A GENERALIZATION OF LAX-MILGRAM'S THEOREM

JEAN SAINT RAYMOND

The main purpose of this note is to prove the following statement:

Theorem 1. Let *H* be a real Hilbert space and *A* a linear operator on *H*. If

$$\inf_{\|x\|=1} (\langle Ax, x \rangle + \|Ax\|) > 0$$

the operator A is continuous and invertible.

This is a generalization of the well-known theorem of Lax-Milgram since if

$$\inf_{\|x\|=1} \langle Ax, x \rangle > 0$$

the previous inequality holds. In fact we shall even prove the following improvements of Theorem 1:

Theorem 2. Let *H* be a real Hilbert space and *A* a linear operator on *H*. Let $(y_1, y_2, ..., y_k)$ be an orthonormal family in *H* and $\gamma > 0$. If

$$\inf_{\|x\|=1} \left(\langle Ax, x \rangle + \|Ax\| + \gamma \left(\sum_{j=1}^{k} \langle Ax, y_j \rangle^2 \right)^{1/2} \right) > 0$$

the operator A is continuous and invertible.

Entrato in Redazione il 14 gennaio 1997.

Theorem 3. Let H be a real Hilbert space and A a linear operator on H. Let K be a compact linear operator on H. If

$$\inf_{\|x\|=1} (\langle Ax, x \rangle + \|Ax\| + \|KAx\|) > 0$$

the operator A is continuous and invertible.

Both Theorem 1 and Theorem 2 are answers to questions asked by B. Ricceri.

If A satisfies the hypothesis of Theorem 2, we put

$$\delta = \inf_{\|x\|=1} \left(\langle Ax, x \rangle + \|Ax\| + \gamma \left(\sum_{j=1}^{k} \langle Ax, y_j \rangle^2 \right)^{1/2} \right) > 0$$

Then we have for every x in the unit sphere

(*)
$$\langle Ax, x \rangle + ||Ax|| \, ||x|| + \gamma \left(\sum_{j=1}^{k} \langle Ax, y_i \rangle^2 \right)^{1/2} ||x|| \ge \delta ||x||^2$$

and by homogeneity this inequality holds for every $x \in H$.

Notations. We will denote by V the linear space spanned by $(y_1, y_2, ..., y_k)$ and by $F = V^{\perp}$ its orthogonal. V is a closed subspace of H of dimension k, and we denote by π the orthogonal projector on V. Then for every u in H we have

$$\sum_{j=1}^{k} \langle u, y_j \rangle^2 = \|\pi u\|^2.$$

So (*) becomes

(**)
$$\langle Ax, x \rangle + ||Ax|| \, ||x|| + \gamma ||\pi Ax|| \, ||x|| \ge \delta ||x||^2$$

We denote by I the identity operator on H.

Lemma 4. Let A be a linear operator on H satisfying (**). Then ker(A) = 0. *Proof.* We have

$$\delta \|x\|^{2} \leq \langle Ax, x \rangle + \|Ax\| \|x\| + \gamma \|\pi Ax\| \|x\|$$

$$\leq \|Ax\| \|x\| + \|Ax\| \|x\| + \gamma \|Ax\| \|x\| = (\gamma + 2) \|Ax\| \|x\|$$

hence $\delta \|x\| \le (\gamma + 2) \|Ax\|$, and x = 0 if Ax = 0. \Box

Lemma 5. Let A be a linear operators on H satisfying (**). Then for any real $t \ge 0$ and any $x \in F$ the following inequality holds

$$\|(A+tI)x\| \ge \frac{\delta}{\gamma+2} \|x\|.$$

Proof. Since $x \in F = V^{\perp}$,

$$\pi (A + tI)x = \pi Ax + t\pi x = \pi Ax,$$

$$\langle (A+tI)x, x \rangle + \|(A+tI)x\| \|x\| = \langle Ax, x \rangle + t\|x\|^2 + \|Ax+tx\| \|x\| \ge \\ \geq \langle Ax, x \rangle + t\|x\|^2 + \|Ax\| \|x\| - \|tx\| \|x\| = \langle Ax, x \rangle + \|Ax\| \|x\|.$$

Hence

$$\langle (A+tI)x, x \rangle + \|(A+tI)x\| \|x\| + \gamma \|\pi (A+tI)x\| \|x\| \ge$$

 $\ge \langle Ax, x \rangle + \|Ax\| \|x\| + \gamma \|\pi Ax\| \|x\| \ge \delta \|x\|^2$

and since

$$\begin{aligned} \langle (A+tI)x, x \rangle + \| (A+tI)x\| \| x \| + \gamma \| \pi (A+tI)x\| \| x \| \leq \\ & \leq \| (A+tI)x\| \| x \| + \| (A+tI)x\| \| x \| + \gamma \| (A+tI)x\| \| x \| = \\ & = (\gamma+2) \| (A+tI)x\| \| x \| \end{aligned}$$

we get

$$(\gamma + 2) \| (A + tI)x \| \| x \| \ge \delta \| x \|^2$$

and this completes the proof of the Lemma. \Box

Corollary 6. Let A be a continuous linear operator on H satisfying (**). Then for every real $t \ge 0$ the space (A + tI)(F) is closed in H. Moreover A + tI is one-to-one on F.

Proof. From Lemma 5 we get clearly $F \cap \ker(A + tI) = \{0\}$. Hence A + tI is one-to-one on F. Let (u_n) be a sequence in (A + tI)(F) converging to u in H. If $u_n = (A + tI)x_n$ with $x_n \in F$, we have by Lemma 5

$$\|x_n - x_m\| \le \frac{\gamma + 2}{\delta} \|u_n - u_m\|$$

and this shows that the sequence (x_n) is a Cauchy sequence. Since F is complete, the sequence (x_n) converges to some $x \in F$, and since A is continuous,

$$(A+tI)x = \lim_{n \to \infty} (A+tI)x_n = \lim_{n \to \infty} u_n = u.$$

Thus $u \in (A + tI)(F)$. \Box

Lemma 7. Let A be a continuous linear operator on H satisfying (**). Then for every real $t \ge 0$ the space (A + tI)(H) has codimension k in H.

Proof. Denote by T the set

$$T = \{t \ge 0 : (A + tI)(F) \text{ is not of codimension } k \text{ in } H\}.$$

We want to prove $T = \theta$.

First of all, notice that, for t > ||A||, the operator A+tI is invertible on H. Hence the subspaces (A + tI)(F) and (A + tI)(V) are direct summands. And since dim $((A + tI)(V)) = \dim(V) = k$, t does not belong to T. This shows that $T \subset [0, ||A||]$.

Thus if T is not empty, it has an upper bound θ . Denote by E_{θ} the orthogonal subspace of $(A + \theta I)(F)$ and by S_t the operator from $F \times E_{\theta}$ to H defined by

$$S_t(x, u) = (A + tI)x + u$$

Then S_t is continuous for each $t \ge 0$. Moreover S_{θ} is one-to-one since $H = (A + \theta I)(F) \oplus E_{\theta}$ and since $A + \theta I$ is one-to-one from F to $(A + \theta I)(F)$ by Corollary 6.

Since S_{θ} is invertible, there exists some $\rho > 0$ such that S_t is invertible for $|t - \theta| < \rho$. In particular for $t = \theta + \frac{\rho}{2} > \theta$, (A + tI)(F) has codimension k in H. And since S_t is invertible, (A + tI)(F) and E_{θ} are direct summands. Hence dim $(E_{\theta}) = k$. Similarly for $\theta - \rho < t \le \theta(A + tI)(F)$ and E_{θ} are direct summands. Hence (A + tI)(F) has codimension dim $(E_{\theta}) = k$, and $T \cap]\theta - \rho, \theta] = \theta$. This shows that $\theta = \sup T \le \theta - \rho$, a contradiction. This completes the proof. \Box

Theorem 8. Let A be a continuous linear operator on H satisfying (**). Then A is invertible.

Proof. By Lemma 7, A(F) has codimension k. By Lemma 4, A is one-to-one. Hence A(V) has dimension k and $A(F) \cap A(V) = \{0\}$. Thus A(H) = A(F) + A(V) = H. Since A is continuous and one-to-one from H to H, it is invertible. \Box

Theorem 9. Let A and K be continuous linear operators on H, K being compact. If

$$\inf_{\|x\|=1} (\langle Ax, x \rangle + \|Ax\| + \|KAx\|) > 0$$

then A is invertible.

Proof. Put $\gamma = ||K||$ and $\delta = \inf_{||x||=1}(\langle Ax, x \rangle + ||Ax|| + ||KAx||)$. We have, as at the beginning of this paper,

 $(***) \qquad \langle Ax, x \rangle + \|Ax\| \|x\| + \|KAx\| \|x\| \ge \delta \|x\|^2.$

Then K^*K is compact, symmetric and positive, and so is $K_1 = (K^*K)^{1/2}$. Moreover $\gamma = ||K|| = ||K_1||$. For every $y \in H$ we have

$$||K_1y||^2 = \langle K_1y, K_1y \rangle = \langle K_1^2y, y \rangle = \langle K^*Ky, y \rangle = \langle Ky, Ky \rangle = ||Ky||^2$$

So (***) can be rewritten as

$$\langle Ax, x \rangle + ||Ax|| ||x|| + ||K_1Ax|| ||x|| \ge \delta ||x||^2.$$

Hence we can and do assume that K is symmetric. There exists an orthonormal sequence (y_i) and a sequence of non-negative eigenvalues (λ_j) such that, for every $y \in H$

$$||Ky||^2 = \sum_{j=1}^{\infty} \lambda_j^2 \langle y, y_j \rangle^2.$$

Moreover the sequence (λ_j) converges to 0. Put $\varepsilon = \frac{\delta}{2\|A\|}$. Thus there exists some *k* such that $\lambda_j < \varepsilon$ for j > k. And $\lambda_j \le \gamma$ for all *j*. Then for every *x* in *H* we have

$$\begin{split} \|KAx\|^2 &= \sum_{j=1}^{\infty} \lambda_j^2 \langle Ax, y_j \rangle^2 \\ &\leq \sum_{j=1}^k \gamma^2 \langle Ax, y_j \rangle^2 + \sum_{j=k+1}^\infty \varepsilon^2 \langle Ax, y_j \rangle^2 \\ &\leq \gamma^2 \sum_{j=1}^k \langle Ax, y_j \rangle^2 + \varepsilon^2 \sum_{j=1}^\infty \langle Ax, y_j \rangle^2 \\ &\leq \gamma^2 \sum_{j=1}^k \langle Ax, y_j \rangle^2 + \varepsilon^2 \|Ax\|^2 \\ &\leq \gamma^2 \sum_{j=1}^k \langle Ax, y_j \rangle^2 + \varepsilon^2 \|A\|^2 \|x\|^2 \\ &\leq \gamma^2 \sum_{j=1}^k \langle Ax, y_j \rangle^2 + \varepsilon^2 \|A\|^2 \|x\|^2 \end{split}$$

hence

$$\|KAx\| \leq \frac{\delta}{2} \|x\| + \gamma \sqrt{\sum_{j=1}^{k} \langle Ax, y_j \rangle^2}$$

and from (***) we get

$$\langle Ax, x \rangle + \|Ax\| \|x\| + \gamma \sqrt{\sum_{j=1}^{k} \langle Ax, y_j \rangle^2} \|x\| \ge$$

$$\geq \langle Ax, x \rangle + \|Ax\| \|x\| + \left(\|KAx\| - \frac{\delta}{2} \|x\| \right) \|x\| \ge \frac{\delta}{2} \|x\|^2$$

This shows that A satisfies (**) (with $\delta/2$ instead of δ). Then the conclusion follows from Theorem 8. \Box

From now on, the operator A is not assumed to be continuous. We denote by W the closed linear subspace of H defined by

 $W = \begin{cases} w \in H : \text{ there exists a sequence } (x_n) \text{ such that} \end{cases}$

$$\lim_{n\to\infty} x_n = 0 \text{ and } \lim_{n\to\infty} Ax_n = w \Big\}.$$

Lemma 10. Let X and Y be two Banach spaces and Φ a continuous linear mapping from X onto Y. Then for every closed linear subspace G of X containing the kernel of Φ , $\Phi(G)$ is closed in Y.

Proof. By Banach's Theorem, Φ is an open mapping. Thus $\Phi(X \setminus G)$ is an open subset of *Y*. Now it is enough to notice that

$$Y \setminus \Phi(G) = \Phi(X \setminus G)$$

for completing the proof. \Box

For A a linear operator on H, we denote by q the orthogonal projector on W^{\perp} , and we put A' = qA.

Lemma 11. A' is continuous.

Proof. Denote by G_A (resp. $G_{A'}$) the graph of A (resp. A') in $H \times H$. If $\Phi(x, y) = (x, qy)$, we have $G_{A'} = \Phi(G_A)$.

By the definition of W, we have $W_0 = \{0\} \times W \subset \overline{G_A}$, hence $G_A + W_0 \subset \overline{G_A}$. Conversely, if $(x, y) \in \overline{G_A}$, there exists a sequence $((x_n, y_n))$ in G_A

converging to (x, y). Then $(x_n - x, Ax_n - Ax) \in G_A$, $x_n - x \to 0$ and $Ax_n - Ax \to y - Ax$. We conclude that $y - Ax \in W$ and that $(x, y) = (x, Ax) + (0, y - Ax) \in G_A + W_0$. Hence $\overline{G_A} = G_A + W_0$.

Since $G_A \supset W_0 = \ker(\Phi)$, Lemma 10 implies that $\Phi(\overline{G_A})$ is closed, but

$$\Phi(\overline{G_A}) = \Phi(G_A + (\{0\} \times W)) = \Phi(G_A) + \Phi(W_0) = \Phi(G_A) = G_A$$

Hence $G_{A'}$ is closed, and A' is continuous.

Lemma 12. Let H_1 and H_2 be Hilbert spaces, A a linear operator from H_1 to H_2 , K a compact linear operator on H_2 . If H_1 is infinite-dimensional, then for every $\varepsilon > 0$ there exists some u in the unit sphere of H_1 such that $||KAu|| < \varepsilon$.

Proof. If not we have $||KAx|| \ge \varepsilon ||x||$ for any $x \in H_1$. Then for $x \in H_1$, $w = A'x - Ax \in W$, and there exists some sequence (x_n) converging to 0 such that $Ax_n \to w$. Then the sequence $(KA(x + x_n))$ converges to K(Ax + w) = KA'x, and since

$$\|KA(x+x_n)\| \ge \varepsilon \|x+x_n\|$$

we conclude that

$$\|KA'x\| \ge \varepsilon \|x\|$$

but, since A' is continuous by Lemma 11, KA' is compact, and this contradicts (1). \Box

Lemma 13. If A satisfies (**) or (***), so does A'.

Proof. Since $\gamma \pi$ is a compact operator, it is enough to prove the Lemma for (***). Let $x \in H$. Then $w = A'x - Ax \in W$. There exists a sequence (x_n) converging to 0 such that $w = \lim_{n\to\infty} Ax_n$. Applying (***) to $x + x_n$ we get

$$\langle A(x + x_n), x + x_n \rangle + ||A(x + x_n)|| ||x + x_n|| + ||KA(x + x_n)|| ||x + x_n|| \ge$$

 $\geq \delta ||x + x_n||^2$

and by letting n go to the infinity

$$\langle Ax + w, x \rangle + \|Ax + w\| \|x\| + \|K(Ax + w)\| \|x\| \ge \delta \|x\|^2,$$

$$\langle A'x, x \rangle + \|A'x\| \|x\| + \|KA'x\| \|x\| \ge \delta \|x\|^2.$$

This last inequality shows that A' satisfies (***).

Proof of Theorem 3. If A satisfies the hypothesis of Theorem 3, it satisfies (***). Then A' is continuous by Lemma 11 and satisfies (***) by Lemma 13. Thus A' invertible by Theorem 9. In particular

$$H = A'(H) = q(A(H)) \subset W^{\perp}.$$

Hence $W^{\perp} = H$, q = I and A' = qA = A. This proves that A is continuous and invertible. \Box

Proof of Theorem 2. If A satisfies the hypothesis of Theorem 2, it satisfies (**). And since $\gamma \pi$ is a compact operator, the conclusion follows from Theorem 3.

We finish this note by reproving an earlier (unpublished) result of the author:

Theorem 14. Let A and K be linear operators on the Hilbert space H, K being compact. If

$$\inf_{\|x\|=1} \left(|\langle Ax, x\rangle| + \|KAx\| \right) > 0$$

then A is continuous and invertible.

Proof. If A satisfies the previous hypotheses, it is clearly one-to-one. So we can assume H is infinite-dimensional. It is enough to prove that either A or -A satisfies the hypotheses of Theorem 3.

Put
$$\delta = \inf_{\|x\|=1} \left(|\langle Ax, x \rangle| + \|KAx\| \right), \gamma = \|K\|$$
 and $\varepsilon = \frac{\delta}{\gamma+2}$. Then
 $\delta \|x\|^2 \le |\langle Ax, x \rangle| + \|KAx\| \|x\| \le$
 $\le \|Ax\| \|x\| + \|K\| \|Ax\| \|x\| \le (\gamma+1) \|Ax\| \|x\|$

and

$$\|Ax\| \ge \frac{\delta}{\gamma+1} \|x\|.$$

If A does not satisfy the hypotheses of Theorem 3, there is some x_1 in the unit sphere of H such that

$$\langle Ax_1, x_1 \rangle + \|Ax_1\| + \|KAx_1\| < \varepsilon$$

and thus

(2)
$$||KAx_1|| < \varepsilon$$
 and $\langle Ax_1, x_1 \rangle < \varepsilon - ||Ax_1|| \le \frac{\delta}{\gamma + 2} - \frac{\delta}{\gamma + 1} < 0.$

Similarly if -A does not satisfy the hypotheses of Theorem 3, there is some x_2 in the unit sphere such that

$$\langle -Ax_2, x_2 \rangle + \| - Ax_2 \| + \| - KAx_2 \| < \varepsilon$$

and thus

(3)
$$||KAx_2|| < \varepsilon$$
 and $\langle Ax_2, x_2 \rangle > -\varepsilon + ||Ax_2|| \ge -\frac{\delta}{\gamma+2} + \frac{\delta}{\gamma+1} > 0.$

Let V be the linear space spanned by x_1 and x_2 . By Lemma 12 applied to $H_1 = V^{\perp}$ and $H_2 = H$, there exists some $u \in V^{\perp}$ such that ||u|| = 1 and $||KAu|| \le \frac{\delta}{6}$. Then we put for $t \in [0, 1]$

$$\psi(t) = tx_2 + (1-t)x_1 + \left(1 - \|tx_2 + (1-t)x_1\|^2\right)^{1/2} u$$

We have $\|\psi(t)\| = 1$ for all t, and

$$\langle A\psi(0),\psi(0)\rangle = \langle Ax_1,x_1\rangle < 0 < \langle A\psi(1),\psi(1)\rangle = \langle Ax_2,x_2\rangle.$$

Thus since the restriction of A to the space $V \oplus \mathbb{R}u$ is continuous, there is some $t^* \in [0, 1]$ such that $\langle A\psi(t^*), \psi(t^*) \rangle = 0$ and

$$\|KA\psi(t^*)\| \le t^* \|KAx_2\| + (1-t^*)\|KAx_1\| + + \left(1 - \|t^*x_2 + (1-t^*)x_1\|^2\right)^{1/2} \|KAu\| \le \le t^*\varepsilon + (1-t^*)\varepsilon + \|KAu\| \le \varepsilon + \frac{\delta}{6} \le \frac{\delta}{2} + \frac{\delta}{6} < \delta$$

hence

$$|\langle A\psi(t^*), \psi(t^*)\rangle| + ||KA\psi(t^*)|| < \delta$$

a contradiction. Thus either A or -A satisfies the hypothesis of Theorem 3 and the proof is complete. \Box

Equipe d'Analyse - Boî te 186, Université Paris 6, 4, Place Jussieu, F 75252 Paris CEDEX 05 (FRANCE), e-mail: jsr@ccr.jussieu.fr