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A GENERALIZATION OF LAX-MILGRAM’S THEOREM

JEAN SAINT RAYMOND

The main purpose of this note is to prove the following statement:

Theorem 1. Let H be a real Hilbert space and A a linear operator on H. If

”iﬁlfl((Ax, x)+ |Ax|) >0
X||=

the operator A is continuous and invertible.

This is a generalization of the well-known theorem of Lax-Milgram since
if
”iﬁlfl(Ax,x) >0
the previous inequality holds. In fact we shall even prove the following
improvements of Theorem 1:

Theorem 2. Let H be a real Hilbert space and A a linear operator on H. Let
(1, ¥25 - - - » Vi) be an orthonormal family in H and y > 0. If

k

1/2
. \2
inf ((Ax,x>+ | Ax] +y(j;<Ax,yJ> ) ) >0

the operator A is continuous and invertible.
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Theorem 3. Let H be a real Hilbert space and A a linear operator on H. Let
K be a compact linear operator on H. If

inf ((Ax, x) +[[Ax|| + [|K Ax|) > 0

[lxlI=1
the operator A is continuous and invertible.
Both Theorem 1 and Theorem 2 are answers to questions asked by B. Ric-
ceri.
If A satisfies the hypothesis of Theorem 2, we put
k

8= inf <(Ax,x) + | Ax|l + )/(Z(Ax, yl’>2)1/2> > 0.

x||=1
il o

Then we have for every x in the unit sphere
k 1/2

(%) (Ax, x) + || Ax| x| + y(Z(Ax, y»z) x|l > 8]lx||?

j=1
and by homogeneity this inequality holds for every x € H.
Notations. We will denote by V the linear space spanned by (y1, y2, ..., V)
and by F = V< its orthogonal. V is a closed subspace of H of dimension k,
and we denote by 7 the orthogonal projector on V. Then for every u in H we
have

(u, y)* = llzul®.

k
=1

i
So (x) becomes

(%) (Ax, x) + [|Ax]| x|l 4 vl Ax|l lx ]| = 8lx|>.
We denote by I the identity operator on H.
Lemma 4. Let A be a linear operator on H satisfying (xx). Then ker (A) = 0.
Proof. We have
8llxlI* < (Ax, x) + [[Ax|| lx|| + vl Ax] |lx]|
< IAx| Ixll+ TAx | Ix Dl + y [ Ax [ x| = (7 + 2| Ax]l [|x]]
hence é||x|| < (y +2)||Ax||, and x = 0 if Ax = 0. ([l

Lemma 5. Let A be a linear operators on H satisfying (xx). Then for any real
t > 0 and any x € F the following inequality holds

llxl.

)
A+thx| >
Il( x|l "
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Proof. Since x € F = Vi,

n(A+thx =mAx +tnx = wAx,

((A+1Dx,x) + A+ Dx| Ix [ = (Ax, x) + 2llx | + | Ax + rx]] [lx]| >
> (Ax, x) + tllx [+ | Ax | 1l = lex]| 2] = (Ax, x) + [|Ax]| [|x]].

Hence

((A+1Dx, x) + (A4 rDx | llxl| + yllx (A + e Dx || flx ]| =
> (Ax, x) + | Ax|| Ix[| + vl Ax|| [lx]| = 8]l

and since

(A+1tDx, x) + [(A+tDx|l llx[| + yllm(A+tDx]| flx]| <
<A+ eDx| llxll + ICA+eDx] lx ]| + ¥ I(A+Dx] |lx]| =
= +DIA+tDx]l [|x|l
we get
(v +DIA +Dx]| |Ix]| = 8]1x|?
and this completes the proof of the Lemma. ([

Corollary 6. Let A be a continuous linear operator on H satisfying (xx). Then
for every real t > 0 the space (A + tI)(F) is closedin H. Moreover A +tl is
one-to-one on F'.

Proof. From Lemma 5 we get clearly F Nker(A +¢I) = {0}. Hence A + ¢t/
is one-to-one on F. Let (u,) be a sequence in (A + ¢1)(F) converging to u in
H.Ifu, =(A+tl)x, with x, € F, we have by Lemma 5

y+2

lxp — Xl < ety — tp |

and this shows that the sequence (x,) is a Cauchy sequence. Since F is com-
plete, the sequence (x,) converges to some x € F', and since A is continuous,

(A+thx = lim(A+tDhHx, = lim u, = u.
n—oo n—oo

Thus u € (A +tI)(F). O

Lemma 7. Let A be a continuous linear operator on H satisfying (xx). Then
forevery real t > 0 the space (A + t1)(H) has codimension k in H.
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Proof. Denote by T the set
T = {t = 0: (A +¢I)(F) is not of codimension k in H }.

We want to prove T = 6.

First of all, notice that, for r > || A||, the operator A+¢1 is invertibleon H.
Hence the subspaces (A 4 ¢tI)(F) and (A + ¢I)(V) are direct summands. And
since dim((A + ¢tI)(V)) = dim(V) = k, t does not belong to 7. This shows
that T C [0, || A|l].

Thus if 7 is not empty, it has an upper bound 6. Denote by Ey the
orthogonal subspace of (A + 61)(F) and by S; the operator from F x Ey to
H defined by

Six,u)=(A+thHx 4+ u.

Then S, is continuous for each + > 0. Moreover Sy is one-to-one since
H =(A4+0I1)F)® Ey and since A+ 61 is one-to-one from F to (A+61)(F)
by Corollary 6.

Since Sy is invertible, there exists some p > 0 such that S; is invertible for
|t — 0| < p. In particular for t = 6 + g > 6, (A 4+ tI)(F) has codimension
k in H. And since S; is invertible, (A + ¢1)(F) and E, are direct summands.
Hence dim(Ey) = k. Similarly for 6 — p < t < (A + tI)(F) and Ey are
direct summands. Hence (A + tI)(F) has codimension dim(Ey) = k, and
TN]6 — p, 0] = 0. This shows that & = supT < 0 — p, a contradiction. This
completes the proof. ([

Theorem 8. Let A be a continuous linear operator on H satisfying («x). Then
A is invertible.

Proof. By Lemma 7, A(F) has codimension k. By Lemma 4, A is one-
to-one. Hence A(V) has dimension k and A(F) N A(V) = {0}. Thus
A(H) = A(F)+ A(V) = H. Since A is continuous and one-to-one from
H to H, it is invertible. O

Theorem 9. Let A and K be continuous linear operators on H, K being
compact. If

”iﬁlfl((Ax, x) + [[Ax|| + [|[K Ax]]) > 0
then A is invertible.

Proof. Puty = || K| and § = infj, =1 ((Ax, x) + ||Ax| + || K Ax||). We have,
as at the beginning of this paper,

(dekek) (Ax, x) + [ Ax | x| + | K Ax] x| = 8],
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Then K*K is compact, symmetric and positive, and so is K; = (K*K)!/2.
Moreover y = ||K|| = || K ]|. For every y € H we have

IKiylI> = (Kiy, Kiy) = (K7y, y) = (K*Ky, y) = (Ky, Ky) = | Ky|*.
So (x%xx*) can be rewritten as
(Ax, x) + | Ax | x|l + | K1 Ax | x| = 8]1x]1>.

Hence we can and do assume that K is symmetric. There exists an orthonormal
sequence (y;) and a sequence of non-negative eigenvalues (4;) such that, for
every ye H

o0
IKyIP =" A7y, )

8
Moreover the sequence (A;) converges to 0. Put ¢ = m Thus there exists
some k such that A; < ¢ for j > k. And A; < y forall j. Then for every x in

H we have

oo
|K Ax||* sz (Ax, y;)*

J=1
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hence

k
é
IK Ax]l < Slxll+y Z Ax, y;)?

and from (k%) we get
k
(Ax, x) + [ Ax] [|x]| + ¥ Z Ax, yp)? lxll =

8 8
= (Ax.x) + [[Ax] x]+ (1K Ax]) = Slel) ] = 5 )2

This shows that A satisfies (xx) (with /2 instead of §). Then the conclusion
follows from Theorem 8. O

From now on, the operator A is not assumed to be continuous. We denote
by W the closed linear subspace of H defined by

W = {w € H : there exists a sequence (x,) such that

lim x, =0and lim Ax, = w}
n—oo n—oo

Lemma 10. Let X and Y be two Banach spaces and ® a continuous linear
mapping from X onto Y. Then for every closed linear subspace G of X
containing the kernel of ®, ®(G) is closed in Y .

Proof. By Banach’s Theorem, ® is an open mapping. Thus ®(X \ G) is an
open subset of Y. Now it is enough to notice that

Y\ ®P(G)=PX\G)

for completing the proof. (]

For A a linear operator on H, we denote by ¢ the orthogonal projector on
W+, and we put A’ = gA.
Lemma 11. A’ is continuous.
Proof. Denote by G4 (resp. G 4 ) the graph of A (resp. A’)in H x H. If
D(x, y) = (x, qy), we have G4 = P(G,).

By the definition of W, we have Wy = {0} x W C G4, hence Go+ W, C
G,. Conversely, if (x,y) € G4, there exists a sequence ((x,, y,)) in G
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converging to (x, y). Then (x, — x, Ax, — Ax) € G4, x, —x — 0 and
Ax, — Ax — y — Ax. We conclude that y — Ax € W and that (x, y) =
(x, Ax)+(0,y — Ax) e G4 + Wy. Hence G4 = G4 + W,.

Since G4 D W, = ker(®), Lemma 10 implies that ®(G 4) is closed, but

D(G ) = DG+ ({0} x W) = ©(Ga) + P(Wp) = D(Ga) =Gy

Hence G 4 is closed, and A’ is continuous. O

Lemma 12. Let Hy and H, be Hilbert spaces, A a linear operator from H; to
H,, K a compact linear operator on H,. If H; is infinite-dimensional, then for
every ¢ > 0 there exists some u in the unit sphere of H, such that | K Aul| < €.

Proof. If not we have | K Ax| > ¢| x| for any x € H,. Then for x € Hj,
w = A'x — Ax € W, and there exists some sequence (x,) converging to
0 such that Ax, — w. Then the sequence (K A(x + x,)) converges to
K(Ax + w) = K A'x, and since

KA +x)| = ellx + x,l
we conclude that
(D |KAx| > ellx|

but, since A’ is continuous by Lemma 11, K A’ is compact, and this contradicts
(1). O
Lemma 13. If A satisfies (x*) or (xxx), so does A’.

Proof. Since ym is a compact operator, it is enough to prove the Lemma for
(x#x). Let x € H. Then w = A’x — Ax € W. There exists a sequence (x,)
converging to O such that w = lim,,_, o, Ax,,. Applying (k%) to x + x,, we get

(A(x +x0), x 4+ x5) + [[AG + X)) lx + X0l + [ KAG +x)] 1 + X0 [] =

> 8lx + x1?
and by letting n go to the infinity
(Ax 4+ w, x) + | Ax + w]| [|x]| + 1K (Ax + w)|| [lx]| = 8]|x |,

(A'x,x) + A x| lx ]+ 1K Ax | [lx] = 8]lx)>.

This last inequality shows that A" satisfies (sskx). ]
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Proof of Theorem 3. 1f A satisfies the hypothesis of Theorem 3, it satisfies
(x*x). Then A’ is continuous by Lemma 11 and satisfies (***) by Lemma 13.
Thus A’ invertible by Theorem 9. In particular

H = A'(H) = q(A(H)) C W™
Hence WX = H, g =1 and A’ = gA = A. This proves that A is continuous
and invertible. ]

Proofof Theorem 2. If A satisfies the hypothesis of Theorem 2, it satisfies ().

And since ym is a compact operator, the conclusion follows from Theorem 3.
O

We finish this note by reproving an earlier (unpublished) result of the
author:

Theorem 14. Let A and K be linear operators on the Hilbert space H, K
being compact. If

inf (|<Ax,x>| + ||KAx||) >0
[lxlI=1

then A is continuous and invertible.

Proof. If A satisfies the previous hypotheses, it is clearly one-to-one. So we
can assume H is infinite-dimensional. It is enough to prove that either A or — A
satisfies the hypotheses of Theorem 3.

8
Put$ = inf (|(Ax,x>| + ||KAx||), y = |IK| and e = ——. Then
xll=1 Yy +2

SllxI* < [(Ax, x)| + [ K Ax]|| x| <
< [Ax [ lx [l + 1K N TAx ] llxll = (v + DIAx ] x|l

and

8
| Ax]| =
y+1

If A does not satisfy the hypotheses of Theorem 3, there is some x; in the
unit sphere of H such that

llxl.

(Axp, x1) + | Ax || + [ K Axy || < &

and thus
)

2 KAx(|| <& and (Axy, x;) <& —||Ax(]| <
2) | 1] (Axy, x1) | Axy | 12 v 11
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Similarly if —A does not satisfy the hypotheses of Theorem 3, there is
some x; in the unit sphere such that

(—Ax2, X2) + | = Axz|| + | — KAxz|| < ¢

and thus

0.

) )
3) |KAx|| < e and (Axo, x0) > —e 4+ ||Axy|| > ——— + >
3 2l (Axz, x2) | Axa | v 2 Ty

Let V be the linear space spanned by x; and x,. By Lemma 12 applied to
H, = V% and H, = H, there exists some u € V- such that ||u| = 1 and

8
| K Au| < G Then we put for ¢ € [0, 1]

1/2
YO =tx2+ 1 = 0x; + (1= o+ (= 0x ) .
We have ||y (¢)|| = 1 for all ¢, and

(AY(0), ¥(0)) = (Axy, x1) <0 < (AY(1), ¥ (1)) = (Axz, x2).

Thus since the restriction of A to the space V @ Ru is continuous, there is some
t* € [0, 1] such that (Ay(t*), ¥(¢*)) = 0 and

IKAY ()| < t*| K Axo]l + (1 — )| K Ax || +

1/2
+ (1= + (1 =9 ?) T IK Aul <

1) 1)
St*s—i—(l—t*)s—l-“KAull§8+g§5+g<6

>

hence

[(AY (), ()| + 1K AY ()]l < 8

a contradiction. Thus either A or — A satisfies the hypothesis of Theorem 3 and
the proof is complete. ]
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