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THEORY OF MULTIINDEX MULTIVARIABLE

BESSEL FUNCTIONS AND HERMITE POLYNOMIALS

G. DATTOLI - S. LORENZUTTA - G. MAINO - A.TORRE

We discuss the theory of multivariable multiindex Bessel functions
(B.F.) and Hermite polynomials (H.P.) using the generating function method.
We derive addition and multiplication theorems and discuss how generalized
H.P. can be exploited as a useful complement to the theory of B.F.. We also
discuss the importance of the Poisson-Charlier polynomials in the context of
multiindex special functions.

1. Introduction.

The theory of Generalized Bessel functions (G.B.F.) and of generalized
Hermite polynomials (G.H.P.) has been summarized in [3]. The importance of
this new class of functions has been recognized both in purely mathematical
and applied frameworks. The body of problems they rise is however so
wide and touches so many branches of research, going from the theory of
partial differential equations [13] to the abstract group theory [2] and from
crystallographic problems [15] to the theory of squeezed states [6], that it is
rather dif�cult to provide a detailed accounting of their properties.

The expression G.B.F. and G.H.P. are now becoming rather generic. The
number of non trivial generalized forms of B.F. or H.P. is so large and contin-
uously proliferating that further speci�cations are needed. A preliminary and
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very rough distinction between the various classes of generalized special func-
tions is between mono and multiindex functions. For integer indices, the former
class is characterized by a one parameter generating function (g.f.) [16] the
latter by a multiparameter extension.

In this paper we discuss the problems associated to the de�nition of B.F.
and H.P. with more than one integer index and possibly with more than one
variable. We analyze the interplay existing between many index B.F. and
H.P. and also point out the possibility of further extensions of the notion of
multiindex H.P., for the solution of problems of practical interest. An important
point we will touch on in this paper is the role played by Poisson-Charlier
polynomials [1] (P.C.P.) and by suitable extensions, within the context of
multiindex H.P. We will in particular show that many of the proposed two index
H.P. can expressed as in�nite series of P.C.P.

Albeit the paper is mainly concerned with the case of integer order many
index B.F., we will touch on the more general case of real order indices, also
discussing the possible existence of multiindex Anger functions.

2. Two index B.F. and P.C.P.

Before entering into the speci�c details of the section, let us brie�y recall
the notion of �rst kind two variable G.B.F. Jn(x , y), which is de�ned through
the g.f. [3]

(2.1) exp
� x

2

�
t −

1

t

�
+
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�
t2 −
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t2

��
=

+∞�

n=−∞

t n Jn(x , y), 0 < |t | < ∞

and Jn(x , y) is expressed as the following series of ordinary B.F.

(2.2) Jn(x , y) =

+∞�

�=−∞

Jn−2�(x )J�(y).

A two variable G.H.P. of the Appell-Kampé de Fériet type is provided by
the g.f. [4]

(2.3) exp[xt + yt2] =

∞�

n=0

t n

n!
Hn(x , y).

Recalling that the g.f. of ordinary H.P. is [1]
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we can conclude that

(2.5) Hn(x , y) = in(2y)n/2Hn

� x

i
√
2y

�
.

In addition it can also be proved that

(2.6)
∂

∂y
Hn(x , y) =

∂2

∂x 2
Hn(x , y).

The link between Jn(x , y) and Hn(x , y) is easily realized, just inspecting
(2.1) and (2.3) we �nd

(2.7) Jn(x , y) =

∞�

s=0

Hs+n(x/2, y/2)Hs(−x/2, −y/2)

(s + n)!s!
, n ≥ 0.

Two index B.F. type functions have been de�ned in [1], [3], [10] and are
speci�ed by the g.f.

e
1
2 x[(u−1/u)+(v−1/v)+(uv−1/uv)] =

+∞�

m,n=−∞

umvn Jm,n(x ),(2.8)

0 < |u|, |v| < ∞.

Two index polynomials can be realized using the following two variable g.f.

(2.9) ex(u+v)+uv =

+∞�

m,n=0

umvn

m!n!
Qm,n(x )

with Qm,n(x ) being explicitly provided by the series

(2.10) Qm,n(x ) =

min(m,n)�

q=0

q!

�
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q

��
n

q

�

xm+n−2q .

The recurrence properties of the Qm,n(x ) polynomials are derived either
from (2.9) and (2.10) and writes

(2.11)






d

dx
Qm,n(x ) = mQm−1,n(x )+ nQm,n−1(x )

x Qm,n(x )+ nQm,n−1(x ) = Qm+1,n(x )

x Qm,n(x )+ mQm−1,n(x ) = Qm,n+1(x ).
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It is obvious that the g.f. (2.9) can be extended to the multivariable case,
so that

(2.12) exu+yv+zuv =

∞�

m,n=0

umvn

m!n!
Q∗

m,n(x , y, z)

where

(2.13)
Q∗

m,n(x , y, z) =

min(m,n)�

q=0

q!

�
m

q

��
n

q

�

xm−q yn−q z+q

Q∗
m,n(x , x , 1)= Qm,n(x ).

The above introduced polynomials satisfy the recurrences

(2.14 a)






∂

∂x
Q∗

m,n(x , y, z) = mQ∗
m−1,n(x , y, z)

∂

∂y
Q∗

m,n(x , y, z) = nQ∗
m,n−1(x , y, z)

∂

∂z
Q∗

m,n(x , y, z) = mnQ∗
m−1,n−1(x , y, z)

and

(2.14 b)
x Q∗

m,n(x , y, z)+ nzQ∗
m,n−1(x , y, z) = Q∗

m+1,n(x , y, z)

yQ∗
m,n(x , y, z)+ mzQ∗

m−1,n (x , y, z) = Q∗
m,n+1(x , y, z).

The �rst three recurrences can be combined, thus getting

(2.15)
∂

∂z
Q∗

m,n(x , y, z) =
∂2

∂x∂y
Q∗

m,n(x , y, z)

and since

(2.16) Q∗
m,n(x , y, 0) = xm yn

we end up with the identity

(2.17) Q∗
m,n(x , y, z) = ez(∂ 2/∂ x∂y)xmyn.
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In addition any p.d.e. of the type (2.15) possesses the solution

(2.18) g(x , y, z) =

∞�

m,n=0

am,nQ∗
m,n(x , y, z)

if the initial condition admits the Taylor series expansion

(2.19) g(x , y, 0) =

∞�

m,n=0

am,nx
m yn.

An important aspect to be emphasized is the link between Q∗
m,n polynomi-

als and the P.C.P. [1]. In the limit x = 1, y = 1 we get indeed

(2.20) Q∗
m,n(1, 1, −|z|) =

min(m,n)�

q=0

(−1)qq!

�
n

q

��
m

q

�

|z|+q = Cn (m; |z|).

It is also straightforwardly understood that for x �= y �= 1, the following
identity holds

(2.21) Q∗
m,n(x , y, −|z|) = xm · yn · Cn (m; |z|/xy).

The Q∗
m,n polynomials can be usefully exploited to complement the theory

of Jm,n(x ) functions, which, according to (2.8) and (2.12) can be written as

Jm,n(x ) =

∞�

q,p=0

1

p!q!(m + p)!(n + q)!
·(2.22 a)

· Q∗
m+p,n+q(x/2, x/2, x/2)Q∗

p,q(−x/2, −x/2, −x/2)

or, what is the same

Jm,n(x ) =
� x

2

�m+n

·(2.22 b)

·

∞�

q,p=0

(−1)p+n
Cn+q (m + p, −2/x )Cq (p, 2/x )( x

2
)2(p+q)

(m + p)!(n + q)!p!q!
, m, n ≥ 0.

A further idea of the interplay between Q∗
m,n polynomials and two index

B.F. is offered by the following multiplication theorem (∗)

(2.23) Jm,n(λx ) = λm+n
∞�

p,q=0

λp+q
Jm+p,n+q(x; 1/λ)Q∗

q,p

��
1−λ2

2λ
x
�

s

�

p!q!

(∗) We have denoted by {x}s the three identical arguments of the Q∗
m,n polynomials.
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where Jm,n(x; ζ ) is a one parameter two index B.F. de�ned by the generating
function [8]

ex/2[(u−1/u)+(v−1/v)+(ζuv−(1/ζuv))] =(2.24)

=

∞�

m,n=−∞

umvn Jm,n(x; ζ ), 0 < |u|, |v| < ∞.

The properties of this function will be brie�y commented on in the con-
cluding section of the paper.

Before closing this section we will discuss two further properties of the
Q∗

m,n polynomials which will be exploited in the forecoming sections. The
following addition theorem can be proved using the standard procedure based
on the g.f. method (see e.g. [1])

(2.25) Qm,n(x + y) =
1

2(m+n)/2

(m,n)�

p,q=0

�
m

p

��
n

q

�

Qm−p,n−q(
√
2x )Qp,q(

√
2y).

Furthermore

(2.26)

Q∗
m,0(x , y, z) = xm, Q∗

0,n(x , y, z) = yn

Q∗
m,n(x , y, 0) = xmyn

Q∗
m,n(x , 0, z) =

�
n!

�
m
n

�
xm−nzn if m ≥ n

0 if m < n

Q∗
m,n(0, y, z) =

�
m!

�
n
m

�
yn−mzm if n ≥ m

0 if n < m

In this section we have given a �rst idea of how the theory of two index
Q∗

m,n polynomials may be used to complement that of the Jm,n functions. In the
forecoming part of the paper we will complete the scenario, discussing more
general cases.

3. Two variable two index B.F. and H.P.

The theory of many variable many index H.P. was initially developed by
Hermite himself [10] and more recently the associated orthogonal functions
have been discussed in [3] along with a number of applications to classical
and quantum mechanics [6]. The importance of these polynomials for physical
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applications has been recognized by other authors and a partial list of references
is reported in [7], [8], [12], [14]. Restricting ourselves to the case of two
indices and two variables only (themultiindex and multivariable extension being
straightforward) we de�ne the polynomials Hm,n(x , y) using the g.f. [13]

et (ax+by)+h(bx+cy)−1/2(at2+2bth+ch2) =(3.1)

=

∞�

m,n=0

tmhn

m!n!
Hm,n(x , y); a, c > 0, � = ac − b2 > 0.

The explicit expression for the Hm,n(x , y) can be obtained in many differ-
ent ways. Using the already given de�nition of Appell-Kampé de Fériet poly-
nomials we �nd

Hm,n(x , y) =(3.2)

=

min(m,n)�

q=0

(−1)qq!

�
m

q

��
n

q

�

bq Hm−q(ax + by, −a/2)Hn−q(bx + cy, −c/2).

On the other side using the Q∗
m,n polynomials as reference basis we get

Hm,n(x , y) =(3.3)

= m!n!

([m/2],[n/2])�

q,p=0

(−1)p+q
�a

2

�q� c

2

�p Q∗
m−2q,n−2p(ax + by, bx + cy, −b)

p!q!(m − 2q)!(n − 2p)!
.

Using the already discussed properties of the Hn(x , y) or Q∗
m,n polynomi-

als we can infer those of the Hm,n(x , y). It is indeed easy to realize that

(3.4)

Hm,0(x , y) = Hm(ax + by, −a/2) = am/2Hm

�ax + by
√

a

�

H0,n(x , y) = Hn(bx + cy, −c/2) = cn/2Hn

�bx + cy
√

c

�
.

The adjoint Hermite polynomials Gm,n(x , y) are introduced by means of
the g.f.

(3.5) eux+vy−(cu2−2buv+av2 )/2� =

∞�

m,n=0

um

m!

vn

n!
Gm,n(x , y)
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and therefore, according to the previous discussion, we can obtain the following
expression

Gm,n(x , y) =(3.6 a)

= m!n!

min(m,n)�

q=0

1

q!

� b

�

�q Hm−q(x , −c/2�)Hn−q (y, −a/2�)

(m − q)!(n − q)!

and

Gm,n(x , y) =(3.6 b)

= m!n!

([m/2],[n/2])�

p,q=0

(−1)p+q

p!q!

�
c
2�

�p�
a
2�

�q

(m − 2p)!(n − 2q)!
· Q∗

m−2p,n−2q(x , y, b/�).

Using the recurrence properties (2.11), we �nd

(3.7 a)

∂

∂x
Gm,n(x , y) = mGm−1,n(x , y)

∂

∂y
Gm,n(x , y) = nGm,n−1(x , y)

and

(3.7 b)

∂

∂x
Hm,n(x , y) = amHm−1,n(x , y)+ bnHm,n−1(x , y)

∂

∂y
Hm,n(x , y) = bmHm−1,n(x , y)+ cnHm,n−1(x , y).

The addition theorems for these class of polynomials can be obtained either
extending the standard procedure or exploiting those already known for the
ordinary case, in any case one gets

Hm,n(x + x �, y + y �) =(3.8)

=
1

2
m+n
2

(m,n)�

p,q=0

�
m

p

��
n

q

�

Hm−p,n−q(
√
2x ,

√
2y)Hp,q(

√
2x �,

√
2y �)

and an analogous expression for the adjoint forms.
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We can now wonder whether the Hm,n or Gm,n can be generalized in some
useful way, as e.g. extended forms of the Appell-Kampé de Fériet polynomials.
We consider therefore the following g.f.

(3.9 a) et (ax+by)+h(bx+cy)+(at2+2bth+ch2)z =

∞�

m,n=0

tmhn

m!n!
φm,n(x , y, z)

and

(3.9 b) eux+vy+(cu2−2buv+av2)z/� =

∞�

m,n=0

umvn

m!n!
ψm,n(x , y, z).

The polynomials φm,n and ψm,n are linked to Hm,n and Gm,n by the relations

(3.10)

φm,n(x , y, z) = im+n(2z)(m+n)/2Hm,n

� x

i
√
2z

,
y

i
√
2z

�

ψm,n(x , y, z) = im+n(2z)(m+n)/2Gm,n

� x

i
√
2z

,
y

i
√
2z

�

which are clearly recognized as a generalization of (2.5). A noticeable property
of the above polynomials can be derived noting that

∂

∂z
ψm,n(x , y, z) =

c

�
m(m − 1)ψm−2,n(x , y, z)−(3.11)

− 2
b

�
mnψm−1,n−1(x , y, z)+

a

�
n(n − 1)ψm,n−2(x , y, z)

in addition since ψm,n satis�es the same recurrences (3.7 a) we end up with (see
also [4])

(3.12) �
∂

∂z
ψm,n(x , y, z) =

�
c

∂2

∂x 2
− 2b

∂2

∂x∂y
+ a

∂2

∂y2

�
ψm,n(x , y, z)

which is a kind of extended heat equation. It is now easy to prove that
φm,n(x , y, z) satis�es the same equation. De�ning indeed the variables

(3.13 a) ξ = ax + by , η = bx + cy

and recalling that

(3.13 b)
∂

∂ξ
=
1

�

�
c

∂

∂x
− b

∂

∂y

�
,

∂

∂η
=
1

�

�
a

∂

∂y
− b

∂

∂x

�
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we �nd

(3.14 a)

∂

∂ξ
φm,n(x , y, z) = mφm−1,n(x , y, z)

d

dη
φm,n(x , y, z) = nφm,n−1(x , y, z)

and

∂

∂z
φm,n(x , y, z) = a m(m − 1)φm−2,n(x , y, z)+(3.14 b)

+ 2b mnφm−1,n−1(x , y, z)+ cn(n − 1)φm,n−2

which once combined yields

(3.15)
∂

∂z
φm,n(x , y, z) =

�
a

∂2

∂ξ2
+ 2b

∂2

∂ξ∂η
+ c

∂2

∂η2

�
φm,n(x , y, z).

Using the identities (3.13 b) it is easily checked that also φm,n(x , y, z)
satis�es (3.12). A further important consequence one may draw from the
previous results is the following: any p.d.e. of the type (3.12) admits the formal
solution

(3.16 a)

g(x , y, z) = exp
�
z∂ T

x
�M−1∂ x

�
g(x , y, 0)

∂ x =

�
∂/∂x

∂/∂y

�

, �M =

�
a b

b c

�

if g(x , y, 0) can be written in the form (2.19), then

(3.16 b) g(x , y, z) =

∞�

m,n=0

am,nψm,n(x , y, z).

An obvious extension of the previous results is suggested by the g.f.s.

(3.17)

et (ax+by)+h(bx+cy)+(azt2+2
√

zwbht+cwh2) =

∞�

m,n=0

tmhn

m!n!
φm,n(x , y, z, w)

eux+vy+1/�(czu2−2b
√

zwuv+awv2 ) =

∞�

m,n=0

umvn

m!n!
ψm,n(x , y, z, w)
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and it is also easily proved that

(3.18)

φm,n(x , y, z, w) = im+n2(m+n)/2zm/2wn/2 · Hm,n

� x

i
√
2z

,
y

i
√
2w

�

ψm,n(x , y, z, w) = im+n2(m+n)/2zm/2wn/2 · Gm,n

� x

i
√
2z

,
y

i
√
2w

�
.

The recurrence relations can be obtained from e.g. (3.17), differentiating
indeed both sides with respect to z and w we �nd

(3.19)

�
∂

∂z
ψm,n(x , y, z, w) =

�
c

∂2

∂x 2
− b

�
w/z

∂2

∂x∂y

�
ψm,n(x , y, z, w)

�
∂

∂w
ψm,n(x , y, z, w) =

�
a

∂2

∂y2
− b

�
z/w

∂2

∂x∂y

�
ψm,n(x , y, z, w)

and an analogous expression for the φm,n(x , y, z, w) counterpart.

A �nal example of multivariable two index H.P. is offered by the following
g.f.

(3.20) eux+vy+zu2+huv+wv2 =

∞�

m,n=0

umvn

m!n!
Rm,n(x , y, z, h, w)

and

(3.21) Rm,n(x , y, h, w) = m!n!

min(m,n)�

q=0

hq

q!

Hm−q(x , z)Hn−q (y, w)

(m − q)!(n − q)!
.

The polynomial Rm,n satis�es the differential identities

(3.22)

∂

∂z
Rm,n =

∂2

∂x 2
Rm,n

∂

∂h
Rm,n =

∂2

∂x∂y
Rm,n

∂

∂w
Rm,n =

∂2

∂y2
Rm,n .
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We can now use this new class of polynomials to de�ne a further type of
two index B.F. which is usually introduced using the g.f. [11]

exp
� x

2

�
u −

1

u

�
+

y

2

�
v −

1

v

�
+

z

2

�
u2 −

1

u2

�
+

w

2

�
v2 −

1

v2

�
+(3.23)

+
h

2

�
uv −

1

uv

��
=

+∞�

m,n=−∞

umvn jm,n(x , y, z, h, w).

Confronting this last relation with (3.20) we also get

jm,n(x , y, z, h, w) =

∞�

p,q=0

Rm+p,n+q(x/2, y/1, z/2, h/2, w/2)

(m + p)!(n + q)!
·(3.24)

·
Rp,q(−x/2, −y/2, −z/2, −h/2, −w/2)

p!q!
.

The importance of this new class of functions of the Bessel type has
been discussed in [11], in connection with problems associated to the radiation
emitted by relativistic electrons moving in complex magnetic structures.

4. Concluding remarks.

In this paper we have discussed some aspects of the theory of many
index B.F. and H.P., which in the authors� opinion is not well developed
and widespread known as it should be. In this concluding section we will
touch on some further points which may provide seminal elements for future
investigations.

We have introduced two variable B.F. which should be recognized as
belonging to the class of �rst kind cylinder type. It is clear that we can introduce
the modi�ed form, which is provided by the g.f.

(4.1) ex/2[(u+1/u)+(v+1/v)+(uv+1/uv)] =

∞�

m,n=−∞

umvn Im,n(x ), 0 < |u|, |v| < ∞.

Both Im,n(x ) and Jm,n(x ) can be expressed in the form of the following series

(4.2)

Jm,n(x ) =

+∞�

s=−∞

Jm−s(x )Jn−s (x )Js(x )

Im,n(x ) =

+∞�

s=−∞

Im−s (x )In−s (x )Js(x ).
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Using the de�nition (2.24) and its extension to the modi�ed case, we can
state the following analytic continuation formula (∗∗)

(4.3) Im,n(ix ; iξ ) = im+n Jm,n(x; ξ ).

Equations (4.2) suggest however the existence of further modi�ed forms, pro-
vided e.g. by

(4.4) I Im,n (x ) =

+∞�

s=−∞

Im−s (x )In−s (x )Js(x )

which can be rewritten as

(4.5) I Im,n (x ) =

+∞�

s=−∞

(−i)s Im−s (x )In−s (x )Is (ix ) = Im,n(x , x , ix ; −i).

An idea of the importance of the two index B.F. in applications is offered
by the following Jacobi-Anger expansions, obtained setting u = eiφ , v = eiψ ,
ξ = eiβ in (2.24) and (4.1),

(4.6)

eix[sin φ+sinψ+sin(β+φ+ψ)] =

+∞�

m,n=−∞

eimφeinψ Jm,n(x; eiβ)

ex[cos φ+cosψ+cos(β+φ+ψ)] =

+∞�

m,n=−∞

eimφeinψ Im,n(x; eiβ) =

= I0,0(x )+ 2

+∞�

m,n=1

cos(mφ + nψ)Im,n(x; eiβ)

which suggest that two index B.F. can be exploited in problems relevant to the
emission by charges oscillating at two distinct frequencies and at their mutual
sum.
This type of situation occurs in the theory of the emission by relativistic
electrons moving in two frequency undulator magnet [4].

(∗∗) Recall that in the ordinary case we have In (i x) = in Jn(x).
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The extension of the above functions to a larger number of indices is almost
straightforward and in fact

e

x/2

� N�

j=1

�
uj−

1
uj

�
+

�
N

�
j=1

uj−
N

�
j=1

1
uj

��

=(4.7)

=

+∞�

mj =−∞

N
�
j=1

u
mj

j Jm1,...,mN
(x ) , 0 < |uj |, |vj | < ∞,

with Jm1,...,mN
(x ) being provided by

(4.8) Jm1,...,mN
(x ) =

+∞�

s=−∞

� N

�
j=1

Jmj−s(x )
�
Js(x ).

The properties of this class of functions will be discussed elsewhere.
Before closing this �rst part of the concluding comments, we want to stress

the possibility of extending the de�nition of many index B.F. to the real order
case, an example might be provided by the two index Anger function

(4.9) Aµ,ν (x ) =

+∞�

s=−∞

Aµ−s (x )Aν−s (x )Js(x )

where Aµ(x ) is the ordinary Anger function which is discussed in [12].
The recurrence relations of Aµ,ν (x ) are provided by

(4.10)

d

dx
Aµ,ν (x ) =

1

2

��
Aµ−1,ν(x )− Aµ+1,ν(x )

�
+

+
�
Aµ,ν−1(x )− Aµ,ν+1(x )

�
+

�
Aµ−1,ν−1(x )− Aµ+1,ν+1(x )

��

2µAµ,ν (x ) =
2 sin(πµ)

π
Aν (x; x )+ x

�
Aµ−1,ν(x )+ Aµ+1,ν(x )

�
+

+ x
�
Aµ+1,ν+1(x )+ Aµ−1,ν−1(x )

�

2νAµ,ν (x ) =
2 sin(πν)

π
Aµ(x; x )+ x

�
Aµ,ν−1(x )+ Aµ,ν+1(x )

�
+

+ x
�
Aµ−1,ν−1(x )+ Aµ+1,ν+1(x )

�
,

Aµ(x; x ) =

+∞�

s=−∞

(−1)s Js (x )Aµ−s (x ) =
sin(πµ)

µπ
.
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In the previous section we have discussed forms of H.P. which generalize
the two variable two index cases de�ned on quadratic forms.

Further generalizations can be proposed and in the following we will
suggest a number of extended forms, following the point of view of [7], [17].

An interesting set of polynomials is provided by the following example

exp
�
h
�
a1x + b1y

�
+ t

�
b1x + c1y

�
−
1

2

�
a1h

2 + 2b1th + c1t
2
��

+(4.11)

+ h2
�
a2z + b2w

�
+ t2

�
b2z + c2w

�
−
1

2

�
a2h

4 + 2b2t
2h2 + c2t

4
�

=

=

∞�

n,m=0

hmtn

m!n!
(2)Hm,n(x , y; z, w),

and

(4.12) (2)Hm,n(x , y; z, w) = m!n!

([m/2],[n/2])�

r,s=0

Hm−2r,n−2s (x , y)Hr,s(z, w)

r!s!(n − 2s)!(m − 2r)!
.

The above polynomial is a clear generalization of the two variable one
index case introduced in [17], and provided by

(4.13)

exp
�
xt −

1

2
t2 + yt2 −

1

2
t4

�
=

∞�

n=0

t n

n!
(2)Hn(x; y)

(2)Hn(x; y) = n!

[n/2]�

r=0

Hn−2r (x )Hr (y)

(n − 2r)!r!
.

A further element of interest for the H.P. (4.12), is the possibility of
exploiting them to construct four variable biorthogonal basis. It has already
been shown that the functions [17]

(4.14) φn(x , y) = A1/2(2)n Hn(x; y)e−1/4(x2+y2)

provide an orthonormal two variable basis. In the case of the extension (4.12),
the situation is slightly more complicated and, perhaps, more interesting.

We should �rst note that generalized forms of two variable two index
harmonic oscillator functions exist, namely [3], [4]

(4.15) Hm,n(x , y) =
�

�1/2/2π
1

√
m!n!

Hm,n(x , y)e−1/4(ax2+2bxy+cy2)
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which is biorthogonal to

(4.16) Gm,n(x , y) =
�

�1/2/2πGm,n(x , y)−1/4(ax2+2bxy+cy2)

i.e.

(4.17)

� +∞

−∞

dx

� +∞

−∞

dyHm,n(x , y)Gr,s(x , y) = δm,rδn,s .

We can therefore introduce the adjoint of (4.12) denoted by (2)Gm,n(x , y ;
z, w) (∗∗∗), and de�ne the biorthogonal functions

(4.18)

(2)
Hm,n(x , y; z, w) = A1/2m,n

(2)Hm,n(x , y; z, w)e
−1/4

�
f T

1
M̂1 f

1
+ f T

2
M̂2 f

2

�

(2)
Gm,n(x , y; z, w) = A1/2m,n

(2)Gm,n(x , y; z, w)e
−1/4

�
f T

1
M̂1 f

1
+ f T

2
M̂2 f

2

�

f
1

=

�
x

y

�

, f
2

=

�
z

w

�

, Mα =

�
aα bα

bα cα

�

, α = 1, 2 ,

and Am,n is a normalization constant we will specify below.
Using the condition (4.17), we �nd

� +∞

−∞

dx

� +∞

−∞

dy

� +∞

−∞

dz

� +∞

−∞

dw(2)
Hm,n(x , y; z, w)·(4.19 a)

·(2)Gm �,n� (x , y; z, w) =

= (m!n!)2
(2π )2

√
�1�2

([m/2],[n/2])�

r,s=0

1

r!s!(m − 2r)!(n − 2s)!
Am,nδm,m � · δn,n�

�α being the determinant of the matrix Mα , α = 1, 2.

The normalization constant Am,n is therefore provided by

(4.19 b) Am,n =

√
�1�2

(2π )2m!n!

(i/
√
2)m+n

Hm(i/
√
2)Hn(i/

√
2)

.

(∗∗∗) The de�nition of (2)Gm,n(x, y; z, w) follows directly from (3.5), using the pre-
scription (4.11).
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The possibility of realizing this type of orthogonal function opens further
classes of problems, like those involving the polynomials

(4.20) (2)HGm,n = m!n!

([m/2],[n/2])�

r,s=0

Hm−2r,n−2s (x , y)Gr,s(z, w)

r!s!(n − 2s)!(m − 2r)!
.

This aspect of the matter will be however discussed elsewhere.

A �nal example we will touch on in this paper is a two variable two index
polynomial providing a generalization of the Gould-Hopper polynomials [7].
We have indeed the g.f.

(4.21) e(ax+by)h+(bx+cy)t−1/2(ah2r+2bhrt s+ct2s) =

∞�

m,n=0

hmtn

m!n!
H (r,s)

m,n (x , y) .

The recurrence relations of H (r,s)
m,n (x , y) can be derived from (4.21) itself

and write

(4.22)

∂

∂x
H (r,s)

m,n (x , y) = amH (r,s)
m−1,n(x , y)+ bnH (r,s)

m,n−1(x , y)

∂

∂y
H (r,s)

m,n (x , y) = bmH (r,s)
m−1,n(x , y)+ cnH (r,s)

m,n−1(x , y)

H
(r,s)
m+1,n(x , y) = (ax + by)H (r,s)

m,n (x , y)− rm! ·

·
�aH (r,s)

m−2r+1,n(x , y)

(m − 2r + 1)!
+

bn!H (r,s)
m−r+1,n−s(x , y)

(m − r + 1)!(n − s)!

�

H (r,s)
m,n+1(x , y) = (bx + cy)H (r,s)

m,n (x , y)− sn! ·

�cH
(r,s)
m,n−2s+1(x , y)

(n − 2s + 1)!
+

bm!H
(r,s)
m−r,n−s+1(x , y)

(n − s + 1)!(m − r)!

�

and further implications will be discussed in forecoming investigations.
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