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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR

OF HIGHER ORDER DIFFERENCE EQUATIONS

B�A �ZEJ SZMANDA

This paper is concerned with the oscillation and asymptotic behaviour
of nonoscillatory solutions of nonlinear difference equation of the form

�m(un + pnun−k ) + δ f (n, uτn ) = 0, m ≥ 1, n ∈N,

where N = {1, 2, . . .}, δ = ±1, k ∈ N,�m is the m-th order forward
difference operator.

1. Introduction.

In the past several years there has been a lot of activity concerning the
oscillatory and asymptotic behaviour of solutions of difference equations. See
for example [1] � [3], [6], [9], [12], [13], [16], and the references cited therein.
In particular, there has been an increasing interest in the study of difference
equations of the form which can be viewed as a discrete analogues of delay and
neutral delay differential equations (see e.g. [5], [8], [10], [11], [14], [15], [17]).
For the general theory of difference equations one can refer to [4] and [7].

In this paper we consider the nonlinear difference equation of the form

(E) �m(un + pnun−k ) + δ f (n, uτn ) = 0, m ≥ 1, n ∈ N,
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where N = {1, 2, . . .}, δ = ±1, k ∈ N, � is the forward difference operator i.e.
�vn = vn+1 − vn and

�ivn = �(�i−1vn), i = 1, 2, . . . ,m, �0vn = vn;

(pn) is a sequence of real numbers, (τn) is a sequence of integers with τn ≤ n
and τn → ∞ as n → ∞, f : N × R → R = (−∞, ∞), u f (n, u) > 0 for
u �= 0 and n ∈ N.

By a solution of (E) we mean a sequence (un) which is de�ned for all
n ≥ min

i≥1
{i − k, τi } and satis�es (E) for all large n. We consider only such

solutions which are nontrivial for all large n. A nontrivial solution (un) is said
to be oscillatory if for every n0 ∈ N there exists n ≥ n0 such that unun+1 ≤ 0.
Otherwise it is called nonoscillatory.

Our purpose in this paper is to study the oscillatory and asymptotic prop-
erties of the solutions of equation (E). Recently, the above problem for the
difference equation of the form (E) in the case of the second order difference
operator have been discussed in [15]. The results obtained here extend some of
those contained in [15].

2. Main results.

We begin with a lemma that will be utilized in the proof of our main
results.
We will need the condition that if (vn) is a real sequence with vn > 0 (< 0) and
lim inf
n→∞

|vn | > 0, then

(1)

∞�

n=1

f (n, vn) = ∞(−∞).

Also, we will use the following conditions:

(2) there is a constant P1 such that −1 < P1 ≤ pn ≤ 0;
(3) there is a constant P2 such that 0 ≤ pn ≤ P2 < 1.

Let (un) be a solution of (E). Set zn = un + pnun−k .

Lemma. Suppose that (1) holds and (un) is an eventually positive (negative)
solution of (E).

(a) If δ = 1, then
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(i) (�m−1zn ) is eventually decreasing (increasing) and �m−1zn → L < ∞(>
−∞) as n → ∞.

(ii) If L > −∞(< ∞), then lim inf
n→∞

|un | = 0.

(iii) If zn → 0 as n → ∞, then (�i zn ) is monotonic and

(4) �i zn → 0 as n → ∞ and �i zn�
i+1zn < 0

for i = 0, 1, 2, . . . ,m − 1.
(iv) Let zn → 0 as n → ∞. If m is even, then zn < 0(zn > 0) for

un > 0(un < 0). If m is odd, then zn > 0(zn < 0) for un > 0(un < 0).
(v) If, in addition, (2) holds, then zn → 0 as n → ∞.

(b) If δ = −1, then
(i) (�m−1zn ) is eventually increasing (decreasing) and �m−1zn → L >

−∞(< ∞) as n → ∞.
(ii) If L < ∞(> −∞), then lim inf

n→∞
|un | = 0.

(iii) Let zn → 0 as n → ∞. If m is even, then zn > 0(zn < 0) for
un > 0(un < 0). If m is odd, then zn < 0(zn > 0) for un > 0(un < 0).

(iv) If, in addition, (2) holds, then either |un | → ∞ as n → ∞, or (�i zn ) is
monotonic and (4) holds.

Proof. Let (un) be an eventually positive solution of (E). Then there is n0 ∈ N

such that un−k > 0 and uτn > 0 for n ≥ n0.

(a) From (E) we have �mzn = − f (n, uτn ) < 0, so (�m−1zn ) is decreasing and
converges to L < ∞ as n → ∞. Thus (i) holds.

If L > −∞, then summing (E) from n0 to n and then letting n → ∞, we
have

∞�

i=n0

f (i, uτi ) = �m−1zn0 − L < ∞.

The last inequality and condition (1) imply that lim inf
n→∞

un = 0, so (ii) holds.

To prove (iii), suppose zn → 0 as n → ∞. Then we see that �i zn → 0
as n → ∞ for i = 1, 2, . . . ,m − 1. By (i), (�m−1zn ) is decreasing, so
�m−1zn > 0 for n ≥ n0. Hence, if m ≥ 2, then (�m−2zn ) is increasing and so
�m−2zn < 0 for n ≥ n0. Continuing in this manner we obtain (iii).

Part (iv) follows immediately from (iii).
In order to prove (v), �rst note that from (i) and (ii) we have that (�m−1zn )

is decreasing, �m−1zn → L ≥ −∞ as n → ∞ and lim inf
n→∞

un = 0 if L > −∞.

If L = −∞, then successive summations show that zn → −∞ as n → ∞ so
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zn < 0 for n ≥ n1 ≥ n0. Since pn > −1, we have un < −pnun−k < un−k . This
implies that (un) is bounded contradicting the fact that zn → −∞ as n → ∞.
If −∞ < L < 0, then by summations as above, we see that zn ≤ L1 for some
constant L1 < 0 and suf�ciently large n. By (2) we have

P1un−k ≤ pnun−k < zn ≤ L1 < 0,

which contradicts lim inf
n→∞

un = 0. Hence L ≥ 0. If L > 0, then we have

�m−1zn ≥ L and a summation shows that zn → ∞ as n → ∞. Since un ≥ zn
hence un → ∞ as n → ∞, a contradiction. Thus, we have L = 0, i.e.
�m−1zn → 0 as n → ∞. Since (�m−1zn ) is decreasing, hence �m−1zn > 0,
so (�m−2zn ) is increasing. Moreover, �m−2zn < 0 since otherwise (�m−2zn )
would be eventually positive and increasing, which in turn implies that (zn ) has
a positive lower bound and contradicts lim inf

n→∞
un = 0. If �m−2zn → L2 < 0 as

n → ∞, then �m−2zn ≤ L2 and a summation shows that eventually zn ≤ L3

for some negative constant L3. This again contradicts lim inf
n→∞

un = 0. Therefore,

(�m−2zn) is increasing and tends to zero as n → ∞, continuing this form of
argument we see that zn → 0 as n → ∞.

(b) The proofs of (i) � (iii) are similar to the proofs of the corresponding parts
in (a) and will be omitted.
To prove (iv), let (un) be an eventually positive solution of (E) and let un−k > 0
and uτn > 0 for n ≥ n0 ∈ N. By parts (i) and (ii) of (b), we have that (�m−1zn )
is increasing, �m−1zn → L ≤ ∞ as n → ∞ and lim inf

n→∞
un = 0 if L < ∞. If

L = ∞, then zn ≤ un → ∞ as n → ∞. If L < 0, then eventually zn ≤ L1

for some L1 < 0. But then P1un−k ≤ pnun−k < zn ≤ L1 < 0 contradicting
lim inf
n→∞

un = 0. Hence L ≥ 0. If L > 0, then eventually un ≥ zn ≥ L2 for some

constant L2 > 0, which again contradicts lim inf
n→∞

un = 0. Thus, �m−1zn → 0

as n → ∞. Moreover, �m−1zn < 0 since (�m−1zn ) is increasing. Therefore,
(�m−2zn) is decreasing. Also, �m−2zn > 0 since otherwise (�m−2zn) is
eventually negative and decreasing, which implies (zn ) has a negative upper
bound, contradicting lim inf

n→∞
un = 0. Furthermore, if �m−2zn → L3 > 0 as

n → ∞, then eventually zn ≥ L4 for some L4 > 0. But this again contradicts
lim inf
n→∞

un = 0. Therefore, (�m−2zn ) is decreasing and tends to zero as n → ∞.

Continuing in this manner we see that (4) holds.
The proof when (un) is eventually negative is similar and will be omitted.

�

Theorem 1. Suppose that conditions (1) and (2) hold.
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(i) If δ = 1, then any solution (un) of (E) is either oscillatory or satis�es
un → 0 as n → ∞.

(ii) If δ = −1, then either (un) is oscillatory, un → 0 as n → ∞ or |un| → ∞

as n → ∞.

Proof. Let (un) be a nonoscillatory solution of (E) such that un−k > 0 and
uτn > 0 for n ≥ n0 ∈ N.

(i) Part (iii) and (v) of Lemma (a) imply that (4) holds. For m even,
condition (2) and Lemma (a) (iv) imply that un < −P1un−k for n ≥ n0. Hence
un+k < −P1un , and by induction we have un+ik < (−P1)

i un for each positive
integer i . This implies un → 0 as n → ∞ since 0 < −P1 < 1. If m is
odd, then (2) and parts (iv) and (v) of Lemma (a) imply that 0 < zn < M for
some constant M > 0, from which it follows that 0 < un < −P1un−k + M .
If (un) is unbounded, then there exists an increasing sequence (ni ) such that
n1 > n0, ni → ∞ and uni → ∞ as i → ∞ and uni = max

n1≤n≤ni
un . For each i

we have

uni < −P1uni−k + M ≤ −P1uni + M

so (1 + P1)uni ≤ M which is impossible since (2) holds. Therefore, (un) is
bounded and there exists a > 0 such that lim sup

n→∞

un = a. Thus, there is a

subsequence of (un), say (usi ) with s1 > n0 and usi → a as i → ∞. From
(2) it follows that −P1usi−k ≥ usi − zsi . Since a > 0, there exists ε > 0 such
that (1 − P1)ε < (1 + P1)a which implies 0 < −P1(a + ε) < a − ε . But for i
suf�ciently large, usi−k < a + ε , so

a − ε > −P1usi−k ≥ usi − zsi .

As i → ∞, zsi → 0 so we obtain a contradiction to usi → a as i → ∞.

(ii) First notice that by Lemma (b) (iv) we have that either un → ∞

as n → ∞ or (4) holds. To complete the proof, we show that if (4) holds,
then un → 0 as n → ∞. When (4) holds and m is odd, part (iii) of Lemma
(b) implies that zn < 0, and hence from (2) we see that un < −P1un−k . It
then follows, as before, that un+ik < (−P1)

i un for each integer i ≥ 1. Since
0 < −P1 < 1, we have un → 0 as n → ∞. When (4) holds and m is
even, parts (iii) and (iv) of Lemma (b) imply that zn > 0 and �zn < 0.
Therefore, 0 < zn < M for some constant M > 0, and from (2) we have
0 < un < −P1un−k + M . The remainder of the proof that un → 0 as n → ∞

is the same as in part (i). �

Theorem 2. Suppose that conditions (1) and (3) hold.
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(i) If δ = 1 and m is even, then every solution of (E) is oscillatory, while
if m is odd, then any solution (un) of (E) is either oscillatory or satis�es
un → 0 as n → ∞.

(ii) If δ = −1 and m is even, then either (un) is oscillatory, |un | → ∞ or
un → 0 as n → ∞, while if m is odd, then either (un) is oscillatory or
|un | → ∞ as n → ∞.

Proof. Assume that (un) is an eventually positive solution of (E), say un−k > 0
and uτn > 0 for n ≥ n0. The proof when (un) is eventually negative is similar
and will be omitted.
In order to prove (i), observe that by Lemma (a) (i) we have that (�m−1zn ) is
decreasing and converges to L ≥ −∞ as n → ∞. Clearly, if L < 0, then (zn )
is eventually negative which contradicts un > 0 for n ≥ n0. Hence, L ≥ 0, and
from Lemma (a) (ii), we have lim inf

n→∞
un = 0. It is also clear, since �mzn < 0,

that �i zn is monotonic for i = 0, 1, . . . ,m − 1.
Now (zn ) is monotonic, so zn → l as n → ∞. Observe that l ≥ 0 since l < 0
implies un < 0. First suppose l > 0. If (zn ) is increasing, we have

zn = un + pnun−k ≤ un + pnzn−k ≤ un + P2zn ,

so zn (1 − P2) ≤ un . Since (3) holds, we have a contradiction to lim inf
n→∞

un = 0.

On the other hand, if (zn ) is decreasing, let 1 − P2 = ε > 0. Then
zn ≤ un+P2zn−k , and since l is �nite, zn/zn−k ≤ un/l+P2 . Since P2+ε/2 < 1,
there exists n1 > n0 such that zn/zn−k ≥ P2 + ε/2 for n ≥ n1. Therefore,
un ≥ lε

2
for n ≥ n1 which again contradicts lim inf

n→∞
un = 0. Hence, we have

zn → 0 as n → ∞ and, by Lemma (a) (iii), that (4) holds. In order to complete
the proof, just observe that Lemma (a) (iv) implies that zn < 0 for m even and
zn > 0 for m odd. But zn < 0 contradicts un > 0 and pn ≥ 0, while if zn > 0,
then un ≤ zn → 0 as n → ∞.

To prove (ii), we �rst see that (�m−1zn ) is increasing and �m−1zn → L >

−∞ as n → ∞. Now, if L < 0, then eventually zn < 0 contradicting un > 0.
Thus L ≥ 0. If L = ∞, then clearly zn → ∞ as n → ∞. Moreover, from (3)
we get

(5) un ≤ zn ≤ un + P2un−k ≤ un + P2zn−k ≤ un + P2zn

and therefore, (1 − P2)zn ≤ un → ∞ as n → ∞. If 0 ≤ L < ∞, then Lemma
(b) (ii) implies that lim inf

n→∞
un = 0. Again, since (zn ) is monotonic and positive

zn → l1 ≥ 0 as n → ∞. Now if (zn ) is increasing, then l1 > 0 and (5) holds
contradicting lim inf

n→∞
un = 0. If (zn ) is decreasing and l1 > 0, then l1 is �nite,
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and we have zn/zn−k → 1 as n → ∞. Let ε = 1 − P2 > 0. Then there exists
n1 ≥ n0 such that zn/zn−k > 1− ε/2 for n ≥ n1. We then have

l1 < zn ≤ un + P2un−k ≤ un + P2zn−k

< un +
P2zn

1 − ε
2

= un +
2P2zn

1 + P2
.

It then follows that

un >

�
1 −

2P2

1 + P2

�
zn =

1 − P2

1 + P2
zn >

εl1

2

contradicting lim inf
n→∞

u(n) = 0. Thus, for 0 ≤ L < ∞ zn → 0 as n → ∞,

and hence un → 0 as n → ∞ since un ≤ zn . Therefore, we have that either
un → ∞ or un → 0 for m even or m odd.

To complete the proof, we need only observe that if un → 0 as n → ∞,
then zn → 0 as n → ∞, and for m odd, Lemma (b) (iii) implies that zn < 0,
which is impossible in view of (3). �
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