1 then similar arguments show that H (X, n) =

�t
i=1 li . �

We call �1 and �2 the two rulings of lines lying on Q .

Lemma 3.2. Let E be a scheme of t lines L1, . . . , Lt of �1 and v ≤ t lines
M1, . . . , Mv of �2. Let X ⊂ E be a �nite set of points such that |X∩Li ∩Mj | =

∅, ∀ i, j , and li ≥ t+m, for i = 1, . . . , t , where li = |X ∩ Li |, for i = 1, . . . , t ,
mi = |X ∩ Mi | for i = 1, . . . , v and m = max{mi | 1 ≤ i ≤ v}, mi ≥ 1. Then
the Hilbert function of X depends only on the numbers of the points arranged
on each line.
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Proof. We can assume that
l1 ≥ . . . ≥ lt

and
m1 ≥ . . . ≥ mv.

If 1 ≤ n ≤ t + mv − 1 then H (X, n) = H (E, n). In fact let f be ∈ IX,n ;
since on Li there are li ≥ t + m1 ≥ t + mv ≥ n + 1 points, f ∈ IL1∪...∪Lt ,n and
since the points are different from the intersection points between the lines Li

and Mj , f is zero on t + mj ≥ n + 1 points on Mj , so f is zero on all Mj , i.e.
f ∈ IE ,n .

If t + mv ≤ n ≤ t + m1 − 1, (m1 > mv), denote γ = max{ j | 1 ≤

j ≤ v, mj + t ≥ n + 1}, then H (X, n) = H (L1 ∪ . . . ∪ Lt ∪ M1 ∪ . . . ∪

Mγ , n) +
�v

i=γ+1 mi . In fact, as in the previous case, IL1∪...∪Lt∪M1∪...∪Mγ ,n ⊂

IX,n , so it is enough to prove that the points lying on Mγ+1, . . . , Mv im-
pose independent conditions to the linear system of the surfaces of degree
n containing the lines L1, . . . , Lt , M1, . . . , Mγ . We denote these points
Qγ+1,1, . . . , Qγ+1,mγ+1

, . . . , Qv,1, . . . , Qv,mv
. To do this we prove that there is

a surface of degree ≤ n, containing the lines L1, . . . , Lt , M1, . . . , Mγ , passing
through

Qγ+1,1, . . . , Qγ+1,mγ+1
, . . . , Qσ,1, . . . , Qσ,k

but not through Qσ,k+1, γ + 1 ≤ σ ≤ v, 1 ≤ k ≤ mσ (we use again the
convention that if σ ≤ v−1 then Qσ,mσ+1 = Qσ+1,1). Let us consider the planes
�i containing the lines Li and Mi , 1 ≤ i ≤ σ − 1; �i passing through Li but
not containing Qσ,k+1 , σ ≤ i ≤ t ; �t+i passing through Qσ,i but not through
Qσ,k+1, 1 ≤ i ≤ k. We have that deg(�1 ∪ . . . ∪ �t+k) = t + k ≤ t + mσ ≤ n.

If t +m1 ≤ n ≤ l1 − 1, (l1 > t +m1), called β = max{i | 1 ≤ i ≤ t, li ≥

n + 1, then H (X, n)= H (L1 ∪ . . . ∪ Lβ , n)+
�t

i=β+1 li +
�v

j=1mj . In fact as
in the previous cases we have only to prove that the points

Pβ+1,1, . . . , Pβ+1,lβ+1
, . . . , Pt ,1, . . . , Pt ,lt ,

Q1,1, . . . , Q1,m1
, . . . , Qv,1, . . . , Qv,mv

Pi, j ∈ Li and Qi, j ∈ Mi , impose independent conditions to the linear system of
the surfaces of degree n containing the lines L1, . . . , Lβ . For the points Pi, j it
is the same proof of the Lemma 1. So it is enough to prove that there is a surface
of degree ≤ n containing the lines L1, . . . , Lβ , passing through the points

Pβ+1,1, . . . , Pβ+1,lβ+1
, . . . , Pt ,1, . . . , Pt ,lt ,

Q1,1, . . . , Q1,m1
, . . . , Qσ,1, . . . , Qσ,k
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1 ≤ σ ≤ v, 1 ≤ k ≤ mσ and not through Qσ,k+1 (with the usual convention).
Let us consider the planes �i passing through Li and Mi , 1 ≤ i ≤ σ − 1;
�i passing through the lines Li but not containing Qσ,k+1, σ ≤ i ≤ t ; �t+i

passing through Qσ,1, . . . , Qσ,k , but not through Qσ,k+1, 1 ≤ i ≤ k. We have
that deg(�1 ∪ . . . ∪ �t+k) = t + k ≤ t + mσ ≤ n.

If n ≥ l1 then similar arguments show that H (X, n) = deg X . �

In [8] it is proved that for any O-sequence satisfying a �decreasing type�
condition there is a 0-dimensional subscheme of a smooth quadric with this
O-sequence as its Hilbert function. Unfortunately the construction given in
[8] cannot be used for our purpose, so we need a construction �ad hoc�. The
following technical lemma gives this construction.

Lemma 3.3. Let {vn} be a O-sequence of the type

n 0 1 · · · t−1 t t+1 · · · t+u−1 t+u · · ·

vn 1 3 · · · 2t − 1 k1 k2 · · · ku 0 · · ·

2t ≥ k1 ≥ k2 ≥ . . . ≥ ku > 0, u ≥ 1.
If δ = max{t, k1}, then there is a 0-dimensional subscheme X , lying on δ

lines of Q, such that �H (X, n) = vn , for all n ∈ N0 and �H (X, n) depends
only on the number of the points arranged on each line.

Proof. We rename the integers k1, . . . , ku and settle them in the followingway:

k1 = hq,αq
= . . . = hq,1 > hq−1,αq−1

= . . . = hq−1,1 > . . .

. . . > h1,α1 = . . . = h1,1 = ku .

We set βi = hi,1 ; s = t + u; r =
�∞

i=0 vi = t2 +
�q

i=1 αiβi .
We have that β1 = ku , βq = k1 and u =

�q
i=1 αi .

Let Q ⊂ P
3
k be a smooth quadric and �1 and �2 the two rulings of lines

on Q . We have two cases.

First case: 0 < k1 ≤ t . We arrange r points on any t lines of �1, in the
following way:

on β1 lines we take any s points on each

� β2 − β1 � s − α1 �

· · · · · · · · · · · · · · ·

� βq − βq−1 � s −
�q−1

i=1 αi �

� t − βq � s −
�q

i=1 αi �
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So the number of points is

β1s +

q�

i=2

(βi − βi−1)(s −

i−1�

j=1

αj )+ t(t − βq)

= β1s +

q�

i=2

βi(s −

i−1�

j=1

αj ) −

q−1�

i=1

βi (s −

i�

j=1

αj )+ t2 − tβq

= β1s + βqs − β1s + β1α1 − βq

q−1�

j=1

αj +

q−1�

i=2

βiαi + t2 − tβq

= βqu + t2 +

q−1�

i=1

βiαi − βq

q−1�

j=1

αj

= βqαq + t2 +

q−1�

i=1

βiαi = r.

We have to verify that the �rst difference of the Hilbert function of this set of
points X is equal to vn for all n ∈ N. We write Ei for a scheme made up by
i skew lines on Q . The hypotheses of the Lemma 3.1 are satis�ed. So for
computing H (X, n) we have to calculate the number γn of the lines on which
we put more than n points and the number ζn of the points that lie on the other
t − γn lines. If 1 ≤ n ≤ t − 1, γn = t , so �H (X, n)= �H (Et, n) = vn .

If t ≤ n ≤ s − 1 then we can write n = t +
�q

i=m+1 αi + k, 1 ≤ m ≤ q ,
0 ≤ k ≤ αm − 1, so γn = βm . If k ≥ 1 then also γn−1 = βm , so, by
the Lemma 3.1, �H (X, n) = H (X, n) − H (X, n − 1) = H (Eβm

, n) + ζn −

H (Eβm
, n − 1) − ζn = �H (Eβm

, n) = βm = vn ; if k = 0, γn−1 = βm+1, so
�H (X, n) = H (X, n)− H (X, n − 1) = H (Eβm

, n)+ ζn − H (Eβm+1
, n − 1)−

ζn−1 = β2
m + (n − βm + 1)βm +

�q
i=m(βi+1 − βi)(s −

�i
j=1 αj )− β2

m+1 + (n −

1−βm+1+1)βm+1−
�q

i=m+1(βi+1 −βi )(s−
�i

j=1 αj ) = nβm +βm −nβm+1+

(βm+1−βm)(t+
�q

j=m+1 αj ) = n(βm −βm+1)+βm + (βm+1−βm)n = βm = vn .

If n ≥ s then γn = 0 and ζn = r , so �H (X, n)= 0 = vn .

Second case: t + 1 ≤ k1 ≤ 2t . We set p = min{1 ≤ i ≤ q | βi ≥ t} and
b̄ = βp − t . We have that 0 ≤ b̄ < βp − βp−1. We choose our points X on t
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lines L1, . . . , Lt of �1 in the following way:

on β1 lines we take any s points on each

� β2 − β1 � s − α1 �

· · · · · · · · · · · · · · ·

� βp−1 − βp−2 � s −
�p−2

i=1 αi �

� βp − βp−1 − b̄ � s −
�p−1

i=1 αi �

and on k1−t lines M1, . . . , Mk1−t of �2 with the only restriction X ∩Li ∩Mj =

∅, ∀ i, j , in the following way:

on b̄ lines we take u −
�p−1

i=1 αi points on each

� βp+1 − βp � u −
�p

i=1 αi �

· · · · · · · · · · · · · · ·

� βq − βq−1 � u −
�q−1

i=1 αi �

The number of these points is

β1s +

p−1�

i=2

(βi − βi−1)(s −

i−1�

j=1

αj )+ (βp − βp−1 − b̄)(s −

p−1�

j=1

αj )+

+ b̄(u −

p−1�

j=1

αj )+

q�

i=p+1

(βi − βi−1)(u −

i−1�

j=1

αj ) =

= t2 +

q−1�

i=1

βiαi = r.

Again we have to prove that �H (X, n) = vn . We write Ei j for a scheme made
up by i lines of �1 and by j lines of �2 and we set E = Etk1−t . Because of our
choice the hypotheses of the Lemma 3.2 are satis�ed.

If 1 ≤ n ≤ t − 1 then �H (X, n) = �H (E, n) = 2n + 1 = vn .
If t ≤ n ≤ t + αq − 1 then �H (X, n) = �H (E, n) = βq = vn .
If t + αq ≤ n ≤ t +

�q
i=p αi − 1 then every lines of E in �1 have

more than n points of X . Let γn be the number of the lines of �2 on which
we have more than n points and ζn the number of the points lying on the
other βq − t − γn lines of �2. Then H (X, n) = H (Etγn , n) + ζn . We write
n = t +

�q
i=m+1 αi + k, p − 1 ≤ m ≤ q , 0 ≤ k ≤ αm − 1. Then
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γn = b̄+βm −βp = βm −t . If k ≥ 1 then also γn−1 = βm −t and ζn−1 = ζn , so,
by the Lemma 3.2,�H (X, n) = �H (Etγn, n) = t+γn = t+βm−t = βm = vn .
If k = 0, γn−1 = βm+1 − t , so �H (X, n) = H (Etγn , n)+ ζn − H (Etγn−1, n)−
ζn−1 = t2 + (1 +

�q
i=m+1 αi )(t + γn) +

�q
i=m(βi+1 − βi )

�q
j=i+1 αj − t2 −

�q
i=m+1 αi (t+γn−1 )−

�q
i=m+1(βi+1−βi )

�q
j=i+1 αj = t+γn+

�q
i=m+1 αiγn−�q

i=m+1 αiγn−1 + (βm+1 − βm)
�q

j=m+1 αj = βm = vn .

Similar arguments work for t +
�q

i=p αi ≤ n ≤ s − 1 and n ≥ s . �

Example 3.4. Let us consider the following O-sequence:

n 0 · · · 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

vn 1 · · · 11 12 10 10 10 8 8 8 8 4 4 0 · · ·

We have that β1 = 4, β2 = 8, β3 = 10, β4 = 12; α1 = 2, α2 = 4, α3 = 3,
α4 = 1; t = 6, u = 10, s = 16; p = 2, b̄ = 2.

We put our points in the following way:

on 4 lines of �1 we take any 16 points on each

� 2 � 14 �

and, distinct from the intersection points:

on 2 lines of �2 we take 8 points on each

� 2 � 4 �

� 2 � 1 point on each.

4. The main result.

In this section we prove the main result of this paper.

Theorem 4.1. Let C be an irreducible curve, lying on a smooth quadric, of type
(a, b), 1 ≤ a ≤ b. Let {vn} be a O-sequence of the kind

n 0 · · · b−1 b ··· s−1 s · · · s+e−1 s+e · · ·

vn 1 · · · 2b − 1 d · · · d h1 · · · he 0 · · ·

d = a+b, d−1 ≥ h1 , he ≥ 1, 0 ≤ e ≤ a and hn −hn+1 ≥ 2 for 1 ≤ n ≤ e−1.
Then there is a 0-dimensional scheme X ⊂ C, such that �H (X, n) = vn ,

for all n ∈ N0.
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Proof. Let Q ⊂ P
3
k be a smooth quadric and let �1 and �2 be the rulings of

lines on Q of type (1, 0) and (0, 1) respectively. We set c = b − a.

Let S be a surface such that degS = s and C �⊂ S and let R1, . . . , Rc ∈ �1,
Ri �= Rj , ∀ i �= j , such that Ri �⊂ S for 1 ≤ i ≤ c. We call D the curve
C ∪ R1 ∪ . . . ∪ Rc . Then D is a complete intersection curve on Q of type (b, b)
and the scheme Z = S ∩ D is a 0-dimensional complete intersection.

If ϑ = s + b − 1 then we consider the following O-sequence

v̄n = �H (Z , ϑ − n)− vϑ−n

i.e.
n 0 · · · −1 t · · · b−1 b · · · s−1 s · · ·

v̄n 1 · · · 2t − 1 k1 · · · ke c · · · c 0 · · ·

t = b − e, 2t ≥ k1 ≥ . . . ≥ ke ≥ c.

Let Y be a 0-dimensional scheme of cs points, arranged s for any line Ri ,
such that they are distinct from the b points where Ri meets C . If we are able
to build a zero dimensional scheme X̄ ⊂ C , such that �H (X̄ ∪ Y, n) = v̄n and
a surface S , degS = s , such that C �⊂ S , Ri �⊂ S for 1 ≤ i ≤ c, X̄ ∪ Y ⊂ S ,
then for the liaison theory, (see [6] and [1]), the theorem is proved.

To build the scheme X̄ we want obviously to use the Lemma 3.3. Since
each line of �1 meets C in b points and each line of �2 meets C in a points it
is enough to show that the construction of the Lemma 3.3, in this situation, uses
a number of points ≤ b for the lines of �1 (except the points that we put on the
lines R1, . . . , Rc) and a number ≤ a for the lines of �2.

With the same notation of the Lemma 3.3 if s ≥ b + 1 then β1 = c and
α1 ≥ s − b. Our construction uses �rst of all c lines of �1 where we put s
points. We take as such lines just the R1, . . . , Rc . Instead, on the other lines of
�1 we must take a number of points ≤ s − α1 ≤ s − s + b = b. If βq > t then
our construction uses lines of �2 too. We can have p = 1 or p ≥ 2. If p = 1
then

c = β1 ≥ t ⇒ b − a ≥ b − e ⇒ a ≤ e ⇒ a = e,

hence b̄ = 0 so we must put on these lines a number of points ≤ s − t − α1 ≤

s−b+ e−α1 ≤ s−b+ e− s +b = e = a. If p ≥ 2 then the number of points
is ≤ s − t − α1 − . . . − αp−1 ≤ s − b − e − α1 ≤ s − b + e − s + b = e ≤ a.

If s = b then β1 = ke = 2b − 1 − h1 ≥ 2b − 1 − a − b + 1 = c, so we
can repeat the same arguments.

So far we have built the 0-dimensional scheme X̄ ∪ Y . The existence of
the surface S is trivial. �
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