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THE UPPER CHROMATIC NUMBER OF
QUASI-INTERVAL CO-HYPERGRAPHS

VIOLETA PRISAKARU

Mixed hypergraph consists of two families of subsets: the edges and the
co-edges. In any colouring, every edge has at least two vertices of different
colours, and every co-edge has at least two vertices of the same colour.

The upper chromatic number x is the maximum number of colours for
which there exists a colouring of a mixed hypergraph using all the colours.
If the mixed hypergraph contains the co-edges only then it is called a co-
hypergraph.

We investigate the structural and colouring properties of clique hyper-
graphs of interval graphs called the quasi-interval hypergraphs. We find the
conditions when they are interval hypergraphs. The upper chromatic number
for the clique co-hypergraphs of interval graphs is found. It is shown that
for the quasi-interval co-hypergraph H4 = (X, #A), x(H4) = | X| — s(H4),
where s(H 4) is the so called sieve number introduced in [7]. That coincides
with the value of the upper chromatic number found in [7] for the mixed in-
terval hypergraphs.

The co-stability number o4 (H) of a mixed hypergraph H is the maxi-
mum number of vertices which contain no co-edges. H is called co-perfect if
X(H') = ax(H') for every its induced sybhypergraph H’. Using colouring
properties of acyclic co-hypergraph partitions onto co-bistars, we prove that
quasi-interval co-hypergraph is co-perfect if and only if it does not contain
co-monostars. This shows that Voloshin’s co-perfectness conjecture [6] for
quasi-interval co-hypergraphs is true.

Entrato in Redazione il 9 ottobre 1996.



238 VIOLETA PRISAKARU

1. Basic notions.

The colouring problem is one of the most important problems which was
the stimulant of the graph theory development.

The existence of various generalizations of this problem on hypergraphs
generated the necessity to find the common approach to the colouring problem
in graph and hypergraph theory. It was an approach developed in [6] by V.
Voloshin. The realization of such an approach is the really important and
promising problem. The problem is to find not only the minimal possible
number of colours required for the hypergraph colouring, it is to find the
maximal possible number as well when we consider this colouring method. For
a number of hypergraph classes such a number, named the upper chromatic
number, was found in particular in [2] and [6]. In the present paper there
were analysed the colouring and structural properties of the more extended
hypergraph class.

Throughout this paper we use the terminology of [6]. Recall in details
some basic notions given in [6]: let X = {x1,x2,...,x,}, n > 1, be a finite
set, § = {81, 82,...,8},t > 1, be a family of subsets of X. The couple
H = (X, §) is called a hypergraph with the vertex set X and a family of subsets

t
Sif U S; € X. In general we consider the hypergraphs H = (X, §'), |X| =n

i=1
such that §' = A U & where + and & are two subfamilies of 8. If A £ ¢ and
& # () then arrange that A = {Ay, ..., A}, I = 1,...,k, §={E, ..., E,},
J=1,...,mand |A;| > 2,i€l; |E;j| =2, jeJ. When discussing the
colourings we call every E;, j € J and edge, and every A;, i € I a co-edge.
In special cases if A = (J then H = (X, §) = Hg will be called simply a
hypergraph, if & = @4, then H = (X, A) = H, will be called a co-hypergraph.
In general case, if & # () and A # ¥ then H = (X, A U &) will be called a
mixed hypergraph.

Let us have + > 1 colours. A strict colouring of a mixed hypergraph
H = (X, AU &) with t colours is the colouring of its vertices X in such a
way that the following four conditions hold:

1) any co-edge A;, i € I, has at least two vertices coloured with the same
colour;

2) any edge E;, j € J, has at least two vertices coloured differently;

3) the number of used colours is exactly ¢;

4) all the vertices are coloured.

The maximal (respective minimal) ¢ for which there exists a strict colour-
ing of a mixed hypergraph H = (X, 4 U &) with ¢ colours is called the upper



THE UPPER CHROMATIC NUMBER OF. .. 239

(respective lower) chromatic number of H and denoted by x(H) (respective
x (H)).

Let r(H) be the number of strict colourings of a mixed hypergraph H
with + > 1 colours. For each such hypergraph we associate the vector
R(H) = (r1,r2,...,1r,) € R" and call it chromatic spectrum of H. The value
Xxm(H) = M is called the middle chromatic number of a hypergraph
H and the value b(H) = x(H) — x(H) + 1 is called the breadth of chromatic
spectrum of H.

A set T C X is called a bitransversal of a hypergraph H = (X, §) if
ITNE;| > 2 forany j € J. The minimal cardinality of a bitransversal is denoted
by 7(H). If & does not contain the elements of cardinality > 2 then we put
7,(H) = 0. Bitransversal of a co-hypergraph H, is called a co-bitransversal.
By 7(H) we denote the transversal hypergraph number [1]. A mixed hypergraph
H = (X, AUE), A # (is called a co-monostar if the following conditions
hold:

Dt(Hx) =15 2) na(Ha) = 3.

A mixed hypergraph is called a co-bistar if there exists a co-bitransversal
of cardinality 2, that does not constitute an edge.

A mixed hypergraph H = (X, AUE) is called a mixed interval hypergraph,
if there exists a linear ordering of its vertex set X such that each edge E;, j € J
represents an interval and each co-edge A;, i € I, represents an interval [2].

In a mixed hypergraph H = (X, A U &) the set of indices /; € I and a
respective subfamily A;, i € I; of co-edges is called a sieve if for any x, y € X
and j, k € I; the following implication holds:

(x,y)eAjNA, = (x,y)=E €&

for some / € J. A maximum cardinality of a sieve in a hypergraph H is called
the sieve-number of H and denoted by s(H) [2].

An undirected graph G = (X, E) is called an interval graph if its vertices
can be put into one-to-one correspondence with a set of intervals I of a linearly
ordered set (like the real line) such that two vertices are connected by an edge of
G if and only if their corresponding intervals have nonempty intersection [3].

Definition 1. The hypergraph H = (X, C) is called the clique hypergraph of an
interval graph (the quasi-interval hypergraph) if there exists an interval graph
G = (X, E) with the clique family C(G) such that for every edge of hypergraph
there exists the corresponding maximal clique in graph G and vice-versa.

It is known [6] that all the properties of arbitrary mixed hypergraph
colourings may be reduced to the respective properties of reduced hypergraphs,
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i.e. the hypergraphs with |A;| > 3, i € I, and |E;| > 2, j € J, and
without included edges and co-edges. So, let us consider further the reduced
hypergraphs.

2. The structural properties of quasi-interval hypergraphs.

Remind at first some basic notions of the hypergraph theory we will use
below.

The 2-section (H), of a hypergraph H = (X, §) is defined to be a graph
G = (X, E) formed by X andtheset E = {E; : x;x; = E; <= 385, €S : x; €
Sk, Xj € Sk}

Let H = (E, X1, ..., X,,) be a hypergraph with n edges. The representa-
tive graph of H is defined to be a simple graph L(H) of order n whose vertices
X1, ...X, respectively represent the edges X, ..., X, of H and the vertices x;
and x; are joined by an edge if and only if X; N X; # @. [1] The Gilmore and
Hoffman Theorem says that for undirected graph G = (X, E) the following
three statements are equivalent:

1) G isan interval graph;

2) G contains no chordless 4-cycle and its complement G is a comparability
graph;

3) the maximal cliques of G can be linearly ordered such that, for every vertex
x of G the maximal cliques containing x occur consecutively [3].

Theorem 1. If H = (X, S) is an interval hypergraph then (H ), is an interval
graph.

Proof. Let H = (X, S) be an arbitrary interval hypergraph. Construct (H ),
and enumerate the vertices of (H), in the same way in which they have been
numbered in H = (X, §). After that we order the edges of hypergraph by the
left end. This is possible because each vertex may represent the left end of the
only one hyperedge (otherwise we should have included edges). In the ordering
we constructed for any vertex the edges containing it appear consecutively.
Further we number the cliques of (H), in the same way in which have been
numbered in H = (X, §) the corresponding hyperedges. So, we obtain the
order in (H); such that for any vertex x the cliques C; containing x have the
consecutive numbers. Since we have the third condition of the Gilmore and
Hoffman Theorem satisfied, (H ), is an interval graph. (]

Corollary 1. If H = (X, S) is an arbitrary interval hypergraph and H* =
(X*, 8% is its dual hypergraph then L(H™) is an interval graph.
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Proof. Since L(H*) = (H); [1] the corollary evidently follows. O

Theorem 2. If H = (X, 8) is an arbitrary interval hypergraph and H* =
(X*, 8%) is its dual hypergraph then (H™), is an interval graph.

Proof. 1t follows from the definition of interval hypergraph that if H = (X, §)
is an interval hypergraph then L(H) is an interval graph. But since L(H) =
(H*), we obtain that (H*), is an interval graph. O

Theorem 3. Let G = (X, E) be an arbitrary interval graph and H(G) =
(X, C) be its clique hypergraph. Then the dual hypergraph H*(G) = (X*, C*)
is an interval hypergraph.

Proof. The Fullkerson-Gross Theorem [3] says that an undirected graph G =
(X, E) is an interval graph if and only if its clique matrix M(G) has the
consecutive one’s property for columns. Since G = (X, E) is an interval graph
M(G) has the mentioned property

1 0 0 0
0 1 1 0
MGe)=|: 1 |,
o1 .--- 10
o1 .-.- 0 1

But the clique matrix of G is simultaneously the incidence matrix of the
clique hypergraph H(G).

M(G) = A(H(G)).

Now let us consider the incidence matrix of the dual hypergraph H*(G).
It is known [1] that A(H*(G)) = AT(H(G)). Hence A(H*(G)) has the
consecutive one’s property for rows:

10 00
0 1 11
A(H(G)) = I
0 1 10

00 0 1

i.e. each hyperedge in H*(G) represents an interval. So, the proof is
complete. ]
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Now let us show that not for any interval graph G = (X, E) the clique
hypergraph H(G) is an interval hypergraph.

Example 1. Let us consider the graph G = (X, E):

X5 X6 X7 Xg
G Cs

C Cy

GI(X,E) X3 X4

X1 X2 X9 X10

X1 X2 X3 X4 X5 Xe X7 Xg Xg X0

¢aGg(1 1 1 1 0 O O O O O
M(G) = G2Gl1o o 1.1 1 1 0 0 0 O
¢Gl]o o 1 1 0 O 1 1 0 O
¢cs\0 0 1 1 O O O 0 1 1

As one can see, M(G) has the consecutive one’s property for columns. Hence,
by the Fullkerson-Gross criterion G = (X, E) is the interval graph indeed.

But it is evidently that H (G) is not an interval hypergraph:




THE UPPER CHROMATIC NUMBER OF. .. 243

Thus the interval hypergraphs are not the self-dual hypergraphs.
Now, let us clarify the conditions in which the quasi-interval hypergraphs
are the interval hypergraphs in fact.

Theorem 4. Let {I;},i = 1, ..., n, be the system of intervals on the real line
without coinciding intervals and G = (X, E) the corresponding interval graph.
Then the clique hypergraph H(G) is an interval hypergraph.

Proof. Let us number the intervals from {/;} from left to right in ascending
order. Thus {/;},i = 1, ..., n, does not contain the coinciding intervals, then,
obviously each clique in G = (X, E) will represent a numerical interval, hence
H (G) will be an interval hypergraph. ]

Definition 2. Given graph G = (X, E). For any x € X the number of cliques
containing x we call the power of x, denoted by p(x).

In fact, p(x) is equal to the degree of x in the clique hypergraph H (G).

Theorem 5. Let G = (X, E) be an arbitrary interval graph and C =
{C1, ..., Cy} be the set of its maximal cliques. The clique hypergraph H(G) =
(X, @) will be an interval hypergraph if and only if the following two conditions
hold:

1) ;NG #C;NGC, Vi, j,k=1,m

2) If Ci_1, C; and C;y; are the first three or the last three cliques in G and

CioiNCNCiyy # 9,

then there is no vertex x; € C; such that p(x;) < 2.

Proof. = Let H(G) = (X, C) be an interval hypergraph. Then by Theorem 1,
(H ), is an interval graph. The first condition obviously follows from prohibition
of the existence of included edges.

Now let us prove the second condition. Let C;_; = {x,_,}, C; = {x;,} and
Ciy1 = {x;,,},i = 2,...,m — 1, be the edges of the interval hypergraph
H = (X, ). Since every hyperedge represents an interval, the following

precedence relation for the vertices of H holds:

Xy = Xjp = Xy

It means that for the indices of the vertices the following inequality is true:
ki1 < Jji <liy1,

where the equality achieves only for the vertices of degree more than one. If
there exists the vertex x;, € C; such that p(x;,) = 1 then

ki_1<hi<li+1, Vk,lzl,...,l’l,
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i.e. this vertex must be settled after the vertices from C;,_; and before the
vertices from the C;, what is impossible because of

CiiNCNCiyr #0.

<— Note at first that in given conditions the hypergraph H(G) can be
always represented as a chain, since the second condition excludes the presence
of branches of the following mode:

Ci Cit
[ ]

Q.(.@.@.(.D.D

Ci_i

Other models of branches are excluded by the properties of interval graphs.
Indeed, the cliques of interval graph can not be intersected in such that a way:

GCRIOECEICE,

10
PN

because the clique matrix M(G) has not the consecutive one’s property for
columns.

X1 X2 X3 X4 X5 Xe X7 Xg Xg Xj0

¢f(1 1 0 0 O O O O O O
GGjo 1110 0O O O O O
M(G) = |0 o0 o 1 1 1 O O 0 O
¢4 0 0 0 0 1 O 0 0 o0 1
¢s{]o 0 0 o o 1 1 1 0 O
C¢6\O O O O O O O 1 1 O
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and in such a way:

C

G 2@ y (CS c@) Cg@ o )

13

X1 X2 X3 X4 X5 Xo X7 Xg Xo Xj0 X1 X2 X13 X4

(1.1 1 0 0 0 0 00O O O O O0 O
G110 01 1 1 1 1 0 O 0 O
MG)=c;1l0 0 001 1 1 1 1 0 0O O 0 O
10 0 00 O OOOT1 1 1 1T 0 O
¢Cs\0 0 0 OO0 1 1.00 0 O 0 1 1

or in such a way:

¢(1 1 0 0 O O 0 O
Glo 111 1 0 0 O
MG =¢Ccl0o0 0 1 1 0 0 0 1
¢G|lo o0 1 1 1 1 0 O
Cs\0 0 0 O O 1 1 O

by the same reason.
The branches of this mode:
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G
4

C () m C Cs
Gl b )

are forbidden by the condition 1) of Theorem, and, the last, in the case of such
clique intersection:

we can always renumber our intervals and corresponding vertices of G =
(X, E) in such a way:

Now let us begin the proof of Theorem 5.

Let G = (X, E) be an arbitrary interval graph which satisfies the two
conditions mentioned above. We number the vertices of X in the following
way: from all the simplicial vertices of G (remind that the vertex x is called
the simplicial if its neighbourhood forms the clique and the simplicial vertex in
triangulated graph necessarily exists [4]) we choose one, to which corresponds
the most left of the intervals, corresponding to the simplicial vertices. (It is done
with the aim to choose from the simplicial vertices 1, 2, 4, 6, 7 (see the picture)
the vertex number one).
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RCRIOEE

The chosen vertex is numbered as x; and the clique containing x; as C;.
Remind that x; can represent the left end of the only one clique since otherwise
we deal with the included cliques what contradicts the maximality of the cliques.
If C; still contains vertices x; with the p(x;) = 1 we arrange them next and
number them in ascending order. After we have exhausted all the vertices of
power one, we find the vertex x; of power 2. If G = (X, E) is not a complete
graph such a vertex necessarily exists because C; can not be intersected with
the two cliques by the same vertex set. We assign to x; the following number
and call C; the second clique containing x;. After x; we arrange all the vertices
of power 2 belonging to C, as well as to C;. After that if the clique C; has
not yet been exhausted we place the vertices from C; of power 3 and the clique
containing them we name C3 and so on. But if the clique C; has been settled, we
arrange further the vertices of power 1 belonging to the last clique we numbered
C; and further we operate with C; in the same way as we did with the Cy. If
we can not found the vertices of power 1 in C; then we arrange the vertices of
power 2, number them in ascending order, and the new clique containing them
name C;;; and so on. After we have numbered all the vertices in this way, we
obtain the enumeration the vertices of G under which any clique represents an
interval, i.e. H(G) = (X, C©) is an interval hypergraph. O

Definition 3. We shall call the hyperedge C; of the hypergraph H = (X, C) the
terminal if the following two conditions hold:

1) There exists a vertex x; such that x; € C; and p(x;) = 1.
2) The strong elimination of x; does not break the connectivity of H.

Definition 4. The clique C; of a graph G = (X, E) is said to be final if the
corresponding hyperedge C; in a clique hypergraph H = (X, C) is final.

Theorem 6. Let G = (X, E) be an arbitrary interval graph with the clique
family {Cy, ..., C,}. The following conditions are equivalent:
Da)CNC #CNCy Vi, j,kel.
b)If Ci_y, C;, Ciy1 are the first three or the last three cliques of G and
Ci_1 NC; NCiy1 # @ then C; does not contain vertices of power one.
2) G = (X, E) does not contain more than two final cliques.
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Proof. Note at first thatif G = (X, E) is the complete graph then it has the only
one clique and we have both of our conditions satisfied automatically, so let us
consider further G to be an arbitrary interval graph different from the complete.

)= 2)

It follows from Theorem 5 that if the condition 1) holds then H(G) is an
interval hypergraph, but each interval hypergraph (different from the complete)
has exactly two final hyperedges: the first and the last.

2)=1)

Let G = (X, E) be an arbitrary interval hypergraph having two final
cliques. The proof is performed by induction on k, where k is the number
of maximal cliques of G. Let G contains three cliques. We arrange them
in following way: the first we arrange one of final cliques and number its
vertices: at first we put all the vertices of power one and number them in
ascending order. After that we find the vertex of power two. It necessarily exists
because otherwise either one of our cliques contain another in contradiction with
the cliques maximality or we have three final cliques what contradicts to our
condition. Hence, no more than two cliques can be intersected on the same set
of vertices. Moreover, if G has only two final cliques and C; N C, N C5 # @,
then C, obviously can not contain the vertices of power one since otherwise C,
will be the third final clique. Let G = (X, E) be the interval graph containing
n maximal cliques. Its arbitrary subgraph G; = (X1, E) containing (n — 1)
maximal cliques is an interval graph too [3]. We assume 1) to be true for G;.
Then by Theorem 5, H(G) is an interval hypergraph. Hence the vertices of X
can be numbered in such a way that every clique C;, i = 1, ..., n—1, represents
an interval. Now let us see what happens with the graph G. The vertices of
C, contained in the other (n — 1) cliques number with the indexes assigned
them earlier. As one can easy see, the beginning of C,, can not coincide with
the beginning of some other clique as well as the end of C, can not coincide
with the end of other clique, otherwise either one of the cliques will contain
another or the number of final cliques will increase. On the same reason if
C,oNC,1 NC, # @, C,_; can not contain the vertices of power one. U

Let us remember some definitions given in [1] and [8]:

In a hypergraph H = (X, &) a chain of length g is defined to be a sequence
(x1, E1, x2, Ea, ..., E4, x441) such that

(1) xi1,...,x, are all distinct vertices of H.

(2) Ey, ..., E; are all distinct edges of H.

3) xk, xpr1€Exfork=1,2,...,q.

If g > 1 and x,4; = x; then this chain is called a cycle of length g.

Any edge E containing two non-consecutive vertices of a cycle is called a chord.
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Theorem 7. Let G = (X, E) be an arbitrary interval graph and H(G) =
(X, C) be the clique hypergraph of G. Then H(G) contains no chordless cycles.

Proof. By contradiction. Let us suppose that H(G) contain the cycle C,, n >
4, for example C] y Cz, C3, C4, C] .

H(G) (o) )

Since the vertices x1, x,, x3 are contained in the same hyperedge C;, then
in graph G they are representing the clique, i.e. there exists an edge E3; =
{x1, x3}. By the same reason there exist the edges E¢ = {x3, x5}, E9 = {x5, X7}
and Ej» = {x7, x1}. So we obtain the chordless cycle C = {xi, x3, x5, x7, x1}
in G, what is in contradiction with the triangulated property of interval graphs

[3].

X8 x.7 X6
G=(X,E) Xi¢ ) X5
X3 X3 X4
Furthermore H can not contain the cycles C,, n = 3. In fact, let

Cy, Cy, C3, Cy form the cycle in H. Since the hyperedges C;, C; and C5 are
pairwise intersected, there exists an edge C4 containing the vertices xj, X3, X4

[1].
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Now let us examine the incidence matrix of H:

X1 X2 X3 X4 X5 Xg

Ggf(1 1 1 0 0 O

A(H) = Gjo 1 0 1 1 O
3] 1 0 0 1 0 1

c;\1 1 0 1 0 O

As one can easy see the matrix A(H) has not the consecutive one’s
property for columns. Since the incidence matrix of H coincides with the
clique matrix of G we obtain that G is not an interval graph. So, we have the
contradiction, i.e. H can not contain the assumed cycle. The proof is complete.

O

Further we will deal with the co-hypergraphs H = (X, #4), i.e. when we
have an interval graph G = (X, E) with the clique family {Cy, ..., C,} each
clique C; will represent a co-edge A; in the clique co-hypergraph H = (X, A).

3. The colouring properties of quasi-interval co-hypergraphs.

Thus in conditions of Theorems 4, 5 and 6 the clique hypergraph of an in-
terval graph is the interval hypergraph and the upper chromatic number for such
the hypergraphs is already known [2], let us investigate the colouring properties
of the quasi-interval hypergraphs which are not the interval hypergraphs.

Theorem 8. Let Hy = (X, A) be an acyclic co-hypergraph such that

|ANA<1, Vi jel.
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Then
(D X(Hy) = |X]| — [A].

Proof. Remember at first that the hypergraph is called acyclic if it contains
no cycles. The proof is performed by induction on the number of co-edges. If
HY = (X', A') is such that A! = A;, then x(H),) is obviously equal to

A —1=|X'] — A
Let H: = (X?, A%, A% = {A;, A2}. Then on the one hand we can colour
H? with |X?| — 2 colours, hence x(H%) > |X|* — 2. On the other hand:
X(HR) < X(HQ) + (1A42] = 1) =1 = (JAi] = 1) 4+ (|Az] — 1) — 1. Since
|Ai] 4 |A2] — 1 = | X?| we obtain x(H3) < |X?| — 2. Hence,

X(HZ) = |X?| —2.

Let H = (X, A) contain m co-edges. We assume (1) to be true for its
arbitrary subhypergraph H """ containing (m — 1) co-edges: H{" " =
(X0, A=), ACD = (A A ), RHYTD) = XD = n = 1),
Letus find x(HY), H{ = (X", A™), where A™ = {A{, ..., A,}. On the one
hand we can colour H'{ by the | X"| — m colours, hence

X(HZ) = | X" —m.
On the other hand:
X(HY) < RHE )+ (A" -1 - 1=
=1 X"V —m-1D+|A"-1—1=|X"| —m.

Hence,

x(HY) =1X"| —m. O
Remark. Note that the prohibition on the existence of cycles in a co-hyper-
graph is really important since the cycle in H, could considerably increase the
value of y and the formula (1) would be only the lower bound of x(H,). For
example:
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As one can see | X| = 10, |A| = 5, but x(H,) = 6.
Corollary 2. If Hy = (X, A) is an acyclic co-hypergraph such that
[AiNA;l <1, Vi jel,
then
X(Hy) = |X| —s(Hpy),

where s(H 4) is the sieve number of H 4.

Proof. ltisevidently thatif |A; NA;| < 1, Vi, j € J, then in such a hypergraph
s(Hy) = |Al. O

Corollary 3. Let Hy = (X, A) be a quasi-interval co-hypergraph such that
|AlﬂAj|§1, Vl,]EJ

Then
X(Hy) = |X| — [A] = [X] — s(Ha).

Proof. 1t follows from Theorem 7 that the quasi-interval co-hypergraph con-
tains no cycles. Then by Theorem 8 and Corollary 2

X(Hp) = |X| — Al = |X]| —s(Hs). U
Corollary 4. Let Hy = (X, A) be an acyclic co-hypergraph such that
|AlﬂAJ|§1, Vl,]EJ

Then

|X| — |A]+1
Xm(Hp) = —————

and
b(Hy) = | X| — |Al.

Definition 5. Let (H4) = (X, 4) be an arbitrary co-hypergraph. Then set of
co-bistars k; = (X1, A1), ..., kn = (X, An,) Will be called the partition of

H, = (X, A) onto co-bistars if | J X; = X and |J A; = A.
i=1 j=1

The number of co-bistars in the partition of H, will be called the cardi-
nality of the partition.
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Definition 6. The partition of a co-hypergraph H4 = (X, +) onto co-bistars
ki = Xy, A1), ..., kn = (X, A,,) will be called the minimal if the number of
co-bistars in it is as small as possible.

It is clear that in such a partition every co-bistar k; = (X;, »;) has at least
one co-edge A; such that:

AicA; and Aj¢oh, Yi=1,....m i#].

Example 2. The partition of Hy : ki = (X1, A1), A1 = {A1, Ag, A3, Ay}
ky = (X2, A2), Ay = {Asz, As}; ks = (X3, A3), A3 = {As, Ag, A7, Ag}. The
cardinality of this partition is equal to 3.

The minimal partition of Hy : k1 = (X1, A1), A1 = Aq, Ay, Az, Ag;
ky = (X», Ay), Ay = As, Ag, A7, Ag. The cardinality of the minimal partition
is 2.

Theorem 9. Let Hy, = (X, A) be an arbitrary co-hypergraph and ki, ...,k
be the minimal partition of H 4 onto co-bistars. Then

Xx(Hy) = |X| -1

Proof. Let us show that we can colour H,4 with | X | —/ colours. Consider three
possible cases:

1. Assume that the minimal partition of H,4 onto co-bistars ki, ..., k; con-
tains no co-bistars k;, k; with the co-bitransversals b;, b; such that b; N b; # @,
Vi,j = ﬁ, i # j. Then we colour any two vertices from b; with the first
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colour, two vertices from b, with the second colour and so on. Since the co-

bitransversals are not intersecting we have coloured 2 x [ vertices with [ colours.
I
The remainder of vertices we colour overall differently. Since | 4; = 4, ev-
i=1
ery co-edge A; has two vertices of the same colour, i.e. we obtain the correct
colouring of H4 and we have used |X| —2 x [+ = |X| — [ colours, i.e.

X(Ha) = [X]— L.

2. Now let us presuppose that the partition &, ..., k; contains a number of
co-bistars k; such that Vk; there exists at least one k; such that b; N b; # 0,
i#j,i,j= 1,1;, where 1 < I, <[ and a number of co-bistars k,, such that
by Nby =0, VYm,s,m#s,m=1,,1,s =1, and H, contains no cycles. Let
us see how we can colour such a hypergraph with /; co-bistars with intersecting
co-bitransversals and (I — /1) co-bistars with non-intersecting co-bitransversals.

At first we colour two vertices from each co-bitransversal b;, i = 1,1,
with the first colour. Since |b; N b;| < 1, Vi, j = 1,1, i # j (otherwise we
could consider k; and k; as a single co-bistar and the cardinality of minimal
partition would be (/ — 1)) and H, contains no cycles we have coloured
2 x 1l — 11 +1=1; + 1 vertices with the first colour.

After that we colour two vertices from b, 4, with the second colour, two
vertices from by 4, with the third colour and so on. So we have coloured
(i + 1)+ 2 x (I —1Iy) vertices using (I — [} + 1) colours and each co-edge
A; already has two vertices coloured equally. The remainder of the vertices we
colour overall differently. Finally we obtain the correct colouring of H, with

X|—-QCx(I-1)D)+6+1)+1-1L+1=
X =2 Xl 42Xl =l =141 —1 +1=|X|—1

colours, i.e.
X(Hy) > |X]| —1.

3. Now let the partition k1, . . ., k; contains a number of co-bistars k; such that
Vk; there exists at least one k; such that b; Nb; # W, i # j,i, j = 1,1;, where
1 < [; < and a number of co-bistars k,, such that b,, N\b; =@, Vim, s, m # s,
m =1y,1,s = 1,1 and H, contains an arbitrary cycle. If H, contains a cycle
then it could happen that the co-bitransversal b; has no vertices x such that
x e€bjand x ¢ b;, i,j = Tll, i.e. the common number of co-bitransversal
vertices of the co-bistars &, . .., k;, is less than /; + 1. Let this number be equal
to y. So we colour y vertices with the first colour, 2 x (I — [;) vertices with
(I = 1}) colours and every co-edge already has two vertices coloured equally.
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The remained vertices we colour overall differently and obtain the correct
colouring with

X = +2xU-l)+U-)+1=[X|-(+(-1)+1=
X[ - +1+-L))+1=|X[-1

colours, i.e.
X(Hy) > |X]| - L U

Theorem 10. Let Hy = (X, A) be an arbitrary acyclic co-hypergraph and
ki, ...,k be its minimal partition onto co-bistars. Then

X(Hp) =[X] -1

Proof. 1t follows from Theorem 9 that x(H4) > |X| — [. Let us prove that
xX(Hy4) < |X| — [. The proof is performed by induction on the number of co-
bistars. It is known [6] that y(H,) = |X| — 2 if H, is either a union of two
co-bistars with non-intersecting co-bitransversals, or a hole. It means that if we
have the co-hypergraph H, with the minimal partition onto co-bistars &, k, we
can assume x(Hy) < |X| —2 = |X| —[. Really, if by N by, # (@ then Hy
represents a hole.

In fact, we have a minimal co-bitransversal of power 3 that is not an edge
and no edge of cardinality 2 coincides with any two of this vertices.

Now let us have the co-hypergraph H = (X, A) with the minimal partition
onto co-bistars kj, kp, ..., k;. Assume the hypothesis is true for its subhyper-
graph H} = (X', A"), where ki, ..., ki is the minimal partition of H ) onto
co-bistars. It is evident that Ib;, i = 1,/ — 1, such that b, = va N b; otherwise
the cardinality of the minimal partition would be (I — 1). Then, obviously:

X(Hy) < x(H)+ X —1X'nX)|—1=
=1X'1-(-D+I1X-1X'nX)|—1=|X|-1. O



256 VIOLETA PRISAKARU

Corollary 5. Let Hy = (X, A) be an arbitrary quasi-interval co-hypergraph.
Then

x(Hy) = X[ =1,

where [ is the cardinality of the minimal partition of H 4 onto co-bistars.

Corollary 6. Let Hy = (X, A) be an arbitrary acyclic co-hypergraph. Then
x(Hy) = |X| —s(Hpy),

where s(H 4) is the maximal sieve of H 4.

Proof. 1t is evidently that if we have an acyclic co-hypergraph H, with the
minimal partition onto co-bi&rs ki = (Xq, A, ..., k = (X;, A, thenﬁr
every co-edge Aj, € A;, i = 1,1, |[A; NA,| >2and [A;; NA, | <1, k=11,

k # i, 1.e. we can take the only one co-edge from any co-bistar k;, i = 1,1, to
form the maximal sieve of H 4. So, we obtain s(H ) = /. U

Since the quasi-interval co-hypergraphs contain no cycles then evidently
follows:

Corollary 7. Let H, = (X, A) be an arbitrary quasi-interval co-hypergraph.
Then

X(Hp) = |X| — s(Ha),
where s(H 4) is the sieve number of H 4.

Thus although the class of quasi-interval co-hypergraphs is wider than the
class of interval co-hypergraphs we obtain that the value of the upper chromatic
number of a quasi-interval co-hypergraphs coincides with the value of x for the
mixed interval hypergraph.

Now let us specify some additional conditions:

The number of edges in a bi-or a monostar k; is called the cardinality of a
star and denoted by card(k;).

Definition 7. A co-hypergraph H, = (X, ) is said to be divisible onto
co-bistars if the minimal partition of H, does not contain the co-bistars of
cardinality less than 2.

Otherwise the co-hypergraph is called undivisible and the single edges are
not considered like a co-bistars (as like as the co-monostars).
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Example 3.
1) The divisible co-hypergraph:

The minimal partitionof Hy : ki = (X1, #41); ko = (X2, #A2), where X| =
{x1, x2, X3, X4, X5, X6}, A1 = {A1, Ar}; X2 = {x6, X7, X3, X0}, A2 = {A3z, Ay}

2) The undivisible co-hypergraph:
The edges A3, A4, As do not constitute the co-bistars.

So, further when we speak about the co-bistars we mean the co-bistars
of power 2 or more. And now we introduce some change in notation. Since
dealing with the co-bistars we are interested in co-edges belonging to them and

for the convenience of notations instead of k; = (X, A1), X1 = {x1, ..., x;},
A1 = {Ay,..., A;} we will write further k; = (Ay,..., A;). And one more
supplementary condition: if the co-hypergraph H, contain the co-monostar
m, = (A, Ay, ..., A;) and the co-bistar k, = (A;, A;y1,..., A,) then we

consider the edge A, belonging to the co-bistar and not belonging to the co-
monostar and the cardinality of co-monostar is z — 1 (instead of z).
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Example 4.

el (e

The co-hypergraph H, contains the co-bistar k; = (A, A,) and the co-
monostar m; = (As, A4). The edge A, we consider belonging to the co-bistar
and not to the co-monostar.

In given conditions the Theorem 10 may be rephrased in the following way:

Theorem 11. Let Hy = (X, A) be an acyclic co-hypergraph, | be the cardi-
nality of its minimal partition onto co-bistars and k be the number of co-edges
not belonging to co-bistars. Then

X(Hy) = X[ = (k+1D).

Corollary 8. Let H, = (X, A) be an arbitrary quasi-interval co-hypergraph,
[ be the cardinality of its minimal partition onto co-bistars and k be the number
of co-edges not belonging to co-bistars. Then

X(Hy) = X[ = (k+1D).

Theorem 12. Let H, = (X, 4A) be an arbitrary acyclic co-hypergraph. Then
s(Hy) =k +1,

where s(Hy) is the sieve number of Hy, | is the cardinality of the minimal
partition of Hy onto co-bistars and k is the number of co-edges not belonging
to co-bistars.
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Proof. Since by definition of co-bistar every single co-edge could be considered
as the co-bistar (we may assume any two vertices to be the co-bitransversal),
(k 4+ 1) would be the cardinality of the minimal partition of H,4 onto co-bistars.
In fact, we may consider the edges to be the co-bistars of power 1. Since [ is the
smallest number of co-bistars of power 2 or more, contained in H,4 and k is the
number of co-edges of power 1 and it obviously could not be decreased, (I 4 k)
would be the smallest number of co-bistars of H,. By Corollary 6 we obtain
s(Hy) = (k +1). O

For a mixed hypergraph H = (X, AU &) aset P C X is said to be co-
stable if it does not contain any co-edge A;, i € I. The maximal cardinality of a
co-stable set is called the co-stability number and denoted by o4 (H) [6].

Let H=(X,AU&). H = (X', A’ U &) is called induced subhypergraph
of H if X’ C X, A’ and & contain all elements of + and & respectively, which
are wholly (entirely) contained in X".

A mixed hypergarph H is called a co-perfect hypergraph if for any its
subhypergraph H' the following equality holds ([7]):

X(H') = au(H).

Theorem 13. Let Hy = (X, A) be an arbitrary acyclic co-hypergraph. Then
H is co-perfect if and only if it does not contain co-monostars as a subhyper-
graphs.

Proof. — 1t is obviously because the co-monostars are not the co-perfect
hypergraphs.

< It is clear that if H, = (X, #) is an acyclic co-hypergraph then any its
subhypergraph H', = (X', A’) will be also an acyclic co-hypergraph. So, it is
sufficient only to prove that x (H4) = a4(H4). Let H,4 does not contain the co-
monostars. Then, obviously, o4 (H4) = | X|—1{, where [ is the cardinality of the
minimal partition of H 4 onto co-bistars. But by Theorem 10, x(H4) = | X| —1.
Since we have a4 (H4) = x(Hy), Hy is a co-perfect co-hypergraph. Il

4. Conclusion.

The result of this paper is the complete examination of the structural
properties of quasi-interval hypergraphs and the colouring properties of quasi-
interval co-hypergraphs.

Although the class of quasi-interval hypergraphs is wider than the class of
interval co-hypergraphs it was found that the basic results for colourings of co-
hypergraphs from this class coincide with the respective results for the mixed
interval hypergraphs introduced in [2].
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