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A GENERALIZATION OF LAX-MILGRAM�S THEOREM

JEAN SAINT RAYMOND

The main purpose of this note is to prove the following statement:

Theorem 1. Let H be a real Hilbert space and A a linear operator on H . If

inf
�x�=1

(�Ax , x� + �Ax�) > 0

the operator A is continuous and invertible.

This is a generalization of the well-known theorem of Lax-Milgram since
if

inf
�x�=1

�Ax , x� > 0

the previous inequality holds. In fact we shall even prove the following
improvements of Theorem 1:

Theorem 2. Let H be a real Hilbert space and A a linear operator on H . Let
(y1, y2, . . . , yk) be an orthonormal family in H and γ > 0. If

inf
�x�=1

�

�Ax , x� + �Ax� + γ

� k�

j=1

�Ax , yj �
2
�1/2

�

> 0

the operator A is continuous and invertible.
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Theorem 3. Let H be a real Hilbert space and A a linear operator on H . Let
K be a compact linear operator on H . If

inf
�x�=1

(�Ax , x� + �Ax� + �K Ax�) > 0

the operator A is continuous and invertible.

Both Theorem 1 and Theorem 2 are answers to questions asked by B. Ric-
ceri.

If A satis�es the hypothesis of Theorem 2, we put

δ = inf
�x�=1

�

�Ax , x� + �Ax� + γ

� k�

j=1

�Ax , yi�
2
�1/2

�

> 0.

Then we have for every x in the unit sphere

(∗) �Ax , x� + �Ax� �x� + γ

� k�

j=1

�Ax , yi �
2

�1/2
�x� ≥ δ�x�2

and by homogeneity this inequality holds for every x ∈ H .

Notations. We will denote by V the linear space spanned by (y1, y2, . . . , yk)
and by F = V⊥ its orthogonal. V is a closed subspace of H of dimension k,
and we denote by π the orthogonal projector on V . Then for every u in H we
have

k�

j=1

�u, yj �
2 = �πu�2.

So (∗) becomes

(∗∗) �Ax , x� + �Ax� �x� + γ �π Ax� �x� ≥ δ�x�2.

We denote by I the identity operator on H .

Lemma 4. Let A be a linear operator on H satisfying (∗∗). Then ker (A) = 0.

Proof. We have

δ�x�2 ≤ �Ax , x� + �Ax� �x� + γ �π Ax� �x�

≤ �Ax� �x� + �Ax� �x� + γ �Ax� �x� = (γ + 2)�Ax� �x�

hence δ�x� ≤ (γ + 2)�Ax�, and x = 0 if Ax = 0. �

Lemma 5. Let A be a linear operators on H satisfying (∗∗). Then for any real
t ≥ 0 and any x ∈ F the following inequality holds

�(A + t I )x� ≥
δ

γ + 2
�x�.
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Proof. Since x ∈ F = V⊥,

π (A + t I )x = π Ax + tπx = π Ax ,

�(A + t I )x , x� + �(A + t I )x� �x� = �Ax , x� + t�x�2 + �Ax + t x� �x� ≥

≥ �Ax , x� + t�x�2 + �Ax� �x� − �t x� �x� = �Ax , x� + �Ax� �x�.

Hence

�(A + t I )x , x� + �(A + t I )x� �x� + γ �π (A + t I )x� �x� ≥

≥ �Ax , x� + �Ax� �x� + γ �π Ax� �x� ≥ δ�x�2

and since

�(A + t I )x , x� + �(A + t I )x� �x� + γ �π (A + t I )x� �x� ≤

≤ �(A + t I )x� �x� + �(A + t I )x� �x� + γ �(A + t I )x� �x� =

= (γ + 2)�(A + t I )x� �x�

we get
(γ + 2)�(A + t I )x� �x� ≥ δ�x�2

and this completes the proof of the Lemma. �

Corollary 6. Let A be a continuous linear operator on H satisfying (∗∗). Then
for every real t ≥ 0 the space (A + t I )(F) is closed in H . Moreover A + t I is
one-to-one on F .

Proof. From Lemma 5 we get clearly F ∩ ker (A + t I ) = {0}. Hence A + t I
is one-to-one on F . Let (un) be a sequence in (A + t I )(F) converging to u in
H . If un = (A + t I )xn with xn ∈ F , we have by Lemma 5

�xn − xm� ≤
γ + 2

δ
�un − um�

and this shows that the sequence (xn) is a Cauchy sequence. Since F is com-
plete, the sequence (xn) converges to some x ∈ F , and since A is continuous,

(A + t I )x = lim
n→∞

(A + t I )xn = lim
n→∞

un = u.

Thus u ∈ (A + t I )(F). �

Lemma 7. Let A be a continuous linear operator on H satisfying (∗∗). Then
for every real t ≥ 0 the space (A + t I )(H ) has codimension k in H .
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Proof. Denote by T the set

T =
�
t ≥ 0 : (A + t I )(F) is not of codimension k in H

�
.

We want to prove T = θ .
First of all, notice that, for t > �A�, the operator A+t I is invertible on H .

Hence the subspaces (A + t I )(F) and (A + t I )(V ) are direct summands. And
since dim((A + t I )(V )) = dim(V ) = k, t does not belong to T . This shows
that T ⊂ [0, �A�].

Thus if T is not empty, it has an upper bound θ . Denote by Eθ the
orthogonal subspace of (A + θ I )(F) and by St the operator from F × Eθ to
H de�ned by

St(x , u) = (A + t I )x + u.

Then St is continuous for each t ≥ 0. Moreover Sθ is one-to-one since
H = (A+ θ I )(F)⊕ Eθ and since A+ θ I is one-to-one from F to (A+ θ I )(F)
by Corollary 6.

Since Sθ is invertible, there exists some ρ > 0 such that St is invertible for
|t − θ | < ρ . In particular for t = θ +

ρ

2
> θ , (A + t I )(F) has codimension

k in H . And since St is invertible, (A + t I )(F) and Eθ are direct summands.
Hence dim(Eθ ) = k. Similarly for θ − ρ < t ≤ θ (A + t I )(F) and Eθ are
direct summands. Hence (A + t I )(F) has codimension dim(Eθ ) = k, and
T∩]θ − ρ, θ ] = θ . This shows that θ = sup T ≤ θ − ρ , a contradiction. This
completes the proof. �

Theorem 8. Let A be a continuous linear operator on H satisfying (∗∗). Then
A is invertible.

Proof. By Lemma 7, A(F) has codimension k. By Lemma 4, A is one-
to-one. Hence A(V ) has dimension k and A(F) ∩ A(V ) = {0}. Thus
A(H ) = A(F) + A(V ) = H . Since A is continuous and one-to-one from
H to H , it is invertible. �

Theorem 9. Let A and K be continuous linear operators on H, K being
compact. If

inf
�x�=1

(�Ax , x� + �Ax� + �K Ax�) > 0

then A is invertible.

Proof. Put γ = �K� and δ = inf�x�=1(�Ax , x� + �Ax� + �K Ax�). We have,
as at the beginning of this paper,

(∗∗∗) �Ax , x� + �Ax� �x� + �K Ax� �x� ≥ δ�x�2.
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Then K ∗K is compact, symmetric and positive, and so is K1 = (K ∗K )1/2.
Moreover γ = �K� = �K1�. For every y ∈ H we have

�K1y�
2 = �K1y, K1y� = �K 2

1 y, y� = �K ∗K y, y� = �K y, K y� = �K y�2.

So (∗∗∗) can be rewritten as

�Ax , x� + �Ax� �x� + �K1Ax� �x� ≥ δ�x�2.

Hence we can and do assume that K is symmetric. There exists an orthonormal
sequence (yi ) and a sequence of non-negative eigenvalues (λj ) such that, for
every y ∈ H

�K y�2 =

∞�

j=1

λ2j �y, yj �
2.

Moreover the sequence (λj ) converges to 0. Put ε =
δ

2�A�
. Thus there exists

some k such that λj < ε for j > k. And λj ≤ γ for all j . Then for every x in
H we have

�K Ax�2 =

∞�

j=1

λ2j �Ax , yj �
2

≤

k�

j=1

γ 2�Ax , yj �
2 +

∞�

j=k+1

ε2�Ax , yj �
2

≤ γ 2
k�

j=1

�Ax , yj �
2 + ε2

∞�

j=1

�Ax , yj �
2

≤ γ 2
k�

j=1

�Ax , yj �
2 + ε2�Ax�2

≤ γ 2
k�

j=1

�Ax , yj �
2 + ε2�A�2�x�2

≤ γ 2
k�

j=1

�Ax , yj �
2 +

δ2

4
�x�2
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hence

�K Ax� ≤
δ

2
�x� + γ

�
�
�
�

k�

j=1

�Ax , yj �2

and from (∗∗∗) we get

�Ax , x� + �Ax� �x� + γ

�
�
�
�

k�

j=1

�Ax , yj �2 �x� ≥

≥ �Ax , x� + �Ax� �x� +
�
�K Ax� −

δ

2
�x�

�
�x� ≥

δ

2
�x�2

This shows that A satis�es (∗∗) (with δ/2 instead of δ). Then the conclusion
follows from Theorem 8. �

From now on, the operator A is not assumed to be continuous. We denote
by W the closed linear subspace of H de�ned by

W =
�
w ∈ H : there exists a sequence (xn) such that

lim
n→∞

xn = 0 and lim
n→∞

Axn = w

�
.

Lemma 10. Let X and Y be two Banach spaces and � a continuous linear
mapping from X onto Y . Then for every closed linear subspace G of X
containing the kernel of �, �(G) is closed in Y .

Proof. By Banach�s Theorem, � is an open mapping. Thus �(X \ G) is an
open subset of Y . Now it is enough to notice that

Y \ �(G) = �(X \ G)

for completing the proof. �

For A a linear operator on H , we denote by q the orthogonal projector on
W⊥, and we put A� = qA.

Lemma 11. A� is continuous.

Proof. Denote by GA (resp. GA� ) the graph of A (resp. A�) in H × H . If
�(x , y) = (x , qy), we have GA� = �(GA).

By the de�nition of W , we have W0 = {0} ×W ⊂ GA , hence GA +W0 ⊂

GA . Conversely, if (x , y) ∈ GA , there exists a sequence ((xn, yn)) in GA
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converging to (x , y). Then (xn − x , Axn − Ax ) ∈ GA , xn − x → 0 and
Axn − Ax → y − Ax . We conclude that y − Ax ∈ W and that (x , y) =

(x , Ax )+ (0, y − Ax )∈GA + W0. Hence GA = GA + W0.
Since GA ⊃ W0 = ker(�), Lemma 10 implies that �(GA) is closed, but

�(GA) = �(GA + ({0} × W )) = �(GA) + �(W0) = �(GA) = GA�

Hence GA� is closed, and A� is continuous. �

Lemma 12. Let H1 and H2 be Hilbert spaces, A a linear operator from H1 to
H2, K a compact linear operator on H2. If H1 is in�nite-dimensional, then for
every ε > 0 there exists some u in the unit sphere of H1 such that �K Au� < ε .

Proof. If not we have �K Ax� ≥ ε�x� for any x ∈ H1. Then for x ∈ H1,
w = A�x − Ax ∈ W , and there exists some sequence (xn) converging to
0 such that Axn → w. Then the sequence (K A(x + xn)) converges to
K (Ax + w) = K A�x , and since

�K A(x + xn)� ≥ ε�x + xn�

we conclude that

(1) �K A�x� ≥ ε�x�

but, since A� is continuous by Lemma 11, K A� is compact, and this contradicts
(1). �

Lemma 13. If A satis�es (∗∗) or (∗∗∗), so does A� .

Proof. Since γπ is a compact operator, it is enough to prove the Lemma for
(∗∗∗). Let x ∈ H . Then w = A�x − Ax ∈ W . There exists a sequence (xn)
converging to 0 such that w = limn→∞ Axn . Applying (∗∗∗) to x + xn we get

�A(x + xn), x + xn� + �A(x + xn)� �x + xn� + �K A(x + xn)� �x + xn� ≥

≥ δ�x + xn�
2

and by letting n go to the in�nity

�Ax + w, x� + �Ax + w� �x� + �K (Ax + w)� �x� ≥ δ�x�2,

�A�x , x� + �A�x� �x�+ �K A�x� �x� ≥ δ�x�2.

This last inequality shows that A� satis�es (∗∗∗). �



154 JEAN SAINT RAYMOND

Proof of Theorem 3. If A satis�es the hypothesis of Theorem 3, it satis�es
(∗∗∗). Then A� is continuous by Lemma 11 and satis�es (∗∗∗) by Lemma 13.
Thus A� invertible by Theorem 9. In particular

H = A�(H ) = q(A(H )) ⊂ W⊥.

Hence W⊥ = H , q = I and A� = qA = A. This proves that A is continuous
and invertible. �

Proof of Theorem 2. If A satis�es the hypothesis of Theorem 2, it satis�es (∗∗).
And since γπ is a compact operator, the conclusion follows from Theorem 3.

�

We �nish this note by reproving an earlier (unpublished) result of the
author:

Theorem 14. Let A and K be linear operators on the Hilbert space H , K
being compact. If

inf
�x�=1

�
|�Ax , x�| + �K Ax�

�
> 0

then A is continuous and invertible.

Proof. If A satis�es the previous hypotheses, it is clearly one-to-one. So we
can assume H is in�nite-dimensional. It is enough to prove that either A or −A
satis�es the hypotheses of Theorem 3.

Put δ = inf
�x�=1

�
|�Ax , x�| + �K Ax�

�
, γ = �K� and ε =

δ

γ + 2
. Then

δ�x�2 ≤ |�Ax , x�| + �K Ax� �x� ≤

≤ �Ax� �x� + �K� �Ax� �x� ≤ (γ + 1)�Ax� �x�

and

�Ax� ≥
δ

γ + 1
�x�.

If A does not satisfy the hypotheses of Theorem 3, there is some x1 in the
unit sphere of H such that

�Ax1, x1� + �Ax1� + �K Ax1� < ε

and thus

(2) �K Ax1� < ε and �Ax1, x1� < ε − �Ax1� ≤
δ

γ + 2
−

δ

γ + 1
< 0.
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Similarly if −A does not satisfy the hypotheses of Theorem 3, there is
some x2 in the unit sphere such that

�−Ax2, x2� + � − Ax2� + � − K Ax2� < ε

and thus

(3) �K Ax2� < ε and �Ax2, x2� > −ε + �Ax2� ≥ −
δ

γ + 2
+

δ

γ + 1
> 0.

Let V be the linear space spanned by x1 and x2. By Lemma 12 applied to
H1 = V⊥ and H2 = H , there exists some u ∈ V⊥ such that �u� = 1 and

�K Au� ≤
δ

6
. Then we put for t ∈ [0, 1]

ψ(t) = t x2 + (1− t)x1 +
�
1− �t x2 + (1− t)x1�

2
�1/2

u.

We have �ψ(t)� = 1 for all t , and

�Aψ(0), ψ(0)� = �Ax1, x1� < 0 < �Aψ(1), ψ(1)� = �Ax2, x2�.

Thus since the restriction of A to the space V ⊕Ru is continuous, there is some
t∗ ∈ [0, 1] such that �Aψ(t∗), ψ(t∗)� = 0 and

�K Aψ(t∗)� ≤ t∗�K Ax2� + (1− t∗)�K Ax1� +

+
�
1− �t∗x2 + (1− t∗)x1�

2
�1/2

�K Au� ≤

≤ t∗ε + (1− t∗)ε + �K Au� ≤ ε +
δ

6
≤

δ

2
+

δ

6
< δ

hence
|�Aψ(t∗), ψ(t∗)�| + �K Aψ(t∗)� < δ

a contradiction. Thus either A or −A satis�es the hypothesis of Theorem 3 and
the proof is complete. �
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