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A NOTE ON LINE GRAPHS

D �ANUŢ MARCU

The aim of this note is to give several suf�cient conditions, for some
classes of line graphs, to be Hamiltonian.

Introduction.

Graphs, considered here, are �nite, undirected and simple (without loops
or multiple edges, [1], [2] being followed for terminology and notation. Let
G = (V , E) be a graph, with V the set of vertices and E the set of edges.
Suppose that W is a nonempty subset of V . The subgraph of G , whose vertex
set is W and whose edge set is the set of those edges of G that have both ends
in W , is called the subgraph of G induced by W and is denoted by G[W ]. For
any vertex ν in V , the neighbour set of ν is the set of all vertices adjacent to ν .
This set is denoted by N (ν). For a graph G = (V , E), we shall denote

δ(G) = min
ν∈V

|N (ν)| and �(G) = max
ν∈V

|N (ν)|.

Following [3], a graph G = (V , E) is locally connected, if for each vertex ν

the graph G[N (ν)] is connected. With every graph G , having at least one edge,
there exists associated a graph L(G), called the line graph of G , whose vertices
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can be put in a one-to-one correspondence with the edges of G , in such a way
that two vertices of L(G) are adjacent if and only if the corresponding edges of
G are adjacent. It was �rst shown by Sedlacek [6] that if G is Hamiltonian, then
L(G) is Hamiltonian. Since then, many Hamiltonian results, involving the line
graphs, have been obtained. Several of these are given in [5].

The main results.

In their paper, Chartrand and Pippert [3] have shown that every connected
and locally connected graph G , on n ≥ 3 vertices and having �(G) ≤ 4, is
either Hamiltonian or the graph K1,1,3. In this note, we shall prove the following
fundamental

Theorem. If G is a connected and locally connected graph, on n ≥ 3 vertices,
which does not contain an induced K1,3, then G is Hamiltonian.

Proof. Suppose that the Theorem is false and let G be a connected and locally
connected graph on at least three vertices, which does not contain an induced
K1,3, but which is not Hamiltonian. Clearly, G contains a cycle. Let C be a
largest cycle in G . Then, C does not span G and, since G is connected, there
exists a vertex ν , not on C , which is adjacent to a vertex u, lying on C . Let
u1 and u2 be the vertices neighbouring u, on the cycle C . Since G is locally
connected, there exists a path P , in G[N (u)], from ν to the one of u1 or u2,
which does not include the other. Without loss of generality, we shall suppose
that P is a path from ν to u1 and that u2 /∈ P .
Now, if P ∩C = {u1}, then, by attaching P to C at u1 and ν , we could obtain a
cycle larger than C . Hence, we may assume that P ∩ C contains vertices other
than u1. Also, we cannot have ν adjacent to either u1 or u2, without producing
a cycle larger than C . Thus, since {u, u1, u2, ν} cannot induce a K1,3 in G , then
it must be that u1u2 is an edge of G .
For the purpose of this proof, we shall de�ne a singular vertex to be a vertex
w ∈ P∩C−{u1}, such that neither of the vertices, neighbouringw in C , belongs
to N (u). We shall consider two cases:

Case 1. Every vertex in P ∩ C − {u1} is singular. Then, for any vertex
w ∈ P ∩ C − {u1}, w is adjacent to u, but neither of the vertices w1 and w2,
neighbouring w on C , belongs to N (u). Thus, since {w, w1, w2, u} cannot
induce a K1,3 in G , then it must be that w1w2 is an edge of G .
Now, traverse C , starting at u2 and moving away from u and for each vertex
w ∈ P ∩ C − {u1}, by-pass w, by taking the edge w1w2. Continue, until the
vertex u1 is reached. Then, follow P from u1 to ν then to u and �nish at u2.
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Then, we have passed through each vertex of C ∪ P , exactly once, and have
thus constructed a cycle larger than C .

Case 2. P ∩ C − {u1} contains nonsingular vertices. Then, follow P
from ν toward u1, until the �rst nonsingular vertex w is reached. Let w1 and
w2 be the vertices neighbouring w along C . Then, at least one of w1 and w2 is
adjacent to u. Without loss of generality, suppose that w1 is adjacent to u. Now,
form a new cycle C � , containing exactly the same vertices as C , as follows.
Delete the edges ww1, uu1 and uu2 and add the edges wu, w1u and u1u2. Note
that if w is a neighbour of u1 or u2, then not all of these edges may be distinct
(e.g., if w1 = u1, then uu1 = uw1). But now, the vertices neighbouring u in
C � are w and w1, and the subpath P � of P , from w to ν , does not include w1

(as else w1, being a nonsingular vertex, would have been chosen earlier, instead
of w). Moreover, from the choice of w, it follows that P � cannot contain any
nonsingular vertex with respect to C � and w (in the place of u1). Thus, relative
to P � and C � , we are back to the Case 1. Hence, in any case, C cannot have
been a largest cycle and, with this contradiction, the Theorem is proved. �

Remark. The above Theorem does not provide a necessary condition. For ex-
ample, let us consider the graph G = (V , E), where V = {ν1, ν2, . . . , ν6}

and E = {ν1ν2, ν1ν6, ν2ν3, ν2ν4, ν2ν5, ν2ν6, ν3ν4, ν3ν6, ν4ν5, ν4ν6,
ν5ν6}. Obviously, this graph is connected, locally connected, Hamiltonian, but
G[{ν1, ν2, ν3, ν5}] is isomorphic to K1,3.

If L(G) is the line graph of a graph G , then it is well known that L(G)
cannot contain K1,3 as an induced subgraph. Thus, we have the following

Corollary 1. Every connected and locally connected line graph, on n ≥ 3
vertices, is Hamiltonian.

Corollary 2. If every edge of a connected graph G lies in a triangle, then L(G)
is Hamiltonian.

Proof. If every edge of G lies in a triangle, then L(G) is locally connected and,
by Corollary 1, L(G) is Hamiltonian, since, according to [4], G and L(G) have
the same connectivity. �

Corollary 3. If G is a connected and locally connected graph, on n ≥ 3
vertices, then L(G) is Hamiltonian.

Proof. If G is connected and locally connected, on at least three vertices,
then every edge of G must lie in a triangle and, hence, the result follows from
Corollary 2. �

Corollary 4. If G is a connected graph with δ(G) ≥ 3, then L(L(G)) is
Hamiltonian.
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Proof. If δ(G) ≥ 3, then every edge in L(G) lies in a triangle. Hence, by
Corollary 2, L(L(G)) is Hamiltonian. �
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