OPTIMAL INTEGRABILITY IN B_{p}^{q} CLASSES

ARTURO POPOLI

Equations for the best integrability exponent, for monotonic functions in one-dimensional Gehring and Muckenhoupt classes, are unified in more general Reverse Holder Inequality classes.
Furthermore, the result is extended by removing the monotonicity assumptions.

1. Introduction.

Let E be a measurable set of \mathbb{R}^{n} with positive Lebesgue measure, and $p, q \in \mathbb{R}-\{0\}$ such that $p<q$. For $K>1$ we will denote with $B_{p}^{q}(K)$ the class of nonnegative measurable functions $f \in L^{q}(E)$ satisfying the Reverse Holder Inequality

$$
\begin{equation*}
\left(f_{Q} f^{q}(x) d x\right)^{1 / q} \leq K\left(f_{Q} f^{p}(x) d x\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

for all cubes $Q \subset E$.
Well-known particular cases of B_{p}^{q} classes are the Gehring class $G_{q}(K)$ of functions f such that

$$
\begin{equation*}
\left(f_{Q} f^{q}(x) d x\right)^{1 / q} \leq K f_{Q} f(x) d x \quad \forall Q \subset E \tag{1.2}
\end{equation*}
$$

Entrato in Redazione il 14 gennaio 1997.
and the Muckenhoupt class $A_{p}(K)$ of functions f such that

$$
\begin{equation*}
f_{Q} f(x) d x\left(f_{Q} f^{1 /(1-p)}(x) d x\right)^{p-1} \leq K \quad \forall Q \subset E \tag{1.3}
\end{equation*}
$$

where clearly is

$$
G_{q}(K)=B_{1}^{q}(K)
$$

and

$$
A_{p}(K)=B_{\frac{1}{1-p}}^{1}(K)
$$

In these two classes, respectively, the forward and the backward propagation property hold; namely, for $f \in G_{q}(K)$, there exists $q_{0}>q$ such that $f \in L^{s}(E)$ for all $s \in\left[q, q_{0}\right)$ and, for $f \in A_{p}(K)$ there exists $p_{0}<p$ such that $f \in L^{s}(E)$ for all $s \in\left(p_{0}, p\right]$.

In [1] and [2] Bojarski proved an asymptotic dependence of $\varepsilon=\left(q_{0}-q\right)$, as $K \rightarrow 1$.

In one-dimensional case, where E is an interval of \mathbb{R}, the problem of finding the exact value of q_{0} and p_{0} has been completely solved, for monotonic functions, by following two parallel theorems.

Theorem 1.1 (D'Apuzzo - Sbordone). Let $f \in G_{q}(K)$ be a nonnegative and nonincreasing function on $E \subset R$. Then $f \in L^{s}(E)$ for $q \leq s<q_{0}$, where q_{0} is the unique solution of equation

$$
\begin{equation*}
1-K^{q} \frac{x-q}{x}\left(\frac{x}{x-1}\right)^{q}=0 \tag{E1}
\end{equation*}
$$

Theorem 1.2 (Korenovskii). Let $f \in A_{p}(K)$ be a nonnegative and nondecreasing function on $E \subset R$. Then $f \in L^{r}(E)$ for $p_{0}<r \leq p$, where p_{0} is the unique solution of equation

$$
\begin{equation*}
\frac{p-x}{p-1}(K x)^{1 /(p-1)}=1 \tag{E2}
\end{equation*}
$$

Besides, in [9] is proved that Theorem 1.1 and equation (E1) still hold in weighted Gehring classes.

Aim of this paper is to unify the previous theorems in the class $B_{p}^{q}(K)$. Indeed we prove the following

Theorem 1.3. Let $f \in B_{p}^{q}(K)$ be a nonnegative function on $E \subset \mathbb{R}$. Then there exists x_{0} such that, if $p>0[p<0], f \in L^{s}(E)$ for all s such that $q \leq s<x_{0}$ $\left[x_{0}<s \leq p\right]$, where x_{0} is given by the unique solution of equation

$$
\begin{equation*}
\left(\frac{x}{x-q}\right)^{1 / q}=K\left(\frac{x}{x-p}\right)^{1 / p} \tag{E3}
\end{equation*}
$$

By applying simple transformations, it's easy to see that equation (E1) and (E2) are particular cases of equation (E3).

Moreover, we remark that Theorem 1.3 is an improvement of Theorem 1.1 and Theorem 1.2 since the monotonicity assumption is removed.

2. Preliminary results.

Theorem 2.1. Let g be a nonnegative function on interval (a, b), and

$$
G(x)=\frac{1}{x-a} \int_{a}^{x} g(t) d t
$$

Then, for α and β such that $\alpha \beta<0$ or $|\alpha|<|\beta|$, we have

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}(x) d x \leq\left(\frac{\beta}{\beta-\alpha}\right)^{\beta} \int_{a}^{b}(x-a)^{\alpha-1} g^{\beta}(x) d x \tag{2.1}
\end{equation*}
$$

Proof. Integrating by parts we have

$$
\alpha \int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}=c-\beta \int_{a}^{b}(x-a)^{\alpha} G^{\beta-1} G^{\prime}
$$

where $c=(b-a)^{\alpha} G^{\beta}(b)>0$. Now, since $(x-a) G^{\prime}=g-G$,

$$
\alpha \int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}=c-\beta\left[\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta-1} g-\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}\right]
$$

and then

$$
(\beta-\alpha) \int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}=\beta \int_{a}^{b}(x-a)^{\alpha-1} G^{\beta-1} g-c .
$$

Let us first suppose $\beta>0$; by our assumptions $(\beta-\alpha)>0$ so, since $c>0$

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta} \leq \frac{\beta}{\beta-\alpha} \int_{a}^{b}(x-a)^{\alpha-1} G^{\beta-1} g \tag{2.2}
\end{equation*}
$$

from Holder's inequality we have
(2.3) $\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta-1} g \leq\left(\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}\right)^{\frac{\beta-1}{\beta}}\left(\int_{a}^{b}(x-a)^{\alpha-1} g^{\beta}\right)^{\frac{1}{\beta}}$
and finally, by (2.2) and (2.3), we get

$$
\left(\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}\right)^{1 / \beta} \leq \frac{\beta}{\beta-\alpha}\left(\int_{a}^{b}(x-a)^{\alpha-1} g^{\beta}\right)^{1 / \beta}
$$

that proves the theorem for $\beta>0$.
If $\beta<0$, by our assumptions $(\beta-\alpha)<0$ so

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta} \geq \frac{\beta}{\beta-\alpha} \int_{a}^{b}(x-a)^{\alpha-1} G^{\beta-1} g . \tag{2.4}
\end{equation*}
$$

By the other hand, Holder's inequality for $\beta\left(\frac{\beta}{\beta-1}\right)<0$ gives
(2.5) $\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta-1} g \geq\left(\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}\right)^{\frac{\beta-1}{\beta}}\left(\int_{a}^{b}(x-a)^{\alpha-1} g^{\beta}\right)^{1 / \beta}$.

Then from (2.4) and (2.5) we find

$$
\left(\int_{a}^{b}(x-a)^{\alpha-1} G^{\beta}\right)^{1 / \beta} \geq \frac{\beta}{\beta-\alpha}\left(\int_{a}^{b}(x-a)^{\alpha-1} g^{\beta}\right)^{1 / \beta}
$$

By raising both members to the negative exponent β we get the result.
Remark 2.1. For p and q such that $1<p<q, \alpha=q / p$ and $\beta=q$, Theorem 2.1 gives the classical Hardy's inequality

$$
\int_{a}^{b}(x-a)^{(q / p)-1} G^{q}(x) d x \leq\left(\frac{p}{p-1}\right)^{q} \int_{a}^{b}(x-a)^{(q / p)-1} g^{q}(x) d x
$$

and, for $\alpha=q / p$ and $\beta=-q$, the inequality

$$
\int_{a}^{b}(x-a)^{(q / p)-1} G^{-q}(x) d x \leq\left(\frac{p+1}{p}\right)^{q} \int_{a}^{b}(x-a)^{(q / p)-1} g^{-q}(x) d x
$$

proved in [6].

Lemma 2.1. Let $h(x)$ be a nonnegative function in $L^{\infty}(a, b)$. Then for $\lambda \neq 0$ $\int_{a}^{b}(x-a)^{\lambda}\left(f_{a}^{x} h(t) d t\right) d x=\frac{1}{\lambda}\left[(b-a)^{\lambda} \int_{a}^{b} h(x) d x-\int_{a}^{b}(x-a)^{\lambda} h(x) d x\right]$.

Proof. From Fubini's theorem we have:

$$
\begin{aligned}
\int_{a}^{b}(x-a)^{\lambda}\left(f_{a}^{x} h(t) d t\right) d x & =\int_{a}^{b}(x-a)^{\lambda-1}\left(\int_{a}^{x} h(t) d t\right) d x= \\
& =\int_{a}^{b} h(t)\left(\int_{t}^{b}(x-a)^{\lambda-1} d x\right) d t
\end{aligned}
$$

that easily leads to the result.
Lemma 2.2. For $C>1$ and $a, b \in \mathbb{R}-\{0\}$ with $b>a>0$ or $b<0<a$, let γ_{C} be defined for $x \in[0,1]$ as

$$
\begin{equation*}
\gamma_{C}(a, b, x)=1-C^{b}(1-x)\left(\frac{b}{b-a x}\right)^{b / a} \tag{2.6}
\end{equation*}
$$

Then, there exists an unique solution x_{b} of equation

$$
\begin{equation*}
\gamma_{c}(a, b, x)=0 \tag{2.7}
\end{equation*}
$$

Moreover

$$
\gamma_{C}(a, b, x)>0 \Leftrightarrow x \in\left(x_{b}, 1\right]
$$

Proof. Let us consider the auxiliary function

$$
w(x)=(1-x)\left(\frac{b}{b-a x}\right)^{b / a}
$$

This function has range $[0,1]$ and, since

$$
w^{\prime}(x)=-\left(\frac{b}{b-a x}\right)^{b / a} \frac{(b-a) x}{b-a x}
$$

w is decreasing in $[0,1]$ so, for $C^{-b} \in[0,1]$ there exists an unique solution of equation $w(x)=C^{-b}$ given by $x_{b}=w^{-1}\left(C^{-b}\right)$ that is (2.7). Since w decreases

$$
\gamma_{C}(a, b, x)>0 \Leftrightarrow w(x)<C^{-b} \Leftrightarrow x>x_{b}
$$

that completes the proof.
Lemma 2.3. Let $f \in B_{p}^{q}(K)$ be a nonnegativefunction in $L^{\infty}(a, b)$. Then, there exist $\alpha_{q}, \alpha_{p} \in(0,1)$, such that for $p>0$

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{\alpha-1} f^{q}(x) d x \leq \frac{(b-a)^{\alpha-1}}{\gamma_{K}(p, q, \alpha)} \int_{a}^{b} f^{q}(x) d x \quad \forall \alpha \in\left(\alpha_{q}, 1\right] \tag{2.8}
\end{equation*}
$$

and for $p<0$
(2.9) $\int_{a}^{b}(x-a)^{\alpha-1} f^{p}(x) d x \leq \frac{(b-a)^{\alpha-1}}{\gamma_{1 / K}(q, p, \alpha)} \int_{a}^{b} f^{p}(x) d x \quad \forall \alpha \in\left(\alpha_{p}, 1\right]$
with γ_{C} defined as in Lemma 2.2.
Proof. Let $f \in B_{p}^{q}(K)$ with $p>0$. Then

$$
\int_{a}^{b}(x-a)^{\alpha-1}\left(f_{a}^{x} f^{q}(t) d t\right) d x \leq K^{q} \int_{a}^{b}(x-a)^{\alpha-1}\left(f_{a}^{x} f^{p}(t) d t\right)^{q / p} d x
$$

For $\lambda=\alpha-1$ and $h=f^{q}$ from Lemma 2.1 we have

$$
\begin{aligned}
\int_{a}^{b}(x & -a)^{\alpha-1}\left(f_{a}^{x} f^{q}(t) d t\right) d x= \\
& =\frac{1}{\alpha-1}\left[(b-a)^{\alpha-1} \int_{a}^{b} f^{q}(x) d x-\int_{a}^{b}(x-a)^{\alpha-1} f^{q}(x) d x\right]
\end{aligned}
$$

while, from Theorem 2.1 for $\beta=q / p$ and $g=f^{p}$

$$
\int_{a}^{b}(x-a)^{\alpha-1}\left(f_{a}^{x} f^{p}(t) d t\right)^{q / p} d x \leq\left(\frac{q}{q-p \alpha}\right)^{q / p} \int_{a}^{b}(x-a)^{\alpha-1} f^{q}(x) d x
$$

Then

$$
\begin{aligned}
\frac{1}{\alpha-1}\left[(b-a)^{\alpha-1} \int_{a}^{b} f^{q}-\int_{a}^{b}(x-a)^{\alpha-1} f^{q}\right] \leq & \\
& \leq K^{q}\left(\frac{q}{q-p \alpha}\right)^{q / p} \int_{a}^{b}(x-a)^{\alpha-1} f^{q}
\end{aligned}
$$

from which follows that

$$
(b-a)^{\alpha-1} \int_{a}^{b} f^{q} \geq\left[1-K^{q}(1-\alpha)\left(\frac{q}{q-p \alpha}\right)^{q / p}\right] \int_{a}^{b}(x-a)^{\alpha-1} f^{q}
$$

that is

$$
\gamma_{K}(p, q, \alpha) \int_{a}^{b}(x-a)^{\alpha-1} f^{q} \leq(b-a)^{\alpha-1} \int_{a}^{b} f^{q}
$$

From Lemma 2.2 there exists $\alpha_{p} \in(0,1)$ such that $\gamma_{K}(p, q, \alpha)>0$ if $\alpha \in\left(\alpha_{q}, 1\right]$ so relation (2.8) is proved.
If now is $b<0$ we have

$$
\int_{a}^{b}(x-a)^{\alpha-1}\left(f_{a}^{x} f^{p}\right) \leq K^{-p} \int_{a}^{b}(x-a)^{\alpha-1}\left(f_{a}^{x} f^{q}\right)^{p / q}
$$

As before, applying Lemma 2.1, for $\lambda=\alpha-1$ and $h=f^{p}$, and Theorem 2.1, for $\beta=p / q$ and $g=f^{q}$ we get

$$
\begin{aligned}
\frac{1}{\alpha-1}\left[(b-a)^{\alpha-1} \int_{a}^{b} f^{p}\right. & \left.-\int_{a}^{b}(x-a)^{\alpha-1} f^{p}\right] \leq \\
& \leq K^{-p}\left(\frac{p}{p-q \alpha}\right)^{p / q} \int_{a}^{b}(x-a)^{\alpha-1} f^{p}
\end{aligned}
$$

and then

$$
\gamma_{1 / K}(q, p, \alpha) \int_{a}^{b}(x-a)^{\alpha-1} f^{p} \leq(b-a)^{\alpha-1} \int_{a}^{b} f^{p}
$$

Finally, for Lemma 2.2, there exists $\alpha_{p} \in(0,1)$ such that $\gamma_{1 / K}(q, p, \alpha)>0$ for $\alpha \in\left(\alpha_{p}, 1\right]$; so inequality (2.9) holds.
Lemma 2.4 (Hardy-Littlewood-Polya). Let $f \in L^{s}(E)$ be a nonnegative and nonincreasing [nondecreasing]function. Then, for $0<r<s[s<r<0$]

$$
\left(\int_{a}^{b} f^{s}(x) d x\right)^{r / s} \leq \frac{r}{s} \int_{a}^{b}(x-a)^{(r / s)-1} f^{r}(x) d x
$$

3. Main results.

We first prove a monotonic version of Theorem 1.3.
Theorem 3.1. Let $f \in B_{p}^{q}(K)$, with $p q>0[p q<0]$, be a nonnegative and nonincreasing [nondecreasing] function on $E \subset \mathbb{R}$. Then $f \in L^{s}(E)$ for $q \leq s<q_{0}\left[p_{0}<s \leq p\right]$, where $q_{0}\left[p_{0}\right]$ is the unique solution of equation

$$
\begin{equation*}
\left(\frac{x}{x-q}\right)^{1 / q}=K\left(\frac{x}{x-p}\right)^{1 / p} \tag{E3}
\end{equation*}
$$

Proof. Let us first suppose $p>0$ and $q>0$, and let f be a nonincreasing function in $B_{p}^{q}(K)$. By using truncated functions (see [12]) we can construct a sequence of nonincreasing functions $f_{h} \in L^{\infty}(E)$ converging to f in L^{q} and verifying (1.1) for each h with the same constant K.
Hence functions f_{h} verify conditions of Lemma 2.3 so, for each h, inequality

$$
\int_{a}^{b}(x-a)^{\alpha-1} f_{h}^{q} \leq \frac{(b-a)^{\alpha-1}}{\gamma_{K}(p, q, \alpha)} \int_{a}^{b} f_{h}^{q}
$$

for all $(a, b) \in E$ holds true and, passing to limit as $h \rightarrow+\infty$

$$
\int_{a}^{b}(x-a)^{\alpha-1} f^{q} \leq \frac{(b-a)^{\alpha-1}}{\gamma_{K}(p, q, \alpha)} \int_{a}^{b} f^{q}
$$

with $\alpha_{q}<\alpha \leq 1$.
If $\alpha_{q}=q / q_{0}$ and $\alpha=q / s$, so that $\alpha_{q}<\alpha \leq 1$, we have $q \leq s<q_{0}$. Then we can apply Lemma 2.4 for $r=q$ and obtain

$$
\left(\int_{a}^{b} f^{s}\right)^{q / s} \leq \frac{q}{s} \frac{(b-a)^{(q / s)-1}}{\gamma_{K}(p, q, q / s)} \int_{a}^{b} f^{q} \quad q \leq s<q_{0}
$$

and finally

$$
\left(f_{a}^{b} f^{s}\right)^{q / s} \leq \frac{q}{s} \frac{1}{\gamma_{K}(p, q, q / s)} f_{a}^{b} f^{q} \quad q \leq s<q_{0}
$$

with q_{0} unique solution of equation

$$
\gamma_{K}(p, q, q / x)=0
$$

that easily leads to (E3).
Let us suppose $p<0$ and $q>0$, and f a nondecreasing function in $B_{p}^{q}(K)$. By using nondecreasing functions and inequality (2.9) of Lemma $2.3(p<0)$, we get

$$
\int_{a}^{b}(x-a)^{\alpha-1} f^{p} \leq \frac{(b-a)^{\alpha-1}}{\gamma_{1 / K}(q, p, \alpha)} \int_{a}^{b} f^{p}
$$

with $\alpha_{p}<\alpha \leq 1$. Now, if $\alpha_{p}=p / p_{0}$ and $\alpha=p / s$, so that $\alpha_{p}<\alpha \leq 1$, we have $p_{0}<s \leq p$. By applying again Lemma 2.4 for $r=p$ we have

$$
\left(f_{a}^{b} f^{s}\right)^{p / s} \leq \frac{p}{s} \frac{1}{\gamma_{1 / K}(q, p, p / s)} f_{a}^{b} f^{p}
$$

with p_{0} unique solution of equation

$$
\gamma_{1 / K}(q, p, p / x)=0
$$

that is again equation (E3).
It is immediate to see that, for $p=1$, Theorem 3.1 reduces to the Theorem 1.1 and equation (E3) to the equation (E1) for $f \in B_{1}^{q}(K)=G^{q}(K)$. Moreover, also for $q=1$ and $f \in B_{\frac{1}{1-p}}^{1}(K)=A_{p}(K)$ the equation (E3) becomes

$$
\left(\frac{x}{x-1}\right)=K\left(\frac{x}{x-(1-p)^{-1}}\right)^{1-p}
$$

that, applying the transform $t \rightarrow(1-t)^{-1}$, returns the equation (E2).
To remove the monotonicity assumption in the previous theorem we need an important result, due to Korenovskii, on relationships between functions in Reverse Jensen Inequality classes and their rearrangements.

Namely, let Φ be the class of nonnegative convex functions φ on $(0,+\infty)$ and for $\varphi \in \Phi$ let $L_{\varphi}(E)$ be the related Orlicz class of functions f such that $\varphi(f) \in L^{1}(E)$. Then we will say that a function $f \in L_{\varphi}(E)$ belongs to the class $B_{\varphi}(S)$ if it satisfies the Reverse Jensen Inequality

$$
f_{Q} \varphi(f) \leq S \varphi\left(f_{Q} f\right) \quad \forall Q \in E
$$

with

$$
S=S(\varphi, f, E)=\sup _{Q \subset E} \frac{f_{Q} \varphi(f)}{\varphi\left(f_{Q} f\right)}<\infty
$$

where the supremum is taken over all cubes $Q \subset E$.
It's easy to show that for $\varphi_{G}(t)=t^{q}(q>1)$ we have

$$
B_{\varphi_{G}}(S)=G_{q}\left(S^{1 / q}\right)=B_{1}^{q}\left(S^{1 / q}\right)
$$

and for $\varphi_{M}(t)=t^{p /(1-p)}(p>1)$ we have

$$
B_{\varphi_{M}}(S)=A_{p}\left(S^{p-1}\right)=B_{\frac{1}{p-1}}^{1}\left(S^{p-1}\right)
$$

Let us again restrict ourself to functions of one real variable, and let E be an interval. In [6] Korenovskii proved the following

Theorem 3.2. For $\varphi \in \Phi$ and $f \in B_{\varphi}(S)$ we have

$$
S\left(\varphi, f_{*},[0,|E|]\right)=S\left(\varphi, f^{*},[0,|E|]\right) \leq S(\varphi, f, E)
$$

where f_{*} and f^{*} are, respectively, the nondecreasing and nonincreasing rearrangements of f.

We are now able to prove our main result.
Proof of Theorem 1.3. Let $f \in B_{p}^{q}(K)$ so, for all $J=(a, b) \subset E$

$$
\begin{equation*}
\left(f_{J} f^{q}\right)^{1 / q} \leq K\left(f_{J} f^{p}\right)^{1 / p} \tag{3.1}
\end{equation*}
$$

and let us first suppose $p>0$. If we set $g=f^{p}$, (3.1) can be written as

$$
\begin{equation*}
\left(f_{J} g^{q / p}\right) \leq K^{q}\left(f_{J} g\right)^{q / p} . \tag{3.2}
\end{equation*}
$$

Let us introduce the function $\varphi(t)=t^{q / p}$; for our assumptions $\varphi \in \Phi$ so (3.2) means that $g \in B_{\varphi}\left(K^{q}\right)$. Then, applying Theorem 3.2 to the nonincreasing rearrangement g^{*} we have

$$
\begin{equation*}
f_{0}^{|J|}\left(g^{*}\right)^{q / p} \leq K^{q}\left(f_{0}^{|J|} g^{*}\right)^{q / p} \tag{3.3}
\end{equation*}
$$

that implies $g^{*} \in B_{1}^{\frac{q}{p}}\left(K^{p}\right)$.
Hence we can invoke Theorem 3.1 and say that there exists $q_{0}>q / p$ such that $g^{*} \in L^{s}$ for all $s \in\left[q / p, q_{0}\right)$ where q_{0} is the solution of equation

$$
\begin{equation*}
\left(\frac{y}{y-q / p}\right)^{p / q}=K^{p}\left(\frac{y}{y-1}\right) \tag{3.4}
\end{equation*}
$$

Then if we put $y=x / p$, equation (3.4) becomes

$$
\begin{equation*}
\left(\frac{x}{x-q}\right)^{1 / q}=K\left(\frac{x}{x-p}\right)^{1 / p} \tag{E3}
\end{equation*}
$$

Therefore, if $x_{0}=q_{0} p$ is the root of (E3), we proved that $g^{*} \in L^{s / p}$ for all $s / p \in\left[q / p, x_{0} / p\right)$, namely for all $s \in\left[q, x_{0}\right)$. Finally since

$$
g^{*} \in L^{s / p} \Rightarrow g \in L^{s / p} \Rightarrow f^{p} \in L^{s / p} \Rightarrow f \in L^{s}
$$

theorem is proved for $p>0$.
Now let $p<0$; from (3.1) we have

$$
\left(f_{J} f^{p}\right) \leq K^{-p}\left(f_{J} f^{q}\right)^{p / q}
$$

and, for $g=f^{q}$,

$$
\begin{equation*}
\left(f_{J} g^{p / q}\right) \leq K^{-p}\left(f_{J} g\right)^{p / q} \tag{3.5}
\end{equation*}
$$

If we define $\psi(t)=t^{p / q}$, (3.5) means that $g \in B_{\psi}\left(K^{-p}\right)$. Applying again Theorem 3.2 to the nondecreasing rearrangement g_{*} of g we deduce that $g_{*} \in B_{\frac{p}{q}}^{1}\left(K^{q}\right)$. As before, from Theorem 3.1, there exists $p_{0}<p / q$ such that $g_{*} \in L^{s}$ for all $s \in\left(p_{0}, p / q\right]$ with p_{0} root of equation

$$
\begin{equation*}
\left(\frac{y}{y-1}\right)=K^{q}\left(\frac{y}{y-p / q}\right)^{q / p} . \tag{3.6}
\end{equation*}
$$

For $y=x / q$, we get again equation (E3).
Therefore, $g_{*} \in L^{s / q}$ and, by the same arguments used in the previous case, we can conclude that $f \in L^{s}$ for any $s \in\left(x_{0}, p\right]$ where $x_{0}=p_{0} q$.

REFERENCES

[1] B. Bojarski, Remarks on the stability of Reverse Holder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn., A Math., 10 (1985), pp. 921-926.
[2] B.Bojarski, On Gourov-Reshetnyak classes, Proc. BMO-Seminar, Joensu, Finland (1988).
[3] L. D'Apuzzo - C. Sbordone, Reverse Holder Inequalities. A sharp result, Rend. di Matematica, (7) 10 (1990), pp. 357-366.
[4] F.W. Gehring, The L^{p}-integrability of the partial derivatives of a quasi-conformal mapping, Acta Math., 130 (1973), pp. 265-277.
[5] G.H. Hardy - J.E. Littlewood - G. Polya, Some simple inequalities satisfied by convex functions, Messager of Math., 58 (1929), pp. 145-152.
[6] A.A. Korenovskii, The exact continuation of a Reverse Holder Inequality and Mukenhoupt's conditions, Math. Notes, 52 (5-6) (1992), pp. 1192-1201.
[7] G. Moscariello - C. Sbordone, A_{∞} as a limit case of Reverse Holder Inequalities when the exponent tends to 1, Ricerche di Matematica, 44-1 (1995), pp. 131-144.
[8] B. Mukenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), pp. 207-226.
[9] A. Popoli, Weighted Reverse Holder Inequalities, Rend. Acc. Sc. Fis. Mat. Napoli, 62 (1995), pp. 187-212.
[10] C. Sbordone, Some reverse integral inequalities, Atti Acc. Pontaniana Napoli, 33 (1984), pp. 17-31.
[11] C. Sbordone - I. Wik, Maximal functions and related weighted classes, Publicacions Matematique, 38 (1994), pp. 127-155.
[12] I. Wik, Truncation of weight functions, Preprint (1992).

> Dipartimento di Ingegneria dell'Informazione e
> Matematica Applicata,
> Università degli Studi di Salerno,
> Via S. Allende,
> 84081 Baronissi $($ Salerno $)($ ITALY $)$

