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OPTIMAL INTEGRABILITY IN Bqp CLASSES

ARTURO POPOLI

Equations for the best integrability exponent, for monotonic functions
in one-dimensional Gehring and Muckenhoupt classes, are uni�ed in more
general Reverse Holder Inequality classes.
Furthermore, the result is extended by removing the monotonicity assump-
tions.

1. Introduction.

Let E be a measurable set of R
n with positive Lebesgue measure, and

p, q ∈ R − {0} such that p < q . For K > 1 we will denote with B
q
p (K ) the

class of nonnegative measurable functions f ∈ Lq(E) satisfying the Reverse
Holder Inequality

(1.1)

��

Q

f q(x ) dx

�1/q

≤ K

��

Q

f p(x ) dx

�1/p

for all cubes Q ⊂ E .
Well-known particular cases of B

q
p classes are theGehring class Gq(K ) of

functions f such that

(1.2)

��

Q

f q(x ) dx

�1/q

≤ K

�

Q

f (x ) dx ∀Q ⊂ E
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and theMuckenhoupt class Ap(K ) of functions f such that

(1.3)

�

Q

f (x ) dx

��

Q

f 1/(1−p)(x ) dx

�p−1

≤ K ∀Q ⊂ E

where clearly is

Gq(K ) = B
q
1 (K )

and

Ap(K ) = B1
1

1−p

(K ).

In these two classes, respectively, the forward and the backward propa-
gation property hold; namely, for f ∈ Gq(K ), there exists q0 > q such that
f ∈ Ls (E) for all s ∈ [q, q0) and, for f ∈ Ap(K ) there exists p0 < p such that
f ∈ Ls(E) for all s ∈ (p0, p].

In [1] and [2] Bojarski proved an asymptotic dependence of ε = (q0 − q),
as K → 1.

In one-dimensional case, where E is an interval of R, the problem of
�nding the exact value of q0 and p0 has been completely solved, for monotonic
functions, by following two parallel theorems.

Theorem 1.1 (D�Apuzzo - Sbordone). Let f ∈ Gq(K ) be a nonnegative and
nonincreasing function on E ⊂ R. Then f ∈ Ls (E) for q ≤ s < q0, where q0
is the unique solution of equation

(E1) 1 − Kq x − q

x

�
x

x − 1

�q

= 0.

Theorem 1.2 (Korenovskii). Let f ∈ Ap(K ) be a nonnegative and nondecreas-
ing function on E ⊂ R. Then f ∈ Lr (E) for p0 < r ≤ p, where p0 is the
unique solution of equation

(E2)
p − x

p − 1
(K x )1/(p−1) = 1.

Besides, in [9] is proved that Theorem 1.1 and equation (E1) still hold in
weighted Gehring classes.

Aim of this paper is to unify the previous theorems in the class B
q
p (K ).

Indeed we prove the following
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Theorem 1.3. Let f ∈ B
q
p(K ) be a nonnegative function on E ⊂ R. Then there

exists x0 such that, if p > 0 [p < 0], f ∈ Ls (E) for all s such that q ≤ s < x0
[x0 < s ≤ p], where x0 is given by the unique solution of equation

(E3)

�
x

x − q

�1/q

= K

�
x

x − p

�1/p

.

By applying simple transformations, it�s easy to see that equation (E1) and
(E2) are particular cases of equation (E3).

Moreover, we remark that Theorem 1.3 is an improvement of Theorem 1.1
and Theorem 1.2 since the monotonicity assumption is removed.

2. Preliminary results.

Theorem 2.1. Let g be a nonnegative function on interval (a, b), and

G(x ) =
1

x − a

� x

a

g(t) dt .

Then, for α and β such that αβ < 0 or |α| < |β|, we have

(2.1)

� b

a

(x − a)α−1Gβ(x ) dx ≤

�
β

β − α

�β � b

a

(x − a)α−1gβ(x ) dx .

Proof. Integrating by parts we have

α

� b

a

(x − a)α−1Gβ = c − β

� b

a

(x − a)αGβ−1G �

where c = (b− a)αGβ(b) > 0. Now, since (x − a)G � = g − G ,

α

� b

a

(x − a)α−1Gβ = c − β

�� b

a

(x − a)α−1Gβ−1g −

� b

a

(x − a)α−1Gβ

�

and then

(β − α)

� b

a

(x − a)α−1Gβ = β

� b

a

(x − a)α−1Gβ−1g − c.
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Let us �rst suppose β > 0; by our assumptions (β − α) > 0 so, since c > 0

(2.2)

� b

a

(x − a)α−1Gβ ≤
β

β − α

� b

a

(x − a)α−1Gβ−1g

from Holder�s inequality we have

(2.3)

� b

a

(x − a)α−1Gβ−1g ≤

�� b

a

(x − a)α−1Gβ

� β−1
β

�� b

a

(x − a)α−1gβ

� 1
β

and �nally, by (2.2) and (2.3), we get

�� b

a

(x − a)α−1Gβ

�1/β

≤
β

β − α

�� b

a

(x − a)α−1gβ

�1/β

that proves the theorem for β > 0.
If β < 0, by our assumptions (β − α) < 0 so

(2.4)

� b

a

(x − a)α−1Gβ ≥
β

β − α

� b

a

(x − a)α−1Gβ−1g .

By the other hand, Holder�s inequality for β( β

β−1
) < 0 gives

(2.5)

� b

a

(x−a)α−1Gβ−1g ≥

� � b

a

(x−a)α−1Gβ

� β−1
β

�� b

a

(x−a)α−1gβ

�1/β

.

Then from (2.4) and (2.5) we �nd

�� b

a

(x − a)α−1Gβ

�1/β

≥
β

β − α

�� b

a

(x − a)α−1gβ

�1/β

.

By raising both members to the negative exponent β we get the result. �

Remark 2.1. For p and q such that 1 < p < q, α = q/p and β = q ,
Theorem 2.1 gives the classical Hardy�s inequality

� b

a

(x − a)(q/p)−1Gq(x ) dx ≤

�
p

p − 1

�q � b

a

(x − a)(q/p)−1gq(x ) dx

and, for α = q/p and β = −q , the inequality

� b

a

(x − a)(q/p)−1G−q(x ) dx ≤

�
p + 1

p

�q � b

a

(x − a)(q/p)−1g−q(x ) dx

proved in [6].
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Lemma 2.1. Let h(x ) be a nonnegative function in L∞(a, b). Then for λ �= 0

� b

a

(x−a)λ
�� x

a

h(t) dt

�

dx =
1

λ

�

(b−a)λ
� b

a

h(x ) dx−

� b

a

(x−a)λh(x ) dx

�

.

Proof. From Fubini�s theorem we have:

� b

a

(x − a)λ
�� x

a

h(t) dt

�

dx =

� b

a

(x − a)λ−1

�� x

a

h(t) dt

�

dx =

=

� b

a

h(t)

�� b

t

(x − a)λ−1 dx

�

dt

that easily leads to the result. �

Lemma 2.2. For C > 1 and a, b∈ R − {0} with b > a > 0 or b < 0 < a, let
γC be de�ned for x ∈ [0, 1] as

(2.6) γC (a, b, x ) = 1 − Cb(1 − x )

�
b

b− ax

�b/a

.

Then, there exists an unique solution xb of equation

(2.7) γc(a, b, x ) = 0.

Moreover
γC (a, b, x ) > 0 ⇔ x ∈ (xb, 1].

Proof. Let us consider the auxiliary function

w(x ) = (1 − x )

�
b

b − ax

�b/a

.

This function has range [0, 1] and, since

w�(x ) = −

�
b

b − ax

�b/a (b − a)x

b − ax
,

w is decreasing in [0, 1] so, for C−b ∈ [0, 1] there exists an unique solution of
equation w(x ) = C−b given by xb = w−1(C−b) that is (2.7). Since w decreases

γC (a, b, x ) > 0 ⇔ w(x ) < C−b ⇔ x > xb
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that completes the proof. �

Lemma 2.3. Let f ∈ B
q
p (K ) be a nonnegative function in L∞(a, b). Then, there

exist αq, αp ∈ (0, 1), such that for p > 0

(2.8)

� b

a

(x − a)α−1 f q(x ) dx ≤
(b − a)α−1

γK (p, q, α)

� b

a

f q (x ) dx ∀α ∈ (αq, 1]

and for p < 0

(2.9)

� b

a

(x − a)α−1 f p(x ) dx ≤
(b − a)α−1

γ1/K (q, p, α)

� b

a

f p(x ) dx ∀α ∈ (αp, 1]

with γC de�ned as in Lemma 2.2.

Proof. Let f ∈ B
q
p (K ) with p > 0. Then

� b

a

(x − a)α−1

�� x

a

f q(t) dt

�

dx ≤ Kq

� b

a

(x − a)α−1

�� x

a

f p(t) dt

�q/p

dx .

For λ = α − 1 and h = f q from Lemma 2.1 we have

� b

a

(x − a)α−1

�� x

a

f q (t) dt

�

dx =

=
1

α − 1

�

(b − a)α−1

� b

a

f q(x ) dx −

� b

a

(x − a)α−1 f q(x ) dx

�

while, from Theorem 2.1 for β = q/p and g = f p

� b

a

(x − a)α−1

�� x

a

f p(t) dt

�q/p

dx ≤
� q

q − pα

�q/p � b

a

(x − a)α−1 f q(x ) dx .

Then

1

α − 1

�

(b − a)α−1

� b

a

f q −

� b

a

(x − a)α−1 f q
�

≤

≤ Kq
� q

q − pα

�q/p � b

a

(x − a)α−1 f q

from which follows that

(b − a)α−1

� b

a

f q ≥
�
1 − Kq(1 − α)

� q

q − pα

�q/p� � b

a

(x − a)α−1 f q
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that is

γK (p, q, α)

� b

a

(x − a)α−1 f q ≤ (b − a)α−1

� b

a

f q .

From Lemma 2.2 there exists αp ∈ (0, 1) such that γK (p, q, α) > 0 if α ∈ (αq, 1]
so relation (2.8) is proved.
If now is b < 0 we have

� b

a

(x − a)α−1

�� x

a

f p
�

≤ K−p

� b

a

(x − a)α−1

�� x

a

f q
�p/q

.

As before, applying Lemma 2.1, for λ = α − 1 and h = f p , and Theorem 2.1,
for β = p/q and g = f q we get

1

α − 1

�

(b − a)α−1

� b

a

f p −

� b

a

(x − a)α−1 f p
�

≤

≤ K−p
� p

p − qα

�p/q � b

a

(x − a)α−1 f p

and then

γ1/K (q, p, α)

� b

a

(x − a)α−1 f p ≤ (b − a)α−1

� b

a

f p .

Finally, for Lemma 2.2, there exists αp ∈ (0, 1) such that γ1/K (q, p, α) > 0 for
α ∈ (αp, 1]; so inequality (2.9) holds. �

Lemma 2.4 (Hardy-Littlewood-Polya). Let f ∈ Ls(E) be a nonnegative and
nonincreasing [nondecreasing] function. Then, for 0 < r < s [s < r < 0]

�� b

a

f s (x ) dx

�r/s

≤
r

s

� b

a

(x − a)(r/s)−1 f r (x ) dx .

3. Main results.

We �rst prove a monotonic version of Theorem 1.3.

Theorem 3.1. Let f ∈ B
q
p (K ), with pq > 0 [pq < 0], be a nonnegative

and nonincreasing [nondecreasing] function on E ⊂ R. Then f ∈ Ls (E) for
q ≤ s < q0 [p0 < s ≤ p], where q0 [p0] is the unique solution of equation

(E3)
� x

x − q

�1/q

= K
� x

x − p

�1/p

.
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Proof. Let us �rst suppose p > 0 and q > 0, and let f be a nonincreasing
function in B

q
p (K ). By using truncated functions (see [12]) we can construct

a sequence of nonincreasing functions fh ∈ L∞(E) converging to f in Lq and
verifying (1.1) for each h with the same constant K .
Hence functions fh verify conditions of Lemma 2.3 so, for each h, inequality

� b

a

(x − a)α−1 f
q
h ≤

(b− a)α−1

γK (p, q, α)

� b

a

f
q
h

for all (a, b)∈ E holds true and, passing to limit as h → +∞

� b

a

(x − a)α−1 f q ≤
(b− a)α−1

γK (p, q, α)

� b

a

f q

with αq < α ≤ 1.
If αq = q/q0 and α = q/s , so that αq < α ≤ 1, we have q ≤ s < q0. Then we
can apply Lemma 2.4 for r = q and obtain

�� b

a

f s
�q/s

≤
q

s

(b − a)(q/s)−1

γK (p, q, q/s)

� b

a

f q q ≤ s < q0

and �nally

�� b

a

f s
�q/s

≤
q

s

1

γK (p, q, q/s)

� b

a

f q q ≤ s < q0

with q0 unique solution of equation

γK (p, q, q/x ) = 0

that easily leads to (E3).
Let us suppose p < 0 and q > 0, and f a nondecreasing function in B

q
p (K ).

By using nondecreasing functions and inequality (2.9) of Lemma 2.3 (p < 0),
we get

� b

a

(x − a)α−1 f p ≤
(b− a)α−1

γ1/K (q, p, α)

� b

a

f p

with αp < α ≤ 1. Now, if αp = p/p0 and α = p/s , so that αp < α ≤ 1, we
have p0 < s ≤ p. By applying again Lemma 2.4 for r = p we have

�� b

a

f s
�p/s

≤
p

s

1

γ1/K (q, p, p/s)

� b

a

f p
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with p0 unique solution of equation

γ1/K (q, p, p/x ) = 0

that is again equation (E3). �

It is immediate to see that, for p = 1, Theorem 3.1 reduces to the Theorem 1.1
and equation (E3) to the equation (E1) for f ∈ B

q
1 (K ) = Gq(K ). Moreover,

also for q = 1 and f ∈ B1
1

1−p

(K ) = Ap(K ) the equation (E3) becomes

� x

x − 1

�
= K

� x

x − (1 − p)−1

�1−p

that, applying the transform t → (1 − t)−1, returns the equation (E2).
To remove the monotonicity assumption in the previous theorem we need

an important result, due to Korenovskii, on relationships between functions in
Reverse Jensen Inequality classes and their rearrangements.

Namely, let � be the class of nonnegative convex functions ϕ on (0, +∞)
and for ϕ ∈ � let Lϕ(E) be the related Orlicz class of functions f such that
ϕ( f )∈ L1(E). Then we will say that a function f ∈ Lϕ(E) belongs to the class
Bϕ(S) if it satis�es the Reverse Jensen Inequality

�

Q

ϕ( f ) ≤ Sϕ

��

Q

f

�

∀Q ∈ E

with

S = S(ϕ, f, E) = sup
Q⊂E

�
Q

ϕ( f )

ϕ

��
Q
f
� < ∞

where the supremum is taken over all cubes Q ⊂ E .
It�s easy to show that for ϕG(t) = t q(q > 1) we have

BϕG (S) = Gq(S
1/q) = B

q
1 (S

1/q)

and for ϕM(t) = t p/(1−p)(p > 1) we have

BϕM (S) = Ap(S
p−1) = B1

1
p−1

(S p−1).

Let us again restrict ourself to functions of one real variable, and let E be an
interval. In [6] Korenovskii proved the following
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Theorem 3.2. For ϕ ∈ � and f ∈ Bϕ(S) we have

S(ϕ, f∗, [0, |E |]) = S(ϕ, f ∗, [0, |E |]) ≤ S(ϕ, f, E)

where f∗ and f ∗ are, respectively, the nondecreasing and nonincreasing rear-
rangements of f .

We are now able to prove our main result.

Proof of Theorem 1.3. Let f ∈ B
q
p (K ) so, for all J = (a, b) ⊂ E

(3.1)

��

J

f q
�1/q

≤ K

��

J

f p
�1/p

and let us �rst suppose p > 0. If we set g = f p , (3.1) can be written as

(3.2)

��

J

gq/p
�

≤ Kq

��

J

g

�q/p

.

Let us introduce the function ϕ(t) = t q/p ; for our assumptions ϕ ∈ � so (3.2)
means that g ∈ Bϕ(K

q). Then, applying Theorem 3.2 to the nonincreasing
rearrangement g∗ we have

(3.3)

� |J |

0

(g∗)q/p ≤ Kq

�� |J |

0

g∗

�q/p

that implies g∗ ∈ B
q
p

1 (K
p).

Hence we can invoke Theorem 3.1 and say that there exists q0 > q/p such that
g∗ ∈ Ls for all s ∈ [q/p, q0) where q0 is the solution of equation

(3.4)
� y

y − q/p

�p/q

= K p
� y

y − 1

�
.

Then if we put y = x/p, equation (3.4) becomes

(E3)
� x

x − q

�1/q

= K
� x

x − p

�1/p

.

Therefore, if x0 = q0 p is the root of (E3), we proved that g∗ ∈ Ls/p for all
s/p ∈ [q/p, x0/p), namely for all s ∈ [q, x0). Finally since

g∗ ∈ Ls/p ⇒ g ∈ Ls/p ⇒ f p ∈ Ls/p ⇒ f ∈ Ls
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theorem is proved for p > 0.
Now let p < 0; from (3.1) we have

��

J

f p
�

≤ K−p

��

J

f q
�p/q

and, for g = f q ,

(3.5)

��

J

g p/q
�

≤ K−p

��

J

g

�p/q

.

If we de�ne ψ(t) = t p/q , (3.5) means that g ∈ Bψ (K
−p). Applying again

Theorem 3.2 to the nondecreasing rearrangement g∗ of g we deduce that
g∗ ∈ B1

p
q

(Kq). As before, from Theorem 3.1, there exists p0 < p/q such that

g∗ ∈ Ls for all s ∈ (p0, p/q] with p0 root of equation

(3.6)
� y

y − 1

�
= Kq

� y

y − p/q

�q/p
.

For y = x/q , we get again equation (E3).
Therefore, g∗ ∈ Ls/q and, by the same arguments used in the previous case, we
can conclude that f ∈ Ls for any s ∈ (x0, p] where x0 = p0q . �
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